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Abstract

Motivation: Phylogenetic networks represent reticulate evolutionary histories. Statistical methods for
their inference under the multispecies coalescent have recently been developed. A particularly powerful
approach uses data that consist of bi-allelic markers (e.g., single nucleotide polymorphism data) and
allows for exact likelihood computations of phylogenetic networks while numerically integrating over all
possible gene trees per marker. While the approach has good accuracy in terms of estimating the net-
work and its parameters, likelihood computations remain a major computational bottleneck and limit
the method’s applicability.
Results: In this paper, we first demonstrate why likelihood computations of networks take orders of
magnitude more time when compared to trees. We then propose an approach for inference of phylo-
genetic networks based on pseudo-likelihood using bi-allelic markers. We demonstrate the scalability
and accuracy of phylogenetic network inference via pseudo-likelihood computations on simulated data.
Furthermore, we demonstrate aspects of robustness of the method to violations in the underlying as-
sumptions of the employed statistical model. Finally, we demonstrate the application of the method to
biological data. The proposed method allows for analyzing larger data sets in terms of the numbers of
taxa and reticulation events. While pseudo-likelihood had been proposed before for data consisting of
gene trees, the work here uses sequence data directly, offering several advantages as we discuss.
Availability: The methods have been implemented in PhyloNet (http://bioinfocs.rice.edu/phylonet).
Contact: {jiafan.zhu,nakhleh}@rice.edu

1 Introduction

Species phylogenies model how species evolve and diversify. When species split and diversify without
subsequent exchange of genetic material between different species, the species phylogeny takes the shape
of a tree. In the post-genomic era, the inference of species trees in general makes use of the availability
of sequence data of multiple individual loci across the genomes. Methods for species tree inference from
such data view evolution of the sequence data as two co-occurring stochastic processes: one that models
the growth of the genealogies of individual loci within the branches of the species tree and another that
models the evolution of sequences of individual loci along the branches of the corresponding genealogies.
The latter process is most commonly captured by Markov models of sequence evolution and is the basis
for computing the likelihood of (gene) trees [6]. Modeling the former process depends on the evolutionary
processes acting on the individual loci. In particular, the coalescent model [9] is one such model of growth
of the genealogies when individual loci evolve under the idealized Wright-Fisher model. When the species
tree is viewed as a set of populations stitched together according to the tree structure, the coalescent
model is extended into the multispecies coalescent [5].

However, when different species exchange genetic material, the tree structure is no longer adequate for
modeling their resulting reticulate evolutionary history. It is now well established that the evolutionary
histories of several groups of species, both prokaryotic and eukaryotic, are reticulate [13]. In prokaryotes,
the most common process of reticulation is horizontal gene transfer [8, 10], whereas hybridization and
introgression are the main processes of reticulation in eukaryotes [1, 2, 19, 11, 12, 18, 7, 16, 13, 27]. A
phylogenetic network is a rooted, directed acyclic graphs that represents the evolutionary histories of a
set of taxa when that evolutionary history is not strictly treelike [15].

To extend the aforementioned model of two co-occurring stochastic processes to reticulate evolutionary
histories, the multispecies network coalescent (MSNC) was devised [33, 34]. Under this model, the
genealogy of an individual locus evolves within the branches of a phylogenetic network, thus capturing
evolutionary scenarios where loci could be exchanged across species boundaries. The model enabled
the development of statistical methods for inferring phylogenetic networks from multi-locus data sets,
summarized in Table 1.
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Table 1: Methods for phylogenetic network inference under the MSNC. L: likelihood computation (F: full;
P: pseudo); GT: gene trees; GTT: gene tree topologies; SA: sequence alignments; BM: bi-allelic markers.

Data L Reference
GT/GTT F [34, 28]
GTT P [31, 21]
SA F [26, 35]
BM F [36]
BM P This paper

In terms of the data that they utilize, statistical methods for phylogenetic network inference based on
the multispecies network coalescent can be grouped in three categories. The methods of [33], [34], and
[28] use gene tree estimates as the input data and infer the phylogenetic network and its parameters based
on maximum likelihood or Bayesian inference. A major computational bottleneck for these methods is
the calculation of the likelihood of phylogenetic networks. These calculations can take hours and even
days for a single network if the numbers of taxa and reticulations are large. This was the main motivation
behind the development of pseudo-likelihood methods for phylogenetic networks [31, 21]. However, two
disadvantages of using gene tree topology estimates as the input data (for both the full- and pseudo-
likelihood methods) are the inability to estimate some parameters of interest that could be estimable from
sequence data, and in fact the gene tree estimates could have much error in them, especially at the scale
of evolution where incomplete lineage sorting is a concern. To address these two issues, the methods
of [26], and [35] employ Bayesian Markov chain Monte Carlo to sample the posterior of phylogenetic
networks and gene trees from the sequence data directly, where the data for each locus consist of a
sequence alignment. Most recently, [36] devised a Bayesian method for inferring phylogenetic networks
from data that consist of unlinked bi-allelic markers (such as single nucleotide polymorphism data and
amplified fragment length polymorphisms).

