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Abstract  
Accurate pathogenicity prediction of missense variants is critical to improve 
power in genetic studies and accurate interpretation in clinical genetic testing. 
Here we describe a new prediction method, MVP, which uses a deep learning 
approach to leverage large training data sets and many correlated predictors. 
Using cancer mutation hotspots and de novo germline mutations from 
developmental disorders for benchmarking, MVP achieved better performance in 
prioritizing pathogenic missense variants than previous methods.  
 
Main Text 
Missense variants are the most common type of coding genetic variants and are 
a major class of genetic risk across a broad range of common and rare diseases. 
Previous studies have estimated that there is a substantial contribution from de 

novo missense mutations to structural birth defects1-3 and neurodevelopmental 
disorders4-6. However, only a small fraction of missense de novo mutations are 
pathogenic4. As a result, the statistical power of detecting individual risk genes 
based on missense variants or mutations is limited7. In clinical genetic testing, 
many of missense variants in well-established risk genes are classified as 
variants of uncertain significance, unless they are highly recurrent in patients. 
Previously published in silico prediction methods have facilitated the 
interpretation of missense variants, such as CADD8, VEST39, metaSVM10, M-
CAP11, and REVEL12. However, based on recent de novo mutation data, they all 
have limited performance with low positive predictive value (Supplementary 
Table S1), especially in non-constrained genes (defined as ExAC13 pLI<0.5).  
 
Here we hypothesize that missense variant pathogenicity prediction can be 
improved in a few dimensions. First, conventional machine learning approaches 
have limited capacity to leverage large amount of training data compared to 
recently developed deep learning methods14. Second, databases of pathogenic 
variants curated from the literature are known to have a substantial frequency 
of false positives15, which are likely caused by common issues across databases 
and therefore introduce inflation of benchmark performance. Developing new 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/259390doi: bioRxiv preprint 

https://doi.org/10.1101/259390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

benchmark data and methods can help to assess and improve real performance. 
Finally, previous methods do not consider gene dosage sensitivity13, 16, which can 
modulate the pathogenicity of deleterious missense variants, as hypomorphic 
variants are pathogenic only in dosage sensitive genes6. With recently published 
metrics of mutation intolerance, it is now feasible to consider gene dosage 
sensitivity in predicting pathogenicity. Based on these ideas, we developed a new 
method, MVP, to improve missense variant pathogenicity prediction. 
 
MVP uses many correlated predictors, which can be broadly grouped into two 
categories (Supplementary Table S2): (a) “raw” features computed at different 
scales, per base pair (e.g. amino acid constraint score and conservation), per local 
context (e.g. protein structure and modification) as well as per gene (e.g. gene 
mutation intolerance, sub-genic regional depletion of missense variants 17); (b) 
deleteriousness scores from selected previous methods. We reason that the 
variants in constrained genes (ExAC pLI≥0.5) and non-constrained genes may 
have different modes of action of pathogenicity, therefore, trained our models for 
the two gene sets separately. We included 38 features for the constrained gene 
model, and 21 features for the non-constrained gene where we removed most 
published prediction methods features due to limited prediction accuracy 
(Supplementary Table S1, S2).   
 
MVP uses a deep residual neural network (ResNet)18 model. There are two 
layers of residual blocks, consisting of convolutional filters and activation layers, 
and two fully connected layers with sigmoid output (Supplementary Fig. S1). The 
convolutional filters can exploit spatial locality by enforcing a local connectivity 
pattern between “neurons” of adjacent layers and identify nonlinear interactions 
at higher levels of the network. To take advantage of this characteristic, we 
ordered the predictors based on their correlation, as highly correlated predictors 
are clustered together (Supplementary Fig. S2). Notably, some protein-related 
predictors are weakly correlated with previous scores, suggesting that they may 
include additional information and can help improve the overall prediction 
accuracy. For each missense variant, we defined MVP score by the rank 
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percentile of the ResNet’s raw sigmoid output relative to all 76 million possible 
missense variants.  
 
