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ABSTRACT

Chemical probing experiments interrogate RNA structures by creating covalent adducts on RNA molecules in structure-

dependent patterns. Adduct positions are then detected through conversion of the modified RNAs into complementary

DNA (cDNA) by reverse transcription (RT) as either stops (RT-stops) or mutations (RT-mutations). Statistical analysis of the

frequencies of RT-stops and RT-mutations can then be used to estimate a measure of chemical probing reactivity at each

nucleotide of an RNA, which reveals properties of the underlying RNA structure. Inspired by recent work that showed that

different reverse transcriptase enzymes show distinct biases for detecting adducts as either RT-stops or RT-mutations, here we

use a statistical modeling framework to derive an equation for chemical probing reactivity using experimental signatures from

both RT-stops and RT-mutations within a single experiment. The resulting formula intuitively matches the expected result from

considering reactivity to be defined as the fraction of adduct observed at each position in an RNA at the end of a chemical

probing experiment. We discuss assumptions and implementation of the model, as well as ways in which the model may be

experimentally validated.

Introduction

Chemical probing has developed into a powerful experimental approach to interrogate RNA structures in vitro and in vivo1–46.

In these experiments, chemical reactions between an RNA and a probe creates covalent adducts at positions in the RNA in a

pattern that is determined in part by the underlying structure of the RNA47. Uncovering the distribution of adduct positions

across a population of RNAs is then a means by which to measure structural properties of those RNAs.

Recently, a collection of experimental techniques have been developed that use sequencing technologies to recover the adduct

distribution of chemically modified RNAs as accurately as possible in order to infer RNA structures9, 10, 18, 19, 29–32, 34–37, 40, 43, 44, 46, 48, 49.
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These techniques all use indirect methods to detect adduct positions, since direct detection of chemical probing adducts on an

RNA molecule has not been shown to be possible with current sequencing technologies. The most convenient indirect method

is to first convert the modified RNA into a DNA molecule using an enzymatic process called reverse transcription (RT). In

this process, a reverse transcriptase enzyme (also referred to as RT) catalyzes the synthesis of a complementary DNA (cDNA)

molecule in a 3′→ 5′ direction (Fig. 1). When RT encounters an adduct, one of two scenarios is possible: either the RT stops 1

nt before the adduct50 (at site k−1) which we call an RT-stop, or the RT proceeds through the adduct and introduces a mutation

at site k, which we call an RT-mutation.

Reverse
Transcribe (RT)

1 (3’ end)
n (5’ end)

k

k-1 k

(+)

Figure 1. Reverse transcription (RT) encodes the positions of RNA adducts as either stops or mutations. RT converts an RNA
(grey) into a complementary DNA (cDNA, blue) in a 3′→ 5′ direction. (A defined RT priming site is shown in teal). If RT
encounters an adduct at site k (red pin), one of two scenarios is possible: either the RT falls off 1 nt before the adduct (at site
k−1, indicated as a red segment) to generate a k-fragment (left), or the RT proceeds through the adduct and intruduces a
mutation at site k (indicated as a red segment, right). (+) refers to these RNAs being present in a population that has already
been modified by the chemical probe to form covalent adducts. There are a range of RT priming strategies that can be used with
this approach including those that can recover adduct positions at the 3’ end of the molecule14, 18, 19, 31, 32, 36, 43, 44, 46, 51–57.

Subsequent steps in the experimental protocols then analyze cDNAs for signatures of RT-stops and RT-mutations. Early

versions of the experiments analyzed cDNAs by separation techniques such as capillary electrophoresis that enabled the

identification of RT-stops as distribution of different length cDNAs22, 24, 26, 27, 58–64. Later innovations developed high-throughput

sequencing (HTS) methods to analyze cDNAs10, 18, 19, 40. These experiments generally involve a series of ligation, size selection,

and PCR steps in order to format cDNAs into a sequencing library with vendor-specific adapter sequences prior to sequencing65.

The earliest versions of HTS experiments mapped RT-stops by mapping cDNA ends, and importantly enabled chemical

probing to be performed on complex mixtures of RNAs since cDNA signatures from different RNAs could be distinguished

through bioinformatic sequence alignment18, 66, 67. Later innovations showed that HTS approaches could also be used to map

RT-mutation sites through bioinformatic analysis of sequence mutations32, 68. These sequencing-based approaches represent

an important enhancement in the amount and speed in which adduct detection information could be gleaned from these
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experimental approaches.

Once adduct signatures are detected and collected as distributions of RT-stops or RT-mutations across each nucleotide

of the corresponding RNA sequence, they can then be used to estimate a value for the ’reactivity’ of each nucleotide to the

chemical probe. Reactivities contain information about the underlying RNA structure, and specific reactivity values are a result

of differences in the propensity of the chemical probe to react with bases that differ in structural context69, 70. The main goal of

data analysis procedures then is to estimate these underlying reactivity values as accurately as possible given the observed

distributions of RT-stops and RT-mutations.

Historically, chemical probing experimental and data analysis approaches used the signatures from RT-stops to estimate

reactivities at each position66, 67. More recently, groups have begun push to use RT-mutations in order to define reactivity at a

given position. These groups argue that inherent enzymatic biases in library prep cause distortions in RT-stop data that lead to

calculated reactivities that do not directly correspond to the intrinsic reactivity of a given position. However, this assumes that

the information given by RT-stops is correlated with information given by RT-mutations. However, recent papers52, 71 have

shown not only that these metrics are poorly correlated but also, in some contexts, completely orthogonal. Specifically, recent

analysis of DMS probing RT-stop and RT-mutation signatures on the same pool of modified RNAs show that different reverse

transcriptase enzymes and reaction conditions show distinct biases for detecting adducts as either RT-stops or RT-mutations52, 71.

The orthogonality of RT-stops and RT-mutations and the variability between RT-stop and RT-mutations between different

enzymes strongly suggest that approaches that only incorporate either RT-stops or RT-mutations miss information about adduct

distributions and therefore the resulting reactivities may be incomplete and lacking in accuracy.

Conversely, these observations suggest that improvements in chemical probing accuracy can be achieved by incorporating

both RT-stops and RT-mutations in the estimation of reactivities. To address this, here we developed a formalism for estimating

chemical probing reactivities using both RT-stops and RT-mutations in a single experiment. Following the work of Aviran et

al.66, 67, we extend a maximum-likelihood derivation of reactivities and present a reactivity formula that uses this combined

information. Interestingly, this formula matches an intuitive interpretation of chemical probing reactivities as the fraction of

adduct formed at each nucleotide at the end of the probing reaction. We discuss assumptions of this model, and end with a

discussion on experimental approaches to validate this model.

Results

Model Setup

For an RNA of length n, we define the very 3’ nucleotide of the RNA as position 1, and the very 5’ nucleotide of the RNA as

position n, and only consider cDNAs that start at position 1 (Fig. 1). We define a k-fragment as a cDNA whose 5’ end begins

at and complements position 1 of the RNA, and whose 3’ end complements position k−1 of the RNA. We emphasize that

we assume that RT-stops and RT-mutations at a given adduct position in a single RNA molecule are mutually exclusive

events: since an RT that stops due to an adduct at position k stops at position k−1, it cannot introduce a mutation at
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position k. This will be an important feature of the formula for recovering reactivities from observations of RT-stop and

RT-mutation events, and we discuss implications for this assumption below.

The outcome of a typical high throughput sequencing (HTS) experiment to map RNA chemical probing adducts is a series

of cDNA sequences that encode the locations of RT-stops and RT-mutations. These raw cDNA sequencing reads are then

processed through read alignment software to generate a list of RT-stops and RT-mutations at each position within the target

RNA. To keep track of these observed patterns, we define several variables that indicate stops (S) and mutations (M).

Since an RT that stops due to an adduct at position k stops and transcribes through position k−1, we define S(+)
k as the

number of observed cDNA fragments whose 3’ ends map to position k−1 and 5’ ends map to position 1, where (+) indicates

these fragments were observed from samples that had been treated with the chemical probe, called (+) channel samples. We

additionally call S(+)
k the number of k-fragments because information on adduct formation would come from position k even

though the sequenced length is of k−1. Note that if an RT does not stop internally, then RT will transcribe through the end

of the cDNA and reach position k = n. Thus, S(+)
n+1 represents the number of full-length reads observed in the (+) channel.

Similarly, we define M(+)
k,l as the number of k-fragments observed that have at least one mutation and includes a mutation at

position l in the (+) channel, where l < k.

It is also possible that RT stops or mutates at positions due to natural processes and/or there are cDNA sequencing errors

that are not caused by chemical probe adducts. These events confound the measurement of adduct distributions and must be

accounted for in data analysis to extract their confounding influence. To do this, control experiments are run that process the

RNA in the same manner, but do not include the addition of the chemical probe. Such (-) channel experiments then generate a

set of observed RT-stops and RT-mutations which we denote as S(−)k and M(−)
k,l , respectively.

Figure 2 shows several examples of possible RT-stop and RT-mutation scenarios in the (+) and (-) channel and how they

would each contribute to S(±)k and M(±)
k,l .

Once the raw data is processed, our goal is to use the observed patterns of stops and mutations, S(±)k and M(±)
k,l , in a formula

that more completely and accurately estimates the reactivity of each nucleotide of the interrogated RNAs to the chemical probe.

Below we state the results of our derivation of this formula and discuss its implementation and limitations.

Estimating chemical probing reactivity from RT-stops and RT-mutations

We define the ’reactivity’ of site k in an RNA molecule, rk, as the probability of an adduct forming at that site during a chemical

probing experiment. rk contains structural information about the molecular fold of the RNA sample and is the primary data

we want to extract from the probing experiment. Since RT can both stop and mutate at adducts, we also define βk to be the

probability that RT stops due to an adduct at site k following syntax in66, and µk to be the probability that RT mutates due to an

adduct at site k. Recent evidence suggests that there are strong context preferences for RT to favor either stops or mutations at a

given position of an RNA, and so both must be accounted for in our estimate of rk
52, 72. Since RT-stops and RT-mutations are

mutually exclusive events when detecting adducts, we define the reactivity at site k to be the sum of these two probabilities:

rk = βk +µk.
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Figure 2. Examples of RT-stops and RT-mutations in the (+) and (-) channels and how they contribute to S(±)k and M(±)
k,l . Note

that a single read may contribute to both stop and mutation counts. Adduct positions in the (+) channel are denoted by red pins.

Below we present a maximum-likelihood framework derivation following66 for generating our best estimate of these

probabilities {r∗k ,β ∗k ,µ∗k } given the observations of S(±)k and M(±)
k,l . Using this framework we obtain

r∗k = β
∗
k +µ

∗
k ,1≤ k ≤ n (1)

β
∗
k = max


stop(+)

k

depth(+)
k

− stop(−)k

depth(−)k

1− stop(−)k

depth(−)k

,0

 (2)

µ
∗
k = max


mut(+)

k

depth(+)
k

− mut(−)k

depth(−)k

1− mut(−)k

depth(−)k

,0

 (3)

where depth±k is the number of sequencing reads that cover position k in each channel, which can be calculated from

depth(±)k =
n+1

∑
l=k

S(±)l (4)

and the mutations observed at position k, mutk is defined as

mut(±)k =
n+1

∑
l=k+1

M(±)
l,k (5)

We rewrite S(±)k as stop(±)k in Eq. 2 to more clearly delineate RT-stop and RT-mutation information.

stop(±)k = S(±)k (6)
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The quantities β ∗k and µ∗k are the best feasible estimates for the reactivity components due to RT-stops and RT-mutations,

respectively. As explained below, they come from β̂k, µ̂k which are the estimated parameters from observed data. Since β̂k and

µ̂k are each calculated as the difference between terms calculated from the (+) and (-) channel data, there is no guarantee that

they will be strictly nonnegative. Therefore, in the case that the calculation results in β̂k < 0 or µ̂k < 0, the feasible solution

is to set them to zero66, hence the use of the maximum function in defining β ∗k and µ∗k . Note this arises in cases when there

is severe dropoff or mutations in the (-) channel indicating a large amount of noise in the measurement at this position. It is

therefore adviseable to keep track of scenarios where β̂k < 0 or µ̂k < 0 since they are generally indications of poor data quality,

especially for larger negative values, where experimental conditions may potentially be optimized.

Discussion

An intuitive link between reactivity estimates and fraction of adduct formed.

Interestingly Eq.1 has an intuitive interpretation that is related to the concept of the fraction of adduct formed at the end of a

chemical probing reaction. Since depthk is an indication of how many adduct detection events are possible at each position,

both RT-stops and RT-mutation data are incorporated in terms that have the form

Number of RT Events Observed at k
Number of Possible RT Events Observable at k

= Fraction of RT Events Observed at k = fk(RT Event),

where RT Event refers to either RT-stops or RT-mutations. Therefore we can write

r̂k = β̂k + µ̂k,1≤ k ≤ n

β̂k =
f (+)
k (stop)− f (−)k (stop)

1− f (−)k (stop)

µ̂k =
f (+)
k (mut)− f (−)k (mut)

1− f (−)k (mut)

Thus both β̂k and µ̂k represent the fraction of RT events observed in the (+) channel corrected for the fraction of RT events

observed in the (-) channel for stops and mutations, respectively. The denominators in each term represent the fraction of signal

due to adduct that is possible to observe in the (+) channel. These denominators arise because an RT event observation can be

due to an adduct or a background process, but not both66 – i.e. if a fraction of RT events is observed in the (-) channel, the

fraction of events that then can be observed in the (+) channel is reduced by that amount in order to estimate the fraction of

events due to true signal. The denominators effectively correct for scenarios in which there is high background that obfuscates

signal due to adducts. In cases where there is little or no background, these denominators can be approximated to be ∼ 1 and

we have

r∗k ≈ ( f (+)
k (stop)+ f (+)

k (mut))− ( f (−)k (stop)+ f (−)k (mut))
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Since the (+) channel has signal due to adducts and background processes, while the (-) channel only has signal due to

background processes, the subtraction amounts to

r∗k ≈ fk(stop due to adduct)+ fk(mut due to adduct),

where fk(event due to adduct) denotes RT-stops or RT-mutations at site k due to adduct and not due to natural fall off and

mutations.

Since RT-stops and RT-mutations are the two ways to detect adducts, then

r∗k ≈ fraction of adduct observed at position k

Importantly, the fraction of adduct formed at any given position is a quantity that is determined by the chemical kinetics of

the probing reaction and the structure-dependent fluctuations of each nucleotide of the RNA47, 69. By estimating reactivities that

correspond to the fraction of adduct observed, reactivity values should most closely align with the kinetics of the chemical

probing reaction, which should allow a deeper understanding of data from high throughput RNA structure probing experiments.

Model Assumptions and Implementation

Two main assumptions were made in the above model:

1. Mutations at different positions are independent of each other.

2. Observing an RT-mutation at a given position is exclusive to observing an RT-stop at that position.

The first assumption is reasonable for low modification rates. However, some studies47, 73 indicate that the chemical adducts

caused by certain probe reagents may alter the structural dynamics of the RNA once formed, which could in turn influence the

formation of additional adducts if high modification rates are used - i.e. that certain chemical probes could potentially destabilize

individual RNA molecules such that additional adduct formation to the same molecule would not reflect the native structures of

interest. More work is needed to understand how multiple probe modifications can impact the ability to estimate reactivities

which may depend on the nature of the probe, where it chemically modifies the RNA base, and any sequence/structural contexts

of these scenarios.

The second assumption is more nuanced and impacts the implementation of the read mapping and application of the above

reactivity formulas. In particular, the case of the very 3’ end of a cDNA presents a challenging mapping case if it is mutated.

According to the assumption, a mutated cDNA 3’ end at position k−1 would contribute to two counts: Sk and Mk,k−1. However,

it could be possible that in the process of stopping, RT introduces the mutation at the same time and thus this event should only

be counted once. More work on biochemically defined adducts would be needed to validate or modify this assumption.

7/30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292532doi: bioRxiv preprint 

https://doi.org/10.1101/292532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimental Validation

The major innovation in the above formula for chemical reactivities is to formally incorporate the observed signatures of both

RT-stops and RT-mutations when estimating reactivities. The major motivation for this is the data and results of52, 72 which

clearly show that RT drop and mutation signatures on the same pool of modified RNA differs depending on the specific RT

enzyme and associated buffer conditions used to perform the conversion into cDNA. The goal of the RT process to convert

every RNA adduct into a detectable signature in cDNAs therefore justifies our assertion that both RT-stops and RT-mutations

should be included simultaneously in the reactivity estimation.

While the above formula for chemical probing reactivities makes intuitive sense as the fraction of adduct detected at each

position, it still requires experimental validation. Accordingly, we expect two important improvements from applying the

combined RT-stop+map model: improvement in chemical probing reactivity accuracy, and an invariance of reactivities to RT

conditions.

Improvements in chemical probing reactivity accuracy are naturally expected since current approaches that focus solely

on RT-stops3, 11, 18, 30, 34, 36 or RT-mutations32, 46 will inherently miss information52, 72. Many approaches to assess chemical

probing accuracy rely on an indirect method to first utilize reactivities in RNA secondary structure prediction algorithms,

and then assess accuracy of reactivity data based on the improvements in structural prediction74–77. While we expect that

RT-stop+map reactivities may improve the accuracy according to this benchmark, we anticipate that improvements may only

be modest as it appears that the current RNA structure prediction algorithms are starting to reach the inherent limits of their

accuracy given the assumptions used in their calculations78. Therefore methods that assess accuracy of reactivities through

more direct analysis and/or new RNA structure prediction algorithms may be needed to uncover improvements when using

both RT-stops and RT-mutations.

The other improvement suggested by the RT-stop+map model is an invariance of reactivities to RT conditions. In other

words, estimated reactivity values should be the same no matter what RT enzyme or RT conditions are used. This is because the

RT process is a means to detect RNA adducts. If the same pool of modified RNA is used, then this adduct distribution will not

change, making it a goal of adduct detection methods to uncover the same distribution independent of the method conditions.

Interestingly, this invariance is also suggested when observing the individual RT-stop and RT-mutate reactivities from Sexton et

al.52 and Novoa et al.71, which strongly suggest that adding the two together would create reactivities that are highly similar

between RT enzymes and conditions.

While invariance to RT conditions is strongly suggested as an outcome when using both RT-stops and RT-mutations, it is

not guaranteed, mainly because it should only be true when reactivity estimates converges to the true fraction of adduct formed

value. This can breakdown for simple reasons such as inadequate sequencing depth needed to overcome high background stops

and mutations, or more complex reasons related to biases in specific library preparation steps. In particular, biases introduced

by ligation or PCR steps that prevent adducts in specific sequence contexts to be uniformly sampled would interfere with more

accurately estimating reactivities. More work is needed to test different experimental library preparation protocols in the context
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of the RT-stop+map reactivity estimation in order to examine these effects. Interestingly, searching for library preparation

strategies that are invariant to RT conditions may be a means to identify the most accurate experimental strategy. Thus, future

work in this area may produce useful insights in both experimental protocols as well as more accurately estimating reactivities.

Conclusion

In this work, we derive an equation for estimating chemical probing reactivities that uses information from both RT-stops

and RT-mutations. This is based off of recent work52, 72 that gives strong evidence that RT-stop and RT-mutation detection

methods give complementary information when used with DMS probing - i.e. each method has context dependence such

that they tend to map adducts in unique scenarios rather than mapping the same adduct positions. Therefore, we propose

that reactivity estimation that considers both RT-stop and RT-mutation will be more accurate than methods that consider only

one source of adduct detection. Future work will require the above formulas to be tested in a range of experimental contexts

to demonstrate that the conclusions drawn from it are robust. We hope that these efforts will lead to improvements in RNA

structure interrogation methods that are becoming increasingly important in answering questions about how RNA structure

impacts a broad range of processes in biology.

Full Derivation

Model Setup

Chemical probing reactivities represent probabilities that adduct formation will occur at each nucleotide in an RNA during the

probing reaction. Once the reaction proceeds to completion, these probabilities will naturally manifest themselves as a fraction

of adduct formed at each position, which is defined as the proportion of those nucleotides that have the adduct out of the total

population.

A given pattern of reactivities will naturally generate a distribution of RT-stops and RT-mutations across a population of

cDNAs when the RNAs are reversed transcribed. Thus given a set of known reactivities, an observed pattern of RT-stops and

RT-mutations could be calculated. However, in chemical probing experiments the information available is the converse - we

know the pattern of RT-stops and RT-mutations, but do not know the underlying reactivities that gave rise to those patterns. The

process of deriving a formula to estimate reactivities is thus to search over all possible reactivity values that lead to RT-stop

and RT-mutate distributions that most accurately match the observed data. Fortunately this can be done exactly to yield a

closed-form expression for the most accurate reactivity values possible from observed patterns of RT-stops and RT-mutations.

The derivation of equation (1) follows the maximum likelihood approach originally developed in66 for the case of just

detecting RT-stops. The maximum likelihood approach describes adduct detection by RT as a probabalistic process, where as

RT processes through cDNA synthesis there are certain probabilities for it to fall off or mutate due to either encountering an
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adduct or due to natural processes. We define the probabilities

βk = probability RT falls off due to adduct at site k, 0≤ βk ≤ 1

µk = probability RT mutates due to adduct at site k, 0≤ µk ≤ 1

where the ranges for βk and µk are set since they are probabilities. When describing a complete model, we also need

to account for the probabilities for RT to fall off or mutate due to natural processes, which are described by two additional

probabilities

γk = probability RT falls off due to natural processes at site k, 0≤ γk ≤ 1

δk = probability RT mutates due to natural processes at site k, 0≤ δk ≤ 1

where again ranges for γk and δk are set since they are probabilities. If known, these probabilities define the reactivity

information we desire from the chemical probing experiment from equation (1). However, for a given RNA these probabilities

are unknown, and it is the goal of the maximum likelihood framework to estimate these probabilities given the information

obtained from the sequencing reads. Estimated parameters from the maximum likelihood estimation are then {β̂k, µ̂k, γ̂k, δ̂k}

which we then enforce nonnegativity to obtain the estimated probabilities {β ∗k ,µ∗k } and thus the estimated reactivity {r∗k}. For

shorthand we define B = {βk},Γ = {γk},M = {µk},∆ = {δk}.

Construction of the Likelihood Function

Even though the probabilities {B,M,Γ,∆} are initially unknown, we can still use them to construct the overall probability of

observing a specific type of sequencing read in the experiment. For example, if we only consider RT-stops, the probability that

we would observe a k-fragment in the (-) channel would be

Prob(k-fragment in (−)) = Prob(RT-stops at k|RT does not stop before k) ·Prob(RT does not stop before k)

= γk

k−1

∏
i=1

(1− γi)

The first term in the equation is the probability RT stops at position k, which is γk. The second term is the probability that

RT does not stop before reaching position k. Since the probability of not stopping at a position i is (1− γi), then the probability

of not stopping before k is the product of all the (1− γi) terms where i < k. Note that since we were describing events in the (-)

channel, we use Γ = (γ1, ...,γn) since they describe RT stop events due to natural processes which are the only causes of RT

stop events in the (-) channel. Following this logic, we can write the probability of observing a full length fragment in the (-)
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channel as the product of RT not stopping the whole length of the molecule, or

Prob( f ull length f ragment in (−)) = Prob(RT does not stop),∀i,1≤ i≤ n

= Prob(RT does not stop naturally),∀i,1≤ i≤ n

=
n

∏
i=1

(1− γi)

When considering RT-stops in the (+) channel, things are slightly more complex since RT can stop both due to adducts

present and natural processes as well. Thus when we write down probabilities for observing fragments in the (+) channel, these

probabilities will involve both B = (β1, ...,βn) and Γ = (γ1, ...,γn). When considering the probability for observing a full length

fragment in the (+) channel, we simply need to include (1−βi) with (1− γi) in the probability for RT not stopping at position i

leading to

Prob( f ull length f ragment in (+)) = Prob(RT does not stop),∀i,1≤ i≤ n

= Prob(RT does not stop naturally) ·Prob(RT does not stop due to adduct),∀i,1≤ i≤ n

=
n

∏
i=1

(1− γi)(1−βi)

For the probability of observing k-fragments in the (+) channel there are two independent causes for dropoff at k: either the

k-fragment was due to an adduct at k or due to a natural dropoff at k:

Prob(k-fragment in (+) due to adduct) = Prob(RT-stop at k due to adduct|RT does not stop before k)

·Prob(RT does not stop before k)

= Prob(RT-stop at k due to adduct|RT does not stop before k)

·Prob(RT does not stop naturally before k)

·Prob(RT does not stop due to adduct before k)

= βk

k−1

∏
i=1

(1−βi)(1− γi)

Here, the first term in the equation is the probability RT stops at position k due to adduct, which is βk. The second term is

the probability that RT does not stop before reaching position k, and since the probability of not stopping at a position i in the

(+) channel is (1−βi)(1− γi) (which is the probability of not stopping due to adduct and not stopping due to natural processes),

then the probability of not stopping before k is the product of all the (1−βi)(1− γi) terms where i < k.

RT can also fall off in the (+) channel due to natural processes, so we must account for this probability as well:
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Prob(k-fragment in (+) due to natural processes) = Prob(RT-stop at k due to natural processes|RT does not stop before k)

·Prob(RT does not stop before k)

= Prob(RT-stop at k due to natural processes|RT does not stop before k)

·Prob(RT does not stop naturally before k)

·Prob(RT does not stop due to adduct before k)

= γk

k−1

∏
i=1

(1−βi)(1− γi)

The first term, γk represents the probability of falling off due to natural processes. The other term in this equation describing

the probability of no RT-stop before k remains the same.

However, we must disentangle RT fall off in the (+) channel due to natural processes versus adduct formation. This is

particularly important for positions that have both a tendency for natural process RT-stops as well as adduct formation. In other

words, a position k with the probability of adduct formation βk < 1 could also create a k-fragment from natural processes as

governed by the probability γk. We account for this in the following equation:

Prob(k-fragment in (+) due to only natural processes)

= Prob(RT-stop at k due to only natural processes|RT does not stop before k) ·Prob(RT does not stop before k)

= Prob(RT-stop at k due to natural processes, No RT-stop at k due to adduct|RT does not stop before k)

·Prob(RT does not stop before k)

= Prob(RT-stop at k due to natural processes|RT does not stop before k)

·Prob(No RT-stop at k due to adduct|RT does not stop before k)

·Prob(RT does not stop before k)

= γk(1−βk)
k−1

∏
i=1

(1−βi)(1− γi)

Note the slightly different form of this probability. The first two terms represent the probability of falling off due to natural

processes and not due to adduct, which is γk(1−βk). The last term in this equation describing the probability of no RT-stop

before k remains the same. Since we have taken into account the possible scenarios, to find the probability of a k-fragment in

the (+) channel due to either type of process, we simply sum them:
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Prob(k-fragment in (+)) = Prob(k-fragment in (+) due to adduct or due to natural processes)

= Prob(k-fragment in (+) due to adduct)

+Prob(k-fragment in (+) due to natural processes)

−Prob(k-fragment in (+) due to natural processes and adduct)

= Prob(k-fragment in (+) due to adduct)

+Prob(k-fragment in (+) due to only natural processes)

= βk

[
k−1

∏
i=1

(1−βi)(1− γi)

]
+ γk(1−βk)

[
k−1

∏
i=1

(1−βi)(1− γi)

]

= (βk + γk(1−βk))
k−1

∏
i=1

(1−βi)(1− γi)

= [1− (1− γk)(1−βk)]
k−1

∏
i=1

(1−βi)(1− γi)

The first term in square brackets in this equation represents the nature of RT falling off due to an adduct or a natural

processes. Here (1− γk)(1−βk) is the probability of not falling off due to a natural process and not falling off due to adduct.

Therefore 1− (1− γk)(1−βk) is the probability of falling off due to one or the other. The last term in this equation describing

the probability of no RT-stop before k remains the same.

The RT-stop-only terms are the same as used in66 to derive a reactivity formula in terms of RT-stop events. Here we

extend this to include the observation of mutations in cDNA products as well, which are governed by the {M,∆} probabilities.

Therefore we must extend the probability terms above to account for the different scenarios of observing specific patterns of

mutations across the cDNA molecules. There are two important aspects of RT-mutations that we need to incorporate when

constructing these probabilities. The first is the assumption that an RT-mutation at position k is mutually exclusive to an RT-stop

at the same position. This is reasonable because RT stops one nucleotide before the roadblock it encounters (either adduct or

some interfering element that contributes to natural drop off). Therefore an RT-stop due to a road block at position k results in

a cDNA that ends at position k−1, which could therefore not have a mutation at position k. This mutually exclusive nature

modifies the probabilities for observing a k-fragment in the (-) channels in the following way:

Prob(k-fragment in (−)) = γk(1−δk)
k−1

∏
i=1

(1− γi) (7)

where the γk(1−δk) term reflects the mutually exclusive nature that if an RT-stops due to a natural process at position k

(with probability γk), then it cannot introduce a mutation at position k (with the probability of not mutating (1−δk)). Similarly,
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the probability for observing a k-fragment in the (+) channel is modified to:

Prob(k-fragment in (+)) = [1− (1− γk)(1−βk)] (1−δk)(1−µk)
k−1

∏
i=1

(1−βi)(1− γi)

where we have incorporated the probability that there was no mutation at position k due to natural processes (1−δk) and

no mututation at position k due to adduct (1−µk) with the (1−δk)(1−µk) term.

The second aspect of mutations that we need to incorporate is the specific pattern of mutations that may be present across

the rest of the cDNA molecule. We assume that mutations at different positions are independent of each other – i.e. if a mutation

can occur at position i due to natural processes with probability δi, then the probability of observing mutations at positions i

and j is just the product δiδ j. If a full length cDNA in the (-) channel only had mutations at i and j and nowhere else, then the

probability of observing this fragment would be δiδ j ∏
n

l=1
l /∈{i, j}

(1−δl) since every other position other than i and j would not

be mutated. In the same way, the probability of observing any pattern of mutations across a cDNA of length k−1 in the (-)

channel can be written as:

Prob(mutations at {l} in (−)| f ragment length o f k−1) = ∏
l

δl

k−1

∏
j=1

j/∈{l}

(1−δ j) (8)

where the notation j /∈ {l} indicates that the second product covers the positions j that are not mutated. For (+) channel

cDNAs, we have a similar scenario as with RT-stops – RT-mutate events due to an adduct or natural processes are independent.

An RT-mutate event due to natural processes at position k occurs with probability δk, while that due to an adduct alone occurs

with probability µk(1−δk). Summing these two then gives the probability that an RT-mutate event occurs at postion k in the

(+) channel is (1− (1−δk)(1−µk)).1 With this we can write

Prob(mutations at {l} in (+)| f ragment length o f k−1) = ∏
l
[1− (1−δk)(1−µk)]

k−1

∏
j=1

j/∈{l}

(1−δ j)(1−µ j)

While we have written down all of the different probabilities for observing different types of cDNA fragments, we still do

not know the true underlying {B,M,Γ,∆} probabilities. However, we can estimate these numbers given the observed cDNA

reads using maximum likelihood estimation. The overall concept of maximum likelihood estimation is that if we can find the

set of underlying probabilities {B̂,M̂, Γ̂, ∆̂} that is most consistent with our observed data, then this will be our best estimate of

these parameters. To do so we first construct a likelihood function, L ({B,M,Γ,∆}), which represents the likelihood that we

would observe a given set of cDNA reads given the set of probabilities {B,M,Γ,∆}. To then find the set of {B̂,M̂, Γ̂, ∆̂} most

consistent with our data, we then maximize L ({B,M,Γ,∆}) with respect to these parameters given our observed data.2

1Note an easy interpretation of this term is that the probability of not mutating due to a natural process and not mutating due to an adduct at k is
(1−δk)(1−µk), therefore the probability of mutating at this position is just 1 minus this.

2The maximum likelihood approach can be explained with the example of a coin flip experiment. Suppose we have a coin that has the probability of h for
observing a heads and 1−h for observing a tails. Given h, the likelihood of us observing m heads and n tails in a series of m+n flips is: L (h) = hm(1−h)n.
Suppose we do not know h, but we have observed m and n. The question is, what is our best estimate of h? We can achieve this by maximizing L (h), by
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To construct L ({B,M,Γ,∆}), we raise the probability of a particular observed event (p) to the Nth power, or pN , where N

is the number of times the event was observed. Since we have already constructed the probabilities for observing the different

types of cDNA events, we can simply raise these probabilities to powers equal to the number of those types of reads observed.

For example from equation (7), we can write

L (observing S(−)k f ragments) =

[
γk(1−δk)

k−1

∏
i=1

(1− γi)

]S(−)k

(9)

Note however that this does not consider the pattern of mutations that may be present in specific (-) channel k-fragments.

Since mutations away from the stop site are assumed to occur independently, we can simply multiply the term above to the

likelihood of observing a specific pattern of mutations. To construct the likelihood functions for mutations in a k-fragment, we

must take into account two different observations: the number of k-fragments observed with a mutation at a specific position

l, Mk,l , and the number of fragments observed that were unmutated at position l, Uk,l . (This is similar to accounting for the

number of heads in a coin flip and the number of not heads (tails) in the footnote example.) The latter must be taken into

account to account for all observed fragments. Since mutation events are independent, the likelihood of observing Mk,l ,Uk,l is

then according to the equation (8)

L (observing M(−)
k,l ,U (−)

k,l | f ragment length o f k−1) =
k−1

∏
l=1

δ
M(−)

k,l
l (1−δl)

U(−)
k,l (10)

Note the above equation is essentially obtained by multiplying versions of equation (8) together for every cDNA observed.

Rearranging all of the different products together will naturally collapse the terms into the form above which raises the

probabilities of observing a mutation or not observing a mutation to the number of times those events were observed.

Combining equations (9) and (10) we have

L (observing S(−)k f ragments with M(−)
k,l ,U (−)

k,l ) =

[
γk(1−δk)

k−1

∏
i=1

(1− γi)

]S(−)k k−1

∏
l=1

δ
M(−)

k,l
l (1−δl)

U(−)
k,l

Similarly, for full length fragments in the (-) channel, we have:

L (observing S(−)n+1 f ragments with M(−)
n+1,l ,U

(−)
n+1,l) =

[
n

∏
i=1

(1− γi)

]S(−)n+1 n

∏
l=1

δ
M(−)

n+1,l
l (1−δl)

U(−)
n+1,l

maximizing log(L (h)). Since log(L (h)) = m log(h)+ n log(h− 1), ∂ log(L (h))
∂h = m

h −
n

1−h = 0, which has the solution ĥ = m
m+n . It is easy to show that

∂ 2 log(L (h)
∂h2 < 0 so this is a maximum. Thus our best estimate of h is just the fraction of heads observed. The maximum likelihood approach used here to

estimate reactivities is just a more elaborate example of this coin flip experiment.
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Note the (1− δn) term is incorporated into the right hand side of this equation. The full likelihood function takes into

account all of the observed S(+)
k and S(−)k fragments from k = 1, . . . ,n, as well as the full length fragments S(±)n+1. We can

therefore write

L ({B,M,Γ,∆}) =
n

∏
k=1


[

γk(1−δk)
k−1

∏
i=1

(1− γi)

]S(−)k k−1

∏
l=1

δ
M(−)

k,l
l (1−δl)

U(−)
k,l

×

[
(1− (1− γk)(1−βk))(1−δk)(1−µk)

k−1

∏
i=1

(1−βi)(1− γi)

]S(+)
k

×
k−1

∏
l=1

(1− (1−δl)(1−µl))
M(+)

k,l ((1−δl)(1−µl))
U(+)

k,l

}

×

[
n

∏
i=1

(1− γi)

]S(−)n+1 n

∏
l=1

δ
M(−)

n+1,l
l (1−δl)

U(−)
n+1,l

×

[
n

∏
i=1

(1− γi)(1−βi)

]S(+)
n+1 n

∏
l=1

(1− (1−δl)(1−µl))
M(+)

n+1,l ((1−δl)(1−µl))
U(+)

n+1,l

(11)

where we have combined terms for k-fragments observed in the (-) and (+) channels, and complete fragments observed in

the (-) and (+) channels in order.

Maximizing the Likelihood Function

Our next goal is to maximize L with respect to {B,M,Γ,∆} (Eq. 11), given our observations of S(±)k , M(±)
k,l , and U (±)

k,l . To do

this, we first take the logarithm of L to separate variables in order to more easily find the ML estimates and obtain:

log(L ({B,M,Γ,∆})) = log

(
n

∏
k=1


[

γk(1−δk)
k−1

∏
i=1

(1− γi)

]S(−)k k−1

∏
l=1

δ
M(−)

k,l
l (1−δl)

U(−)
k,l

×

[
(1− (1− γk)(1−βk))(1−δk)(1−µk)

k−1

∏
i=1

(1−βi)(1− γi)

]S(+)
k

×
k−1

∏
l=1

(1− (1−δl)(1−µl))
M(+)

k,l ((1−δl)(1−µl))
U(+)

k,l

}

×

[
n

∏
i=1

(1− γi)

]S(−)n+1 n

∏
l=1

δ
M(−)

n+1,l
l (1−δl)

U(−)
n+1,l

×

[
n

∏
i=1

(1− γi)(1−βi)

]S(+)
n+1 n

∏
l=1

(1− (1−δl)(1−µl))
M(+)

n+1,l ((1−δl)(1−µl))
U(+)

n+1,l

)

(12)
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We reduce Eq. 12 further:

log(L ({B,M,Γ,∆})) =
n

∑
k=1

{
S(−)k

[
log(γk)+ log(1−δk)+

k−1

∑
i=1

log(1− γi)

]
+

k−1

∑
l=1

[
M(−)

k,l log(δl)+U (−)
k,l log(1−δl)

]
+S(+)

k

[
log(1− (1− γk)(1−βk))+ log(1−δk)+ log(1−µk)+

k−1

∑
i=1

log[(1−βi)(1− γi)]

]

+
k−1

∑
l=1

[
M(+)

k,l log(1− (1−δl)(1−µl))+U (+)
k,l log((1−δl)(1−µl))

]}

+S(−)n+1

n

∑
i=1

log(1− γi)+
n

∑
l=1

[
M(−)

n+1,l log(δl)+U (−)
n+1,l log(1−δl)

]
+S(+)

n+1

n

∑
i=1

log[(1− γi)(1−βi)]+
n

∑
l=1

[
M(+)

n+1,l log(1− (1−δl)(1−µl))+U (+)
n+1,l log[(1−δl)(1−µl)]

]

=
n

∑
k=1

{
S(−)k log(γk)+(S(−)k +S(+)

k )

[
log(1−δk)+

k−1

∑
i=1

log(1− γi)

]

+
k−1

∑
l=1

[
M(−)

k,l log(δl)+(U (−)
k,l +U (+)

k,l ) log(1−δl)
]

+S(+)
k

[
log(1− (1− γk)(1−βk))+ log(1−µk)+

k−1

∑
i=1

log(1−βi)

]

+
k−1

∑
l=1

[
M(+)

k,l log(1− (1−δl)(1−µl))+U (+)
k,l log(1−µl)

]}

+(S(−)n+1 +S(+)
n+1)

n

∑
i=1

log(1− γi)+
n

∑
l=1

[
M(−)

n+1,l log(δl)+(U (−)
n+1,l +U (+)

n+1,l) log(1−δl)
]

+S(+)
n+1

n

∑
i=1

log(1−βi)+
n

∑
l=1

[
M(+)

n+1,l log(1− (1−δl)(1−µl))+U (+)
n+1,l log(1−µl)

]

=
n

∑
k=1

{
S(−)k log(γk)+(S(−)k +S(+)

k ) log(1−δk)+S(+)
k [log(1− (1− γk)(1−βk))+ log(1−µk)]

}
+

n+1

∑
k=1

{
k−1

∑
i=1

[
(S(−)k +S(+)

k ) log(1− γi)+M(−)
k,i log(δi)+(U (−)

k,i +U (+)
k,i ) log(1−δi)+S(+)

k log(1−βi)

+M(+)
k,i log(1− (1−δi)(1−µi))+U (+)

k,i log(1−µi)
]}

(13)

Using the identities ∑
n+1
k=1 ∑

k−1
i=1 ak,ibi = ∑

n
k=1 ∑

n+1
i=k+1 ai,kbk and ∑

n+1
k=1 ∑

k−1
i=1 akbi = ∑

n
k=1 ∑

n+1
i=k+1 aibk we can rearrange (13) to
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more easily find the maximum of the likelihood function.

log(L ({B,M,Γ,∆})) =
n

∑
k=1

{
S(−)k log(γk)+(S(−)k +S(+)

k ) log(1−δk)+S(+)
k [log(1− (1− γk)(1−βk))+ log(1−µk)]

}
+

n

∑
k=1

{
n+1

∑
i=k+1

[
(S(−)i +S(+)

i ) log(1− γk)+M(−)
i,k log(δk)+(U (−)

i,k +U (+)
i,k ) log(1−δk)+S(+)

i log(1−βk)

+M(+)
i,k log(1− (1−δk)(1−µk))+U (+)

i,k log(1−µk)

]}

=
n

∑
k=1

{
S(−)k log(γk)+(S(−)k +S(+)

k ) log(1−δk)+S(+)
k [log(1− (1− γk)(1−βk))+ log(1−µk)]

+
n+1

∑
i=k+1

[
(S(−)i +S(+)

i ) log(1− γk)+M(−)
i,k log(δk)+(U (−)

i,k +U (+)
i,k ) log(1−δk)+S(+)

i log(1−βk)

+M(+)
i,k log(1− (1−δk)(1−µk))+U (+)

i,k log(1−µk)

]}

≡
n

∑
k=1

lk

(14)

Let A = ∑
n+1
i=k+1(S

(−)
i +S(+)

i ), B = ∑
n+1
i=k+1 M(−)

i,k , C = ∑
n+1
i=k+1(U

(−)
i,k +U (+)

i,k ), D = ∑
n+1
i=k+1 S(+)

i , E = ∑
n+1
i=k+1 M(+)

i,k , and F =

∑
n+1
i=k+1 U (+)

i,k . Then from (14):

lk = S(−)k log(γk)+(S(−)k +S(+)
k ) log(1−δk)+A log(1− γk)+B log(δk)+C log(1−δk)

+S(+)
k [log(1− (1− γk)(1−βk))+ log(1−µk)]+D log(1−βk)+E log(1− (1−δk)(1−µk))+F log(1−µk)

(15)

From (15) we can calculate partial derivatives with respect to each parameter in the likelihood function. By setting these

paritial derivatives to 0, we can find a critical point for each parameter, which we later show these critical points are maxima

and thus are maximum likelihood estimators. Since (14) is a sum of independent terms, we can maximize these independently.

Starting with ∂ lk
∂βk

:
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∂ lk
∂βk

=
S(+)

k (1− γk)

1− (1− γk)(1−βk)
− D

1−βk
= 0

S(+)
k (1− γk)(1−βk)−D+D(1− γk)(1−βk) = 0

∴ (1− γk)(1−βk) =
D

S(+)
k +D

(16)

∴ 1− (1− γk)(1−βk) =
S(+)

k

S(+)
k +D

(17)

We then use (16) and (17) to calculate γ̂k from ∂ lk
∂γk

.

∂ lk
∂γk

=
S(−)k
γk
− A

1− γk
+

S(+)
k (1−βk)

1− (1− γk)(1−βk)
= 0

S(−)k (1− γk)(1− (1− γk)(1−βk))−A(γk)(1− (1− γk)(1−βk))+S(+)
k (γk)(1− γk)(1−βk) = 0

S(−)k (1− (1− γk)(1−βk)) = γk
[
(S(−)k +A)(1− (1− γk)(1−βk))−S(+)

k (1− γk)(1−βk)
]

The solution γ̂k then is

γ̂k =
S(−)k (1− (1− γk)(1−βk))

(S(−)k +A)(1− (1− γk)(1−βk))−S(+)
k (1− γk)(1−βk)

=

S(−)k S(+)
k

S(+)
k +D

(S(−)k +A)S(+)
k

S(+)
k +D

− S(+)
k D

S(+)
k +D

=
S(−)k

S(−)k +A−D

=
S(−)k

S(−)k +∑
n+1
i=k+1 S(−)i

=
S(−)k

∑
n+1
i=k S(−)i

(18)

Let G = D
S(+)

k +D
. Using G, (16), (17), and (18) we can solve for β̂k:

1−βk =
G

1− γk

β̂k = 1− G
1− γk

=
1−G− γk

1− γk
=

S(+)
k

S(+)
k +D

− γk

1− γk
=

S(+)
k

∑
n+1
i=k S(+)

i

− S(−)k

∑
n+1
i=k S(−)i

1− S(−)k

∑
n+1
i=k S(−)i

(19)
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We can solve for µ̂k and δ̂k similarly:

∂ lk
∂ µk

=−
S(+)

k
1−µk

+
E(1−δk)

1− (1−δk)(1−µk)
− F

1−µk
= 0

E(1−δk)(1−µk)− (S(+)
k +F)(1− (1−δk)(1−µk)) = 0

(1−δk)(1−µk)[E +S(+)
k +F ] = S(+)

k +F

∴ (1−δk)(1−µk) =
S(+)

k +F

E +S(+)
k +F

(20)

∴ 1− (1−δk)(1−µk) =
E

E +S(+)
k +F

(21)

We then use (20) and (21) to calculate δ̂k from ∂ lk
∂δk

.

∂ lk
∂δk

=−
S(−)k +S(+)

k
1−δk

+
B
δk
− C

1−δk
+

E(1−µk)

1− (1−δk)(1−µk)
= 0

B(1− (1−δk)(1−µk))− (δk)[S
(−)
k +S(+)

k +C+B)(1− (1−δk)(1−µk))−E(1−δk)(1−µk)] = 0

δk[(S
(−)
k +S(+)

k +C+B)(1− (1−δk)(1−µk))−E(1−δk)(1−µk)] = B(1− (1−δk)(1−µk))

δ̂k =
B(1− (1−δk)(1−µk))

(S(−)k +S(+)
k +C+B)(1− (1−δk)(1−µk))−E(1−δk)(1−µk)

=
BE

(S(−)k +S(+)
k +B+C)E−E(S(+)

k +F)

=
B

S(−)k +B+C−F
=

∑
n+1
i=k+1 M(−)

i,k

S(−)k +∑
n+1
i=k+1(M

(−)
i,k +U (−)

i,k )
=

∑
n+1
i=k+1 M(−)

i,k

∑
n+1
i=k S(−)i

(22)

Where we have used M(±)
i,k +U (±)

i,k = S(±)i since the former is all i-fragments that are either mutated at k or not, which is just

S(±)i . Let H =
S(+)

k +F

E+S(+)
k +F

. Using H, (20), (21), and (22) we can solve for µ̂k:

1−µk =
H

1−δk
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µ̂k = 1− H
1−δk

=
1−H−δk

1−δk
=

E
E+S(+)

k +F
−δk

1−δk
=

∑
n+1
i=k+1 M(+)

i,k

∑
n+1
i=k S(+)

i

− ∑
n+1
i=k+1 M(−)

i,k

∑
n+1
i=k S(−)i

1− ∑
n+1
i=k+1 M(−)

i,k

∑
n+1
i=k S(−)i

(23)

Thus, we have calculated the maximum likelihood estimators {β̂k, µ̂k, γ̂k, δ̂k} as defined in equations 19, 23, 18, 22.

We additionally use Eq. 5, 4, 6 and propose that the estimated reactivity r̂k is then:

r̂k = β̂k + µ̂k

=

S(+)
k

∑
n+1
i=k S(+)

i

− S(−)k

∑
n+1
i=k S(−)i

1− S(−)k

∑
n+1
i=k S(−)i

+

∑
n+1
i=k+1 M(+)

i,k

∑
n+1
i=k S(+)

i

− ∑
n+1
i=k+1 M(−)

i,k

∑
n+1
i=k S(−)i

1− ∑
n+1
i=k+1 M(−)

i,k

∑
n+1
i=k S(−)i

=

S(+)
k

∑
n+1
i=k S(+)

i

− S(−)k

∑
n+1
i=k S(−)i

1− S(−)k

∑
n+1
i=k S(−)i

+

mut(+)
k

∑
n+1
i=k S(+)

i

− mut(−)k

∑
n+1
i=k S(−)i

1− mut(−)k

∑
n+1
i=k S(−)i

=

S(+)
k

depth(+)
k

− S(−)k

depth(−)k

1− S(−)k

depth(−)k

+

mut(+)
k

depth(+)
k

− mut(−)k

depth(−)k

1− mut(−)k

depth(−)k

=

stop(+)
k

depth(+)
k

− stop(−)k

depth(−)k

1− stop(−)k

depth(−)k

+

mut(+)
k

depth(+)
k

− mut(−)k

depth(−)k

1− mut(−)k

depth(−)k

However in practice with real data, β̂k, µ̂k, γ̂k, δ̂k are not guaranteed to be between 0 and 1 inclusive for all k. Thus we

enforce nonnegativity and our final reactivity calculation r∗k is as outlined above in Eq. 1, 2, 3 and below:

r∗k = β
∗
k +µ

∗
k ,1≤ k ≤ n

β
∗
k = max


stop(+)

k

depth(+)
k

− stop(−)k

depth(−)k

1− stop(−)k

depth(−)k

,0


µ
∗
k = max


mut(+)

k

depth(+)
k

− mut(−)k

depth(−)k

1− mut(−)k

depth(−)k

,0



We note the formula for {β ∗k } is identical to that of66.
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Maximum Likelihood Estimators are Maxima

Next, we show that {β̂k, µ̂k, γ̂k, δ̂k} are maxima by taking second partial derivatives of the likelihood equation lk.

For γ̂k:

∂ 2lk
∂γk∂γk

=
−S(−)k

γ2
k
− A

(1− γk)2 −
S(+)

k (1−βk)
2

(1− (1− γk)(1−βk))2 ≤ 0

∂ 2lk
∂γk∂βk

=
−S(+)

k (1−βk)(1− γk)

(1− (1− γk)(1−βk))2 ≤ 0

∂ 2lk
∂γk∂ µk

= 0

∂ 2lk
∂γk∂δk

= 0

For β̂k:

∂ 2lk
∂βk∂γk

=
−S(+)

k (1−βk)(1− γk)

(1− (1− γk)(1−βk))2 ≤ 0

∂ 2lk
∂βk∂βk

=
−S(+)

k (1− γk)
2

(1− (1− γk)(1−βk))2 ≤ 0

∂ 2lk
∂βk∂ µk

= 0

∂ 2lk
∂βk∂δk

= 0

For δ̂k:

∂ 2lk
∂δk∂γk

= 0

∂ 2lk
∂δk∂βk

= 0

∂ 2lk
∂δk∂ µk

=
−E(1−δk)(1−µk)

(1− (1−δk)(1−µk))2 ≤ 0

∂ 2lk
∂δk∂δk

=
−(S(−)k +S(+)

k )

(1−δk)2 − B
δ 2

k
− C

(1−δk)2 −
E(1−µk)

2

(1− (1−µk)(1−δk))2 ≤ 0
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For µ̂k:

∂ 2lk
∂ µk∂γk

= 0

∂ 2lk
∂ µk∂βk

= 0

∂ 2lk
∂ µk∂ µk

=
−S(+)

k
(1−µk)2 −

E(1−δk)
2

(1− (1−µk)(1−δk))2 −
F

(1−µk)2 ≤ 0

∂ 2lk
∂ µk∂δk

=
−E(1−δk)(1−µk)

(1− (1−δk)(1−µk))2 ≤ 0

When 0 < βk,µk,γk,δk < 1 and S(−)k ,S(+)
k > 0,

{
∂ 2lk

∂γk∂γk
, ∂ 2lk

∂γk∂βk
, ∂ 2lk

∂βk∂γk
, ∂ 2lk

∂βk∂βk
, ∂ 2lk

∂δk∂ µk
, ∂ 2lk

∂δk∂δk
, ∂ 2lk

∂ µk∂ µk
, ∂ 2lk

∂ µk∂δk

}
< 0 and thus

L ({β̂k, µ̂k, γ̂k, δ̂k}) maxima in respect to the variables of these partial derivatives. Otherwise the second partial derivatives are

all ≤ 0.

Estimating the Rate of SHAPE Adduction Formation

Most experimental designs when using RT-stops aim for a single SHAPE adduct formation per RNA present79. However, these

experimental considerations do not guarantee single hit kinetics so it is useful to estimate the rate of SHAPE adduct formation

from the sequencing reads. This estimation then informs the effectiveness of the probing step and its effects on picking up

signal. Following66 if we assume the probability of SHAPE adduct formation follows a Poisson distribution with rate c, then:

P(n modi f ications) =
cne−c

n!

The probability of no modification would then be the following, considering our model both considers RT-stops and

RT-mutations:

P(n = 0) = e−c =
n

∏
k=1

(1−βk)(1−µk)

Therefore:

23/30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292532doi: bioRxiv preprint 

https://doi.org/10.1101/292532
http://creativecommons.org/licenses/by-nc-nd/4.0/


ĉ =− log

(
n

∏
k=1

(1− β̂k)(1− µ̂k)

)
=−

n

∑
k=1

[
log(1− β̂k)+ log(1− µ̂k)

]

=−
n

∑
k=1

log

1−

S(+)
k

∑
n+1
i=k S(+)

i

− S(−)k

∑
n+1
i=k S(−)i

1− S(−)k

∑
n+1
i=k S(−)i

+ log

1−

mut(+)
k

∑
n+1
i=k S(+)

i

− mut(−)k

∑
n+1
i=k S(−)i

1− mut(−)k

∑
n+1
i=k S(−)i




=−
n

∑
k=1

log

1− S(+)
k

∑
n+1
i=k S(+)

i

1− S(−)k

∑
n+1
i=k S(−)i

+ log

1− mut(+)
k

∑
n+1
i=k S(+)

i

1− mut(−)k

∑
n+1
i=k S(−)i




=−
n

∑
k=1

log

1− stop(+)
k

depth(+)
k

1− stop(−)k

depth(−)k

+ log

1− mut(+)
k

depth(+)
k

1− mut(−)k

depth(−)k
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