While the method of [36] is very promising in terms of accuracy and has the advantage that it
performs numerical integration that completely sidesteps the issue of sampling the enormous gene tree
space, it is very slow in practice, rendering the inference of networks with more than 5-6 taxa and 3-4
reticulations infeasible. This paper concerns the scalability of the method. We first discuss factors that
make likelihood computations on networks computationally orders of magnitudes more demanding that
on trees even when the network and tree differ by a single reticulation. We then propose a pseudo-
likelihood formulation based on bi-allelic markers, along with an inference method. We demonstrate the
accuracy, robustness, and speed of the method and its ability to analyze much larger data sets than
full-likelihood-based methods can handle. The developed methods are implemented in the open-source,
publicly available software package PhyloNet [23, 29].

2 Background

A phylogenetic network Ψ on set X of taxa is a rooted, directed, acyclic graph whose leaves are bijectively
labeled by X . Each node in the network has in-degree of 0 (the root), 1 (a tree node), or 2 (a reticulation
node). The out-degree of each node is at most 2. Network Ψ’s sets of nodes and edges are denoted by
V (Ψ) and E(Ψ), respectively.

Each node in the network has a species divergence time and each edge b has an associated population
mutation rate θb = 4Nbµ where Nb is the effective population size associated with edge b and µ is the
mutate rate per site per generation. For calculations under the coalescent, it is always assumed that there
is an infinite-length edge above the root of the network. Furthermore, for every pair of reticulation edges
e1 and e2 that share the same reticulation node, we associate an inheritance probability, γ, such that
γe1 , γe2 ∈ [0, 1] with γe1 + γe2 = 1. We denote by Γ the vector of inheritance probabilities corresponding
to all the reticulation nodes in the phylogenetic network. In order to simplify notation, we assume here
that Ψ represents the phylogenetic network topology and all the other parameters; that is, the divergence
times, population mutation rates, and inheritance probabilities are components of Ψ, in addition to the
topology.

In this paper we assume the multispecies network coalescent process. Consider a data set S =
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{S1, . . . , Sm} where Si consists of the binary states of m unlinked (independent) bi-allelic markers for a
set X of taxa. The likelihood of a species phylogeny Ψ (topology and parameters) is given by

L (Ψ|S ) =

m∏
i=1

L (Ψ|Si) =

m∏
i=1

∫
G

p(Si|g)p(g|Ψ)dg (1)

where the integration is taken over all possible gene trees. The term p(Si|g) is the likelihood of gene tree
g given the sequence data of locus i [6] and p(g|Ψ) is the density function of gene trees given the species
phylogeny and its parameters [17].

[3] introduced an algorithm for analytically computing the integration in Eq. (1) for bi-allelic markers,
thus avoiding the need to sample gene trees to estimate the integral. [36] extended the method of Bryant
et al. in novel ways so that the integration in Eq. (1) can be done analytically also when the species
phylogeny is a network.

3 Methods

We first discuss factors that govern the computational complexity of full likelihood calculations on net-
works, and then propose a pseudo-likelihood function of phylogenetic networks and demonstrate its
scalability.

3.1 When it comes to computational complexity, a network is not
merely a tree with a few additional reticulations

While the full likelihood computations of the algorithm of [3] allowed for inferring species trees with tens
of taxa, the computational complexity of these computations exploded when the species phylogeny was
a network. We now explain the explosion in the running time of computing the probability of a gene tree
topology on a network as compared to that of computing the probability of a gene tree on the species
tree “inside” the network. While the computations in this paper do not involve gene tree probability
computations, the limitations of the likelihood computations of [36] follow the same rationale.

The probability mass function (pmf) p(g|Ψ), where g is a gene tree topology, is central to statistical
inference of species trees and networks. In the case of species trees, Ψ is a tree, and Γ is irrelevant. As
was shown in [4, 34], p(g|Ψ) =

∑
h∈HΨ(g) p(h|Ψ), where HΨ(g) is the set of all coalescent histories of g

inside Ψ. Roughly speaking, a coalescent history of g is an embedding of g within the branches of Ψ.
The size of HΨ(g) for a gene tree topology g when Ψ is a tree is exponential in the number of leaves
in the gene tree [20, 22]. [30] devised an efficient way of computing the pmf for species trees without
explicitly enumerating all coalescent histories in the set HΨ(g). Similarly, [32] devised an efficient way
of computing the pmf for species networks without enumerating all coalescent histories. However, with
this improved method, likelihood calculations for species trees scale very well, whereas that is not the
case for phylogenetic networks.

Here, we extended the algorithm of [22] to compute the size of HΨ(g) for a gene tree topology g and
phylogenetic network Ψ. For simplicity, we assume one individual is sampled per species so that the
leaves of the gene tree and phylogenetic network are labeled by the same set X of taxa (the algorithm
can be trivially extended to the case where multiple individuals are sampled per species). Every edge e
in a gene tree defines a cluster, ce, which is the set of leaves under the edge. We denote by L(t) the set
of all taxa labeling the leaves of tree t. Let Cg be the set of all clusters of size ≥ 2 of taxa in the gene
tree g, and let Xg = L(g). Assume E(Ψ) includes a special edge r that is incoming into the root. We
write (x, y) to denote a tree whose root has two children that are subtrees x and y. We define function
ρc(e) to represent the number of coalescent scenarios of leaves in set c ∩ ce. We define children(e) for
edge e = (u, v) ∈ E(Ψ) as the set of all edges (v, x) ∈ E(Ψ) for x ∈ V (Ψ). For two edges e1, e2 ∈ E(Ψ),
e1 6= e2, we say that e2 = (u2, v2) is on the path from e1 = (u1, v1) to the root, denoted by e1 ≺ e2, if
there is path from the root of Ψ to u1 that passes through both u2 and v2. If no such path exists, we
write e1 6≺ e2. Denoting by ζ(e1, e2) the number of paths from e1 to e2, the quantity can be computed
by:

ζ(e1, e2) =


1, if e1 = e2

0, if e1 6≺ e2∑
ek∈children(e2) ζ(e1, ek), if e1 ≺ e2

(2)
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Using the function ζ, ρc(e) is computed using Algorithm 1. The size ofHΨ(g) is given by
∑

e∈E(Ψ) ρXg (e)ζ(e, r).

Input: Cluster c ∈ Cg and edge e ∈ E(Ψ).
Output: ρc(e).
ρc(e)← 0;
Let T ← be the smallest subtree T of g such that c ⊆ L(T );
if T = (`1, `2) where `1, `2 ∈ L(g) then

e1, e2 ← the two external edges of Ψ connected to `1, `2;
ρc(e)←

∑
e∈E(Ψ),e1 6=e 6=e2

ζ(e1, e)ζ(e2, e);

else if T = (`1, x) where `1 ∈ L(g) and x /∈ L(g) then
e1 ← the external edge of Ψ connected to `1;
c2 ← be the set of leaves in x;
ρc(e)←

∑
e,e2∈E(Ψ) ζ(e1, e)ρc2(e2)ζ(e2, e);

else
c1, c2 ← the leaf-sets of the two subtrees of the root of T ;
ρc(e)←

∑
e,e1,e2∈E(Ψ) ζ(e1, e)ρc1(e1)ρc2(e2)ζ(e2, e);

end
return ρc(e);

Algorithm 1: Compute ρc(e).

Fig. 1A demonstrates the effect on the size of set H of the addition of a single reticulation to
an underlying tree to form a network. For some networks, going from a tree to a network with a single
reticulation increased the size of H by ten million fold. The efficient algorithms of [30], and [32] ameliorate

1×107

number	of	taxa	under	reticulation	node
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tio

diameter	of	reticulation
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B

Figure 1: The ratio of the number of coalescent histories on a network to the number of coa-
lescent histories on the underlying tree. (A) The results are based on 30 random 20-leaf phylogenetic
networks and 100 gene trees for each network. Each of the 30 networks was obtained by adding a single
reticulation to an underlying tree. (B) A phylogenetic network with a single reticulation. The diameter
of the reticulation is the number of edges on the paths marked with the red cycle. The taxa under the
reticulation correspond to the leaves marked with the blue line.

the computational complexity of computing the pmf by employing a bottom-up algorithm that stores
values at nodes. In other words, they trade off memory for time. The reason that these algorithms scale
in the case of trees but not networks is precisely the illustration in Fig. 1A.
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An obvious factor that significantly affects the running time of computing the pmf is the number
of taxa (leaves) in the network. However, in some cases, computing the likelihood of a network on 20
taxa could take less time than that of computing the likelihood of a network with, say, 10 taxa. The
complexity of a phylogenetic network is governed by the diameters of the reticulation nodes and the
number of leaves under the reticulation nodes (Fig. 1B). The larger either or both of these, the worse
the explosion in the size of H is and, consequently, the worse the likelihood calculations become in terms
of time and memory requirements. These exorbitant computational costs are only exacerbated, in a
potentially exponential manner, when the number of reticulations increases.

3.2 Pseudo-likelihood

Given a phylogenetic network Ψ on set X of taxa, a subset Ψ′ of Ψ on subset X ′ ⊆ X of taxa is the
phylogenetic network obtained by restricting Ψ to the leaves in X ′ (if there are multiple paths between
two leaves, we keep them all). We denote such a subnet by Ψ|X ′ . Fig. 2 shows a phylogenetic network
and its four three-taxon subnets. It is important to note nodes and reticulation edges in the subnets have

A B C A B D A C D B C D

! !2 !3 !4

A B C D

!1

Divergence time

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.8

Figure 2: A phylogenetic network and its 3-taxon subnets. Phylogenetic network Ψ induces four
subnets Ψ1, Ψ2, Ψ3, and Ψ4. The inheritance probabilities are the same among the network and subnets for
corresponding reticulation edges, and the times of all corresponding nodes are the same among the network
and its three subnets.

the same divergence times and inheritance probabilities as their corresponding nodes and reticulation
edges, respectively, in the full phylogenetic network. We assume the same population size across all
branches of the network.

While subnets with 0 ≤ |X ′| ≤ |X | could be considered, here we consider only three-taxon subnets.
For a phylogenetic network Ψ, we denote by P3(Ψ) the set of all three-taxon subnets of Ψ, also called
trinets.

Let Ψ be a (parameterized) phylogenetic network on set X of taxa, and let P3(Ψ) be the set of Ψ’s
trinets. Consider a data set S = {S1, . . . , Sm} where Si consisting of the binary states of m unlinked
(independent) bi-allelic markers for a set X of taxa. We denote by S3 the set of all data sets obtained
by restricting S to all three-taxon subsets. Table 2 shows an example of S and S3 for a four-taxon
phylogenetic network (e.g., the one in Fig. 2). The pseudo-likelihood of a species phylogeny Ψ (topology

Table 2: Site patterns on the phylogenetic network Ψ of Fig. 2 and its marginalized patterns on the four
subnets.

S (Ψ) S3 (Ψ1) S3 (Ψ2) S3 (Ψ3) S3 (Ψ4)
s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

A 1 0 0 1 0 0 1 0 0 1 0 0
B 0 1 0 0 1 0 0 1 0 0 1 0
C 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1

and parameters) is given by

PL (Ψ|S ) =
∏

Ψ′∈P3(Ψ)

L (Ψ′|S ′) (3)
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where S ′ is the data set obtained by restricting S to the taxa in Ψ′, and L (Ψ′|S ′) is computed
according to Eq. (1) using the algorithm of [36]. It is important to note here that while the exposition
is given in terms of phylogenetic networks and the algorithm of [36], this same formulation applies to
species trees and the algorithm of [3].

Searching the phylogenetic network space. We use simulated annealing to search the phylo-
genetic network space with similar moves and setting to that of [31], with two main differences. First,
when a delete-reticulation move is proposed, it is accepted with probability 0.01 no matter how the
pseudo-likelihood changes. In our testing of the search strategy, we found that such a modification helps
the search jump out of locally optimal states. Second, the optimal network with one fewer reticulation
nodes than the the maximum number was kept during each iteration of search, and it was used as the
starting state for every subsequent iteration except the first one. The search is conducted in a number of
iterations, where each iteration walks the space of phylogenetic networks starting at some temperature
that is reduced gradually during the iteration. So, for example, an iteration could inspect on the order
of 50,000 points in the parameter space.

4 Results

4.1 Simulations

We first set out to assess the running time of computing the pseudo-likelihood of phylogenetic networks
of varying sizes. To achieve this, we generated networks with 10, 20, 50, and 100 taxa and with 0, 1,
2, 3, and 4 reticulations. We used PhyloGen [24] to first generate random species trees with 10, 20,
50, and 100 taxa. Then, for each species tree, we randomly added 0, 1, 2, 3, and 4 reticulations. To
add a reticulation to a species network, we selected two edges uniformly at random and added an edge
between their midpoints in a direction that ensures no cycles are created. Inheritance probabilities were
assigned 0.5 to reticulation edges. Then, we used PhyloNet [29] to simulate the evolution of 10000 bi-
allelic markers on each species network. Finally, we computed the pseudo-likelihoods of each phylogenetic
network using the data sets generated on it. The results are given in Fig. 3.
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Figure 3: Running times of computing the pseudo-likelihood of networks of varying numbers of
taxa and leaves. The running times are reported in seconds. They were measured on a desktop computer
with 16G RAM and INTEL XEON E3-1245 @ 3.5GHz, and 8 threads were used.

As the results demonstrate, computing the pseudo-likelihood is very fast. In particular, it is worth
pointing out that computing the full likelihood of networks of with more than 10 taxa and 3 or 4
reticulations could be impractical for many topologies. As discussed above, this is governed not only
by the number of taxa and number of reticulation nodes, but more importantly by the diameters of the
reticulation nodes, the dependence among the cycles in the underlying undirected graph of the network,
and the numbers of taxa that are descendants of reticulation nodes. The pseudo-likelihood calculations
take fraction of a second on phylogenetic networks with 20 or fewer taxa, regardless of the number of
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reticulations. The calculations take about 10 seconds for 50-taxon networks, whereas the running time
jumps to over 100 seconds for phylogenetic networks with 100 taxa. This increase in the running time
with the number of taxa is expected, since the number of trinets of a network on n taxa is

(
n
3

)
. The

very small increase in the running time, by viewing it as a function of the increase in the number of
reticulations, is because trinets are small enough for full-likelihood calculations. Furthermore, even when
a network has 4 reticulations, many trinets would have 0 or 1 reticulations, making their analysis even
faster.

While scalability in speed is impressive, the main question is: How accurate is inference of phylogenetic
networks under pseudo-likelihood when using bi-allelic markers? To answer this question, we generated
100 data sets, 20 replicates for each number of sites on the network of Fig. 4. We simulated 100,
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Figure 4: The true network with 16 taxa used for assessing the accuracy of inferences based on
pseudo-likelihood. The branch lengths of the phylogenetic networks are measured in units of expected
number of mutations per site (scale is shown). The inheritance probabilities are marked in blue.

1000, 10000, 100000, and 1000000 bi-allelic sites, with one haploid generated for every taxon. We set
the mutation rates to u = 1 and v = 1 (where u and v are the mutation rate from red allele to
green allele and the mutation rate from green allele to red allele, respectively, following the notation
of [3]), then we used θ = 0.01 for every branch in the true network. We used following command
(numsites ∈ {100, 1000, 10000, 100000, 1000000}) to simulate sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites -tm <A:A_0; B:B_0; C:C_0;D:D_0;E:

E_0;F:F_0;G:G_0;H:H_0;I:I_0;J:J_0;K:K_0;L:L_0;M:M_0;N:N_0;O:O_0;P:P_0> -truenet

netstring -out "markers.txt";

For the value of seed in the “-sd” option, we used a different 8-digit integer for each of the 20 replicates.
The value of netstring is the extended Newick string of the network in Fig. 4.

To test the ability of our algorithm to recover the topology of the true network, we ran the aforemen-
tioned simulated annealing procedure on the simulated data sets. The maximum number of reticulations
during the search was set to 3, since determining the true number of reticulation is beyond the capability
of a maximum unpenalized (pseudo-)likelihood [29]. For each data set, the search was performed for 50
iterations. The 5 networks with highest pseudo-likelihood were saved during the search. We used the
following command to generate the results:

MLE_BiMarkers -pseudo -mnr 50 -pi0 0.5 -mr 3 -pl 8 -ptheta 0.01 -thetawindow 0.01 -sd

12345678 -taxa (A_0,B_0,C_0,D_0,E_0,F_0,G_0,H_0,I_0,J_0,K_0,L_0,M_0,N_0,O_0,P_0) -tm

<A:A_0; B:B_0; C:C_0;D:D_0;E:E_0;F:F_0;G:G_0;H:H_0;I:I_0;J:J_0;K:K_0;L:L_0;M:M_0;N:

N_0;O:O_0;P:P_0>

The results are shown in Fig. 5. As the results show, when 10,000 sites or more are used as input for
inference, the method always infers the true phylogenetic network. When only 1,000 sites are used, the
true network is one of the top five optimal networks inferred, but not the most optimal, in 20% of the
cases, whereas the true network is not even among the top five optimal networks in the remaining 80%
of the cases. When only 100 sites are used, the method cannot infer the true network.
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Figure 5: Accuracy of the inference on simulated data. The blue region corresponds to the number
of times the true network was returned as the optimal network (the one with the highest pseudo-likelihood)
after the search. The orange region corresponds to the number of times the true network is not the optimal
network found by the search, but but is among the top 5 species networks under maximum pseudo-likelihood.
All other scenarios are represented by the grey region.

These results can be put in the context of the performance of the method of [36] in terms of how
inference based on the full-likelihood calculations performs, and the method of [31] in terms of how
inference based on pseudo-likelihood from gene tree estimates performs. As shown by [36], accurate
inference based on full-likelihood required at least 1,000 sites, even though the network considered in
that work had only five taxa. In this regard, and given that the network considered here is much larger,
it only makes sense that more than 1,000 sites are required. As for the method of [31], the authors
showed that over 250 accurately estimated gene trees are required for accurate estimates of a 23-taxon
phylogenetic network. An accurately estimated gene tree contains much more information than a single
bi-allelic marker. In fact, a 23-taxon binary gene tree is equivalent to at least 21 different, yet compatible,
bi-allelic markers, as each internal edge in the gene tree requires a bi-allelic marker to identify it.

These two contexts combined show the inference based on the pseudo-likelihood from bi-allelic markers
is not only very accurate, but is also competitive with full-likelihood-based inferences. It is worth
repeating that the method of [31] requires very accurate gene tree estimates. It is not uncommon to have
error rates upwards of 60% in gene tree estimates on closely related species.

4.2 Comparison to full likelihood computation

To compare inferences based on pseudo-likelihood and full likelihood as given by the method of [36], we
simulated 100, 1000, 10000, 100000, and 1000000 bi-allelic sites on the network in Fig. 6 with one haploid
generated for every taxon. We used θ = 0.006 as the population mutation rate for external branches and

0.7

0.3

Figure 6: The true network with 5 taxa used for assessing the accuracy of inferences based on
pseudo-likelihood. The branch lengths of the phylogenetic networks are measured in units of expected
number of mutations per site (scale is shown). The inheritance probabilities are marked in blue.
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the root, and θ = 0.005 for internal branches, both in the unit of population mutation rate per site. We
set the mutation rates to u = 1 and v = 1. We generated 100 data sets, 20 replicates for each number of
sites. We used following command (numsites ∈ {100, 1000, 10000, 100000, 1000000}) to simulate sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites -tm <A:A_0;C:C_0;L:L_0;Q:Q_0;R:R_0

> -truenet netstring -out "markers.txt";

For the value of seed in the “-sd” option, we used a different 8-digit integer for each of the 20 replicates.
The value of netstring is the extended Newick string of network in Fig. 6.

Then we ran maximum likelihood inference on those data sets with 10 iterations with following
commands, using both pseudo-likelihood and full likelihood computations (“-pseudo” is removed for the
latter):

MLE_BiMarkers -pseudo -mnr 10 -pi0 0.5 -mr 1 -pl 8 -ptheta 0.006 -thetawindow 0.006 -sd

12345678 -taxa (A_0,C_0,L_0,R_0,Q_0) -tm <A:A_0; C:C_0;L:L_0;Q:Q_0;R:R_0>
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Figure 7: Accuracy of the inference on simulated data: pseudo-likelihood vs. full likelihood.
The blue region corresponds to the number of times the true network was returned as the optimal network
(the one with the highest pseudo-likelihood) after the search. The orange region corresponds to the number
of times the true network is not the optimal network found by the search, but is among the top 5 species
networks. All other scenarios are represented by the grey region. P: pseudo-likelihood, F: full likelihood.

Results of the comparison are shown in Fig. 7. As the results show, when 10,000 sites or more are
used, inference based on pseudo-likelihood results in very accurate results that are identical to those
obtained by full likelihood inference. When only 1000 sites were used, only in 6 out of 20 cases did
pseudo-likelihood inference not result in the true network, but in all 6 cases that true network was one
of the top 5 inferred. Again, in this case, the results are comparable to those based on full likelihood.
In data sets consisting of only 100 sites, inferences result in poor networks regardless of whether full- or
pseudo-likelihood is used. To summarize these results, inference based on pseudo-likelihood is comparable
in accuracy to that based on full likelihood.

4.3 The effect of number of individuals sampled

As described in [36], sampling more individuals from the hybrid species helps improve the accuracy of
the inferred network based on full-likelihood computations. In particular, sampling more individuals
allow the usage of fewer sites, a result that has important practical implications. We now set out to
study this trend in the case of inferences based on pseudo-likelihood. We sampled one haploid individual
for each of the four taxa L, A, R, and C, and 1, 2, 3, 4 haploid individuals for hybrid taxon Q in the
network in Fig. 6. We generated 100, 500, 1000, 2000 sites for each of the 4 individual settings, with 10
replicates. We used following command (numsites ∈ {100, 500, 1000, 2000}) to simulate sites (in option
“-tm”, individuals of Q: “Q 1,Q 2,Q 3” were removed according to 4 individual settings):

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites -tm <A:A_0; C:C_0;L:L_0;Q:Q_0,Q_1,

Q_2,Q_3;R:R_0> -truenet netstring -out "markers.txt";
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For the value of seed in the “-sd” option, we used a different 8-digit integer for each of the 20 replicates.
The value of netstring is the extended Newick string of network in Fig. 6.

Then we ran maximum pseudo-likelihood estimation with 10 iterations on each of those 160 data sets
using the same command as above. The accuracy of the inferred networks is reported in Fig. 8.
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Figure 8: Accuracy of the inference on simulated data: Effect of the number of sampled indi-
viduals. The blue region corresponds to the number of times the true network was returned as the optimal
network (the one with the highest pseudo-likelihood) after the search. The orange region corresponds to the
number of times the true network is not the optimal network found by the search, but is among the top 5
species networks. All other scenarios are represented by the grey region. On the horizontal axis, 1, 2, 3 and
4 represent the number of individuals of sampled from the hybrid taxon.

The results show a clear benefit to sampling multiple individuals, especially when the number of sites
is small. Once again, when only 100 sites are used, the performance is not very good, since this number
of sites is too small. However, when only 500 sites are used, sampled only individual results in obtaining
the true network in only 6 out of 10 cases, whereas sampling 4 individuals results in accurate inferences
in all 10 cases. Furthermore, as the number of sites increases, the positive effect of increasing the number
of sampled individuals starts diminishing.

4.4 Robustness of inference to lack of independence

As given by Eq. (1), the individual sites are assumed to be independent. Here, we set out to study
the accuracy of inference when this assumption is violated. We simulated dependent sites as done by
[36]. We generated 1000, 5000, and 10000 sites in the network of Fig. 6 under different conditions:
(a) single marker was generated from a gene tree (this is the case of independent loci), (b) 10 markers
were generated from a gene tree, (c) 100 markers were generated from a gene tree. Note that gene trees
were generated independently. We used following command ((numgt, sitespergt) ∈ { (1000, 1), (5000, 1),
(10000, 1), (100, 10), (500, 10), (1000, 10), (10, 100), (50, 100), (100, 100)}) to simulate sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numgt -sitespergt numsitespergt -tm <A:A_0;

C:C_0;L:L_0;Q:Q_0;R:R_0> -truenet netstring -out "markers.txt";

For the value of seed in the “-sd” option, we used a different 8-digit integer for each of the 20 replicates.
The value of netstring is the extended Newick string of the network in Fig. 6.

we ran maximum pseudo-likelihood estimation with 10 iterations on each of those data sets using
the same command as above. Results are shown in Fig. 9. The results clearly show that the method
is very robust to violation in the independent-loci assumption when 5000 sites or more are used. In the
case of 1000 sites, the performance gets affected negatively only slightly. This result has great practical
implications: In practice, when a large number of sites is sampled, one cannot ensure the sites are
independent. The results show that even if independence is violated for a large number of sites, the
method is robust in that case. This is consistent with what the authors observed with full likelihood
computation in [36].
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Figure 9: Accuracy of the inference on simulated data: Robustness to violation in the
independent-loci assumption. The blue region corresponds to the number of times the true network
was returned as the optimal network (the one with the highest pseudo-likelihood) after the search. The
orange region corresponds to the number of times the true network is not the optimal network found by the
search, but is among the top 5 species networks. All other scenarios are represented by the grey region. On
the horizontal axis, 1, 10 and 100 represent the number of markers generated from a single gene tree.

4.5 The effect of limitation on number of reticulations

As we discussed in [29], inference of phylogenetic networks based on (unpenalized) likelihood cannot
estimate the true number of reticulations simply because adding more reticulations only makes the
model a better (or, at least as good a) fit for the data. This is why in the above results, we limited the
number of reticulations that the method explores during inference to the true number (which is known
since the data were simulated). To understand how the method performs when the limit on the number
of reticulations during inference is set higher than the true number, we compared different limitations
on the number of reticulations using the network in Fig. 6. We simulated 100, 1000, 10000, 100000, and
1000000 bi-allelic sites with 20 replicates for each number with the same command used for comparing
pseudo-likelihood and full likelihood computation, then set the maximum number of reticulations to 1,
2 and 3 for each settings. We then ran maximum pseudo-likelihood inference with 10 iterations on those
data sets using the same command as above, and the “-mr” (maximum reticulations) option is changed
to 1, 2 and 3 accordingly. The results are shown in Fig. 10. The results make complete sense as setting
a higher limit on the number of reticulations allowed during the search for optimal networks guides the
method toward networks with more reticulations since those would have better pseudo-likelihoods. To
illustrate the behavior of the method, we took a replicate with 10,000 sites as an example and plotted
the pseudo-likelihoods of the best inferred networks with 1, 2, and 3 reticulations, as well as the networks
themselves in Fig. 11. The figure shows two important points. First, as more reticulations are allowed,
the pseudo-likelihood of the best networks found improves, but the improvement starts slowing down
with the addition of more reticulations. Second, while more reticulations that the true number (one)
are added, the true network is “inside” the optimal ones being identified with more reticulations. This
is an important result because it illustrates how the true network is first identified and, then, when the
method starts adding more reticulations, it does so to the underlying true network.

4.6 Empirical data sets

We also analyzed the two data sets in [36] using our algorithm, including two different hybrid individuals
O. × cockayneana and O. × prorepens. The hybrid origins of these two individuals are supported by
both morphological [14] and molecular (Meudt unpubl.) data. These two individuals were formally
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Figure 10: Accuracy of the inference on simulated data: Setting different limits on the number
of reticulations during inference. The blue region corresponds to the number of times the true network
was returned as the optimal network (the one with the highest pseudo-likelihood) after the search. The
orange region corresponds to the number of times the true network is not the optimal network found by the
search, but is among the top 5 species networks. All other scenarios are represented by the grey region. On
the horizontal axis, 1, 2 and 3 represent the maximum number of reticulations during inference.
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Figure 11: Improvement with more reticulations. On the horizontal axis, 1, 2 and 3 represent the
maximum number of reticulations during the estimation. At each point, the corresponding network topology
is shown. The blue edges represent the additional reticulations to the true network.

named along with putative parents. The first data subset comprises the following five individuals: O.
macrocarpa (voucher: Meudt 133a, MPN 29546; herbarium codes follow [25] [continuously updated]),
O. macrophylla subsp. lactea (Cameron 13392, AK 294893), hybrid O. × cockayneana (Meudt 175a,
MPN 29710), O. caespitosa (Meudt 174a, MPN 29705), and O. calycina (Meudt 176a, MPN 29713). The
number of loci in this data set is 802. The second data subset comprises O. sessilifolia subsp. splendida
(Heenan s.n., MPN 32149), O. macrocarpa (Meudt 133a, MPN 29713), hybrid O. × prorepens (Meudt
203a, MPN 29774), O. sessilifolia subsp. sessilifolia (Meudt 199a, MPN 29771), and O. caespitosa (Meudt
196a, MPN 297695). The number of loci in this data set is 820.

Each data subset comprised five diploid individuals in total, which means ten haploid individuals were
effectively analyzed due to the correction for dominant markers. Observe that while we could combine
the two data sets into a larger one to study the scalability of the method on a larger data set, the number
of sites available is too small for accurate inferences by pseudo-likelihood, as supported above by the
simulation study.

The search was performed for 50 iterations for each data set. The maximum number of reticulations
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was set to 1. The results are given in Fig. 12 and Fig. 13.

O. × cockayneana (Meudt 175a, MPN 29710)

O. caespitosa (Meudt 174a, MPN 29705)0.089
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 O. macrophylla subsp. lactea (Cameron 13392, AK 294893)

O. macrocarpa (Meudt 133a, MPN 29546)
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O. calycina (Meudt 176a, MPN 29713)
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0.586
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Figure 12: The phylogenetic network with maximum pseudo-likelihood for the subset with the
hybrid O. × cockayneana (Meudt 175a, MPN 29710) and putative parents. The width of each tube
is proportional to the population mutation rate of each branch, which is printed on each tube. The length of
each tube is proportional to the length of the corresponding branch in units of expected number of mutations
per site (scale shown). Blue arrows indicate the reticulation edges and their inheritance probabilities are
printed in blue.

0.026 O. × prorepens (Meudt 203a, MPN 29774)

O. caespitosa (Meudt 196a, MPN 297695)0.047
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O. sessilifolia subsp. sessilifolia (Meudt 199a, MPN 29771)

O. sessilifolia subsp. splendida (Heenan s.n., MPN 32149)

O. macrocarpa (Meudt 133a, MPN 29713)
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Figure 13: The phylogenetic network with maximum pseudo-likelihood for the subset with the
hybrid O. × prorepens (Meudt 203a, MPN 29774) and putative parents. The width of each tube
is proportional to the population mutation rate of each branch, which is printed on each tube. The length of
each tube is proportional to the length of the corresponding branch in units of expected number of mutations
per site (scale shown). Blue arrows indicate the reticulation edges and their inheritance probabilities are
printed in blue.

Both results show that hybrids are correctly detected. The topology of the network in Fig. 13 with
the hybrid O. × prorepens is consistent with Fig. 20 in [36], while the topology of the network in Fig. 12
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with the hybrid O. × cockayneana is slightly different from that in Fig. 19 in [36]. Notably, the topology
of Fig. 19 in [36] is inferred as the second-best network by our algorithm, and its pseudo-likelihood value
is smaller than that of the best network by only 0.2.

5 Discussion

The results above on simulated data and empirical data demonstrate very good accuracy of phyloge-
netic network inference using pseudo-likelihood based on bi-allelic markers. In terms of computing the
pseudo-likelihood, the computation scales up to hundreds of taxa. Of course, searching the space of
100-taxon networks is a different challenge that requires novel techniques beyond scaling up likelihood
computations. The simulation results, in particular, clearly demonstrate that as the number of bi-allelic
markers increases, the accuracy improves significantly. We now turn to investigating the convergence of
the inferred phylogenetic network onto the true network as the number of sites increases.

Let Ψ be a phylogenetic network on set X of taxa and consider a subset X ′ ⊆ X with |X ′| = 3.
Both Ψ and trinet Ψ′ = Ψ|X can be viewed as generative models for bi-allelic markers. It is important
here to remind the reader that all parameters of Ψ′ are transferred from Ψ. Let g be a gene tree on set
X ′ of taxa. We have p(g|Ψ) = p(g|Ψ′), since the density p(g|Ψ) does not involve any branches (or their
parameters) that are in Ψ but not in Ψ′ and the length of a branch in Ψ′ corresponds to the length of
either a branch in Ψ or a path that results from removing nodes when obtaining Ψ′. It follows from this
that P (s|g)p(g|Ψ) = P (s|g)p(g|Ψ′) for a bi-allelic marker on the set X ′ of taxa. Therefore, we obtain
from this that P (s|Ψ) = P (s|Ψ′). In other words, as the number of sites goes to infinity, for every trinet
of the true network, the proportions of marginalized site patterns converge to their expectation in this
trinet of the true network.

To study the convergence empirically, we generated one data set with each of 100, 1000, 10000,
100000, 1000000 sites of bi-allelic markers using the network of Fig. 4. Then for each data set, for every
trinet of that network, we compute the proportion of every corresponding marginalized site pattern, and
compare it to the expected frequency of that pattern in the trinet. We plotted the differences between
these proportions in Fig. 14.
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Figure 14: Convergence of the proportions of marginalized site patterns in the data to their
expectations. Every point is the empirical frequency of a marginalized 3-taxon site pattern minus the
(theoretical) expectation of that frequency on the corresponding subnet in the true network.

As the results show, the proportions of site patterns of trinets converge very fast to their theoretical
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expectation, with very negligible variance in the differences once 100,000 sites or more are used. These
results are compatible with the accuracy of the method discussed above on the simulated data.

6 Conclusions

Statistical approaches for inferring phylogenetic networks offer a great promise in terms of utilizing the
data to estimate not only the topology of the network, but also evolutionary parameters of interest to
the biologist, such as population mutation rates and divergence times. Statistical approaches are based
on evaluating the likelihood of phylogenetic network candidates during search of the parameter space.
Except for small networks with fewer than ten taxa and two or three reticulations, these approaches
are hard to apply in practice given the prohibitive computational requirements. The pseudo-likelihood
methods of [31] and [21] offered a way to ameliorate this issue. However, these methods make use of gene
tree estimates as the input data. Under conditions of extensive incomplete lineage sorting, the individual
loci could have very little signal to obtain accurate gene trees. The major contribution of this paper is the
introduction of a pseudo-likelihood method based on the sequence data directly. We demonstrated that
evaluating the pseudo-likelihood of a phylogenetic network is very fast and allows scaling to very large
networks. We also demonstrated the accuracy of maximum pseudo-likelihood inference of phylogenetic
networks from bi-allelic data.

Even though the pseudo-likelihood formulation provides accurate inferences, it still does not circum-
vent the challenging problem of searching the space of large networks. Developing more efficient moves
for walking the space of phylogenetic networks is necessary.
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