We obtained large curated datasets of pathogenic variants as positives and 
random rare missense variants from population data as negatives for training 
(Supplementary Table S3). Using 6-fold cross-validation on the training set 
(Supplementary Fig. S3), MVP achieved mean area under the curve (AUC) of 
0.99 in constrained genes and 0.97 in non-constrained genes.  
 
To evaluate predictive performance of the MVP and compare it with other 
methods, we evaluated the performance in an independent curated testing 
dataset from VariBench10, 19 (Supplementary Fig. S4). MVP outperformed all 
other scores with an AUC of 0.96 and 0.92 in constrained and non-constrained 
genes, respectively. A few recently published methods (REVEL, M-CAP, VEST3, 
and metaSVM) were among the second-best predictors and achieved AUC 
around 0.9.  
 
Systematic false positives caused by similar factors across training and 
VariBench data sets could inflate the performance in testing. To address this 
issue, we obtained two additional types of data for further evaluation. First, we 
compiled cancer somatic mutation data, including missense mutations located in 
inferred hotspots based on statistical evidence from a recent study20 as positives, 
and randomly selected variants from DiscovEHR21 database as negatives. In this 
dataset, the performance of all methods decreased, but MVP still achieved the 
best performance of AUC of 0.91 and 0.85 in constrained and non-constrained 
genes, respectively (Fig. 1). We observed that methods using HGMD or UniProt 
in training generally have greater performance drop than others (Supplementary 
Table S4, Fig. S5, Supplementary notes). 
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To investigate the contribution of features to MVP predictions, we performed 
cross-one-group-out experiments and used the differences in AUC as an 
estimation of feature contribution (Supplementary Fig. S6). We found that in 
constrained gene, conservation scores and published deleteriousness predictors 
have relatively large contribution, whereas in non-constrained genes, protein 
structure and modification features and published predictors are most important.   
 
Second, to test the utility in real genetic studies, we obtained germline de novo 
missense variants (DNMs) from 2645 cases in a congenital heart disease (CHD) 
study2, 3953 cases in autism spectrum disorder (ASD) studies2, 4, 5, and DNMs 
from 1911 controls (unaffected siblings) in Simons Simplex Collection2, 4, 5. Since 
genes with cancer mutation hotspots are relatively well studied in both 
constrained and non-constrained gene sets, assessment using de novo mutations 
can provide additional insight with less bias (Supplementary Table S5). Because 

A.   Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5)

Figure 1. ROC curves for existing prediction scores and MVP scores of cancer somatic 
mutation data sets. (A) Constrained genes:  evaluation of 699 cancer mutations 
located in hotspots from 150 genes, and 6989 randomly selected mutations from 
DiscovEHR database excluding mutations used in training. (B) Non-constrained 
genes:  evaluation of 177 cancer mutations located in hotspots from 55 genes and 1782 
randomly selected mutations from DiscovEHR database excluding mutations used in 
training. The performance of each method is evaluated by the ROC curve and AUC 
score indicated in parenthesis. Higher AUC score indicates better performance. 
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the true pathogenicity of most of the de novo mutations is unknown, we cannot 
directly evaluate the performance of prediction methods. To address this issue, 
we calculated the enrichment rate of predicted pathogenic DNMs by a method 
with a certain threshold in the cases compared to the controls, and then 
estimated precision and the number of true risk variants (Methods), which is a 
proxy of recall since the total number of true positives in all cases is a (unknown) 
constant independent of methods. We compared the performance of MVP to other 
methods by estimated precision and recall-proxy (Fig. 2). Based on the optimal 
thresholds of MVP in cancer hotspot ROC curves, we used a score of 0.7 in 
constrained genes and 0.75 in non-constrained genes to define pathogenic DNMs 
(Fig. S7). In constrained genes, we observed an enrichment of 2.2 in CHD and an 
enrichment of 1.9 in ASD (Supplementary Table S6, S7), achieving estimated 
precision of 0.55 and 0.47 (Fig. 2A and 2D), respectively. This indicates that 
about 50% of the MVP-predicted pathogenic DNMs contribute to the diseases. In 
non-constrained genes, we observed an enrichment of 1.9 in CHD and 1.4 in ASD 
(Supplementary Table S6, S7), respectively, and 0.32 and 0.28 in estimated 
precision (Fig. 2B and 2E). In all genes combined, MVP achieved an estimated 
precision of 40% for both CHD and ASD (Fig. 2C and 2F). The next best methods 
reached 25% (M-CAP) and 20% (MPC17 and REVEL) given the same recall-proxy 
for CHD and ASD, respectively (Supplementary Table S6, S7). Furthermore, the 
estimated precision of MVP with DNMs at optimal threshold is much closer to 
the expected precision based on ROC of cancer hotspots data than the value from 
VariBench data (Supplementary Figure S8 and Notes), supporting that there is 
less performance inflation in testing using cancer data.   
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Figure 2. Comparison of MVP and previously published methods using de novo 
missense mutations from CHD and ASD studies by precision-recall-proxy curves. 
Numbers on each point indicate rank percentile thresholds, star points indicate 
thresholds recommended by publications. The positions of “All Mis” points are 
estimated from all missense variants in the gene set without using any pathogenicity 
prediction method. The point size is proportional to –log (p-value). P-value is 
calculated by binomial test, only points with p value less than 0.05 are shown. (A, B, 
C) Performance in CHD DNMs in constrained genes, non-constrained genes, and all 
genes, respectively. (D, E, F) Performance in ASD DNMs in constrained genes, non-
constrained genes, and all genes, respectively. 

A. Constrained genes (pLI >= 0.5)         B. Non-constrained genes (pLI < 0.5)     C. All genes

D. Constrained genes (pLI >= 0.5)         E. Non-constrained genes (pLI < 0.5)     F. All genes
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Previous studies have estimated that deleterious de novo coding mutations, 
including loss of function variants and damaging missense variants, have a 
small contribution to isolated CHD2. Here, we used MVP to revisit this question. 
With the definition of damaging DNMs in Jin et al 20172 (based on metaSVM10), 
the estimated contribution of deleterious de novo coding mutations to isolated 
CHD is about 4.3%. With MVP score of 0.75, the estimation is 7.8%(95% CI = 
[6.5%, 9.1%]), nearly doubling the previous estimate (Supplementary Table S8, 
S9).   
 
In summary, we developed a new method, MVP, to predict pathogenicity of 
missense variants. MVP is based on residual neural networks, a supervised deep 
learning approach, and was trained using a large number of curated pathogenic 
variants from clinical databases, separately on constrained genes and non- 
constrained genes. Using cancer mutation hotspots and de novo mutations from 
CHD and ASD, we showed that MVP achieved overall better performance than 
published methods, especially in non-constrained genes. Nevertheless, the 
fraction of pathogenic variants among de novo missense variants in non-
constrained genes is low in both CHD and ASD, leading to relatively poor 
performance by all methods. MVP achieved substantially better performance 
than other methods in these genes, partly attributed to inclusion of protein 
structure-based predictors (Supplementary Figure S6B). Further improvement 
in protein structure prediction and the utilization of protein structure in the 
model 22 would be the key to improve MVP. Finally, all methods are limited by 
the size and the potentially high false positive rate of the training data. 
Systematic efforts such as ClinVar23 will eventually produce better training data 
to improve prediction performance.  
 
ULRs.  

Software and data for implementing MVP are available from 
https://github.com/ShenLab/missense ;  
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Precomputed MVP pathogenicity score for all possible missense variants in 
canonical transcripts on human hg19 can be downloaded from: 
https://www.dropbox.com/s/bueatvqnkvqcb54/MVP_scores_hg19.txt.bz2?dl=0  
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Methods and materials 
 

Training data sets 

 

We compiled 22,390 missense mutations from Human Gene Mutation 
Database Pro version 2013 (HGMD)24 database under the disease 
mutation (DM) category, 12,875 deleterious variants from UniProt10, 25, 
and 4,424 pathogenic variants from ClinVar database23 as true positive 
(TP). In total, there are 32,074 unique positive training variants. The 
negative training sets include 5,190 neutral variants from Uniprot10, 25, 
randomly selected 42,415 rare variants from DiscovEHR database21, and 
39,593 observed human-derived variants8. In total, there are 86,620 
unique negative training variants (Supplementary Table S3). 

 
Testing data sets 

 

We have three categories of testing data sets (Supplementary Table S3).  
The three categories are: (a) Benchmark data sets from VariBench 10, 19 as 
positives and randomly selected rare variants from DiscovEHR database21 
as negatives; (b) cancer somatic missense mutations located in hotspots 
from recent study26 as positives and randomly selected rare variants from 
DiscovEHR database21 as negatives; (c) and de novo missense mutation 
data sets from recent published exome-sequencing studies2, 4, 5. All 
variants in (a) and (b) that overlap with training data sets were excluded 
from testing. 
 
We tested the performance in constrained genes (ExAC pLI ≥ 0.5) and non-
constrained gene (ExAC pLI < 0.5)13 separately.  
 
To focus on rare variants with large effect, we selected ultra-rare variants 
with MAF <10-4 based on gnomAD database to filter variants in both 
training and testing data sets. We applied additional filter of MAF < 10-6 
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for variants in constrained genes in both cases and controls for comparison 
based on a recent study 17, 27.  
 
 
Features used in MVP model 
 
MVP uses many correlated features as predictors (Supplementary Table S2). 
There are six categories: (1) local context: GC content within 10 flanking bases 
on the reference genome; (2) amino acid constraint, including blosum6228 and 
pam25029; (3) conservation scores, including phyloP 20way mammalian and 
100way vertebrate30, GERP++31, SiPhy 29way32, and phastCons 20way 
mammalian and 100way vertebrate33; (4) Protein structure, interaction, and 
modifications, including predicted secondary structures34, number of protein 
interactions from the BioPlex 2.0 Network35, whether the protein is involved in 
complexes formation from CORUM database36, number of high-confidence 
interacting proteins by PrePPI 37, probability of a residue being located the 
interaction interface by PrePPI (based on PPISP, PINUP, PredU), predicted 
accessible surface areas were obtained from dbPTM38, SUMO scores in 7-amino 
acids neighborhood by GPS-SUMO 39, phosphorylation sites predictions within 7 
amino acids neighborhood by GPS3.040, and ubiquitination scores within 14-
amino acids neighborhood by UbiProber 41; (5) Gene mutation intolerance, 
including ExAC metrics13 (pLI, pRec, lof_z) designed to measure gene dosage 
sensitivity or haploinsufficiency, RVIS42, probability of causing diseases under a 
dominant model “domino”43, average selection coefficient of loss of function 
variants in a gene “s_het” 44, and sub-genic regional depletion of missense 
variants 17; (6) Selected deleterious or pathogenicity scores by previous published 
methods obtained through dbNSFPv3.3a45, including Eigen46, VEST39, 
MutationTaster47, PolyPhen2 48, SIFT 49, PROVEAN50, fathmm-MKL 51, 
FATHMM 51, MutationAssessor52, and LRT53. 
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For consistency, we used canonical transcripts to define all possible missense 
variants17. Missing values of protein complex scores are filled with 0 and other 
features are filled with -1. 
 
Since pathogenic variants in constrained genes and non-constrained genes may 
have different mode of action, we trained our models on constrained and non-
constrained variants separately with different sets of features (38 features used 
in constrained model, 21 features used in non-constrained model, Supplementary 
Table S2).   
 

 
Deep learning model 
 
MVP is based on a deep residual neural network model (ResNet)18 for 
predicting pathogenicity using the predictors described above. To preserve 
the structured features in training data, we ordered the features according 
to their correlations (Supplementary Fig. S2).  The model (Supplementary 
Figure S1) takes a vector of the ordered features as input, followed by a 
convolutional layer of 32 kernels with size 3 x 1 and stride of 1, then 
followed by 2 computational residual units, each consisting of 2 
convolutional layers of 32 kernels with size 3 x 1 and a ReLU54 activation 
layer in between. The output layer and input layer of the residual unit is 
summed and passed on to a ReLU activation layer. After the two 
convolutional layers with residual connections, 2 fully connected layers of 
320 x 512 and 512 x1 are used followed by a sigmoid function to generate 
the final output55. 

𝑆𝑖𝑔𝑚𝑜𝑑(𝑥) =
1

1 +	𝑒/0 

(Supplementary Fig. S1).  
 
In training, we randomly partitioned the synthetic training data sets into 
two parts, 80% of the total training sets for training and 20% for 
validation. We trained the model with batch size of 64, used adam56 
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optimizer to perform stochastic gradient descent57 with logarithmic loss 
between the predicted value and true value. After one full training cycle 
on the training set, we applied the latest model weights on validation data 
to compute validation loss.  
 
To avoid over fitting, we used early stopping regularization during 
training. We computed the loss in training data and validation data after 
each training cycle and stopped the process when validation loss is 
comparable to training loss and do not decrease after 5 more training cycle, 
and then we set the model weights using the last set with the lowest 
validation loss. We applied the same model weights on testing data to 
obtain MVP scores for further analysis.  
 
Previously published methods for comparison 
 
We compared MVP score to 13 previously published prediction scores, 
namely, M-CAP11, DANN58, Eigen46, Polyphen248, SIFT49, 
MutationTaster47, FATHMM51, REVEL12, CADD8, metaSVM10, metaLR10, 
VEST39, and MPC17. 

 
Normalization of scores using rank percentile 

 
For each method, we first obtained predicted scores of all possible rare 
missense variants in canonical transcripts, and then sort the scores and 
converted the scores into rank percentile. Higher rank percentile indicates 
more damaging, e.g., a rank score of 0.75 indicates the missense variant is 
more likely to be pathogenic than 75% of all possible missense variants.  

 
ROC curves 

 
We plotted Receiver operating characteristic (ROC) curves and calculated 
Area Under the Curve (AUC) values in training data with 6-fold cross 
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validation (Supplementary Fig. S3), and compared MVP performance with 
other prediction scores in curated benchmark testing datasets 
(Supplementary Fig. S4) and cancer hotspot mutation dataset (Fig. 2). For 
each prediction method, we varied the threshold for calling pathogenic 
mutations in a certain range and computed the corresponding sensitivity 
and specificity based on true positive, false positive, false negative and 
true negative predictions. ROC curve was then generated by plotting 
sensitivity against 1 – specificity at each threshold.  

 
Optimal points based on ROC curves. 
We define the optimal threshold for MVP score as the threshold where the 
corresponding point in ROC curve has the largest distance to the diagonal 
line (Supplementary Figure S7). Based on the true positive rate and false 
positive rate at the optimal points in ROC curves, we can estimate the 
precision and recall in de novo precision-recall-proxy curves 
(Supplementary Figure S8 and Supplementary Notes). 
 
Precision-recall-proxy curves 
 
Since de novo mutation data do not have ground truth, we used the excess of 
predicted pathogenic missense de novo variants in cases compared to controls to 
estimate precision and proxy of recall. For various thresholds of different scores, 
we can calculate the estimated number of risk variants and estimated precision 
based on enrichment of predicted damaging variants in cases compared to 
controls. We adjusted the number of missense de novo mutation in controls by 
the synonymous rