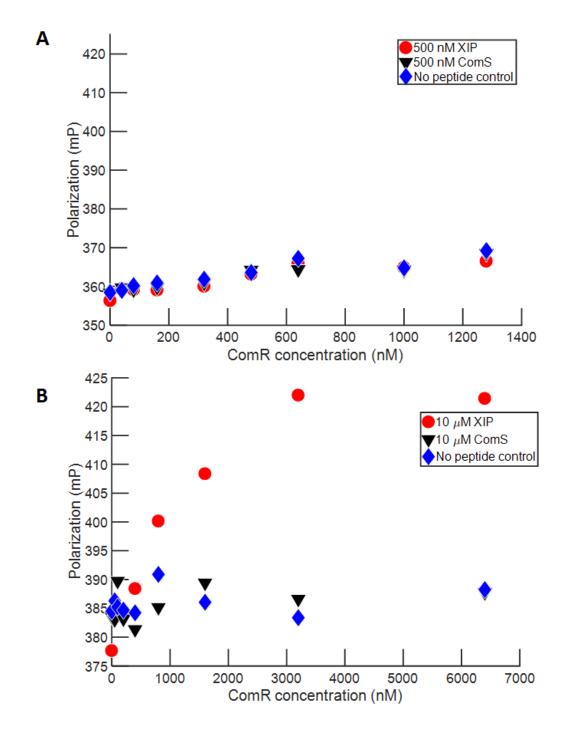
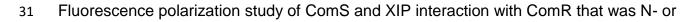

1	
2	Supporting Information
3	Intracellular signaling through the comRS system in Streptococcus mutans genetic
4	competence
5	Simon A.M. Underhill, Robert C. Shields, Justin R. Kaspar, Momin Haider, Robert A.
6	Burne and Stephen J. Hagen*
7	
8	List of supporting figures and tables:
9	
10	Figure S1: Response of cocultures is time-independent
11	Figure S2: Effect of histidine tag on ComR binding of ComS and XIP
12	Deterministic fit: Equation system and calculated parameter values
13	• Table S1: Parameters for gamma distribution fits to single cell PcomX GFP
14	fluorescence distributions in microfluidic experiments
15	• Table S2: Fitted values for the 12 parameters of the model and statistical
16	measurement of their robustness from bootstrap process
17	Table S3: RT-qPCR primer sequences

19


20 Figure S1 – Response of cocultures is time-independent

21 (A) GFP (comX reporter) and (B) RFP (comY) fluorescence of individual cells in co-

cultures of sender (184comS PcomX-rfp) and receiver (PcomX-gfp $\triangle comS$) strains of S.


- *mutans*. Samples are labeled by percentage by volume of 184*comS* (sender) culture in
- the initial preparation of the coculture. Fluorescence was measured immediately (0 h,
- green) after mixing, or 4 h (magenta) after mixing the coculture. The red horizontal bars

- show the median fluorescence immediately after mixing (0 h); the black vertical bars
- show the median at 4 h. Data are from the coculture experiment of Figure 4.

30 Figure S2: Effect of histidine tag on ComR binding of ComS and XIP

- 32 C-terminally tagged with 6X-histidine. Polarization is plotted versus [ComR] for (A) C-
- terminally tagged ComR and (B) N-terminally tagged ComR. In each case 1 nM

fluorescent DNA and 0.05 mg ml-1 salmon DNA were present along with no signal
peptides (black), XIP (blue) or ComS (green).

36

37 Deterministic fit: Equation system and calculated parameter values

The system of ODEs used to fit microfluidic data is given below. X represents ComX, Z 38 the internal XIP concentration, S the internal ComS concentration, R the (constant) 39 ComR concentration and Exo the exogenous XIP level. All units are in nM and seconds 40 where appropriate. Other symbols are parameters describing the reaction kinetics. A 41 star indicates one of the V parameters contributing to feedback, while unstarred Vs 42 indicate a maximum rate of production of ComX. Hill kinetics corresponding to inferred 43 cooperativity from FP assays were used. Calculated parameters are given in Table S2. 44 A 200-iteration bootstrap analysis of the data was performed in order to estimate 45 parameter robustness, with the 10th and 90th percentiles of parameter values reported. 46 These percentile values demonstrate preservation of the relative order of magnitude 47 between dissociation constants for XIP-ComR and ComS-ComR. 48

49
$$\frac{dX}{dt} = \frac{V_1 R^2 Z^2}{R^2 Z^2 + K_X^4} + \frac{V_2 RS}{RS + K_S^2} - \beta_X X (1)$$

50
$$\frac{dS}{dt} = \alpha_0 - \beta_S S - \gamma S + \frac{V_1^* R^2 Z^2}{R^2 Z^2 + K_X^4} + \frac{V_2^* RS}{RS + K_S^2} - \frac{V_2 RS}{RS + K_S^2}$$
(2)

51
$$\frac{dZ}{dt} = J(Exo - Z) - \beta_Z Z + \gamma S - \frac{V_1 R^2 Z^2}{R^2 Z^2 + K_X^4} - \frac{V_1^* R^2 Z^2}{R^2 Z^2 + K_X^4}$$
(3)

52

53

55

Table S1: Parameters for gamma distribution fits to single cell *PcomX* **GFP**

56 fluorescence	distributions	in microfluid	c experiments.
-----------------	---------------	---------------	----------------

[XIP]	а	b
Wild type	-	-
0	4.09	5.51
280	5.50	172
700	9.62	153
1840	11.0	184
3250	12.5	168
5230	12.4	174
6000	11.7	172
ΔcomS	-	-
0	6.14	2.29
30	7.10	2.44
850	4.24	166
940	5.11	148
3000	7.44	160
4020	7.61	172
6000	7.45	180

Table S2: Fitted values for the 12 parameters of the model and statistical

Parameter	Best fit value –	10 th	90 th	Units
	used for Fig. 7	percentile	percentile	
		from	from	
		bootstrap	bootstrap	
α ₀	7.85	1.78	19.1	nM s⁻¹
β_S	7.17 x 10 ⁻³	7.97 x 10 ⁻	1.32 x 10 ⁻²	S ⁻¹
		4		
γ	0.452	0.227	2.74	S ⁻¹
V ₁ *	1.07 x 10 ⁴	3.8 x 10 ³	2.46 x 10 ⁴	nM s⁻¹
V ₂ *	1.33 x 10 ⁴	3.22 x	2.65 x 10 ⁴	nM s⁻¹
		10 ³		
K _x	148	42	210	nM
K _S	2740	849	3000	nM
<i>V</i> ₁	3.55	0.988	558	nM s⁻¹
V ₂	778	309	2190	S ⁻¹
J	9.39	6.14 x 10 ⁻	17.6	S ⁻¹
		2		
β _Z	1.28	0.264	3.07	nM s ⁻¹
β_X	10.5	1.71	16.2	S⁻¹

60 measurement of their robustness from bootstrap process.

63 Table S3: RT-qPCR primer sequences

Gene and direction	Primer sequence
comX forward	5'-CGTCAGCAAGAAAGTCAGAAA C-3'
comX reverse	5'-ATACCGCCACTTGACAAACAG-3'
comS forward	5'-TCAAAAAGAAAGGAGAATAACA-3'
comS reverse	5'-TCATCTGAGATAAGGGCTGT-3'
16S rRNA forward	5'-CACACCGCCCGTCACACC-3'
16S rRNA reverse	5'-CAGCCGCACCTTCCGATACG-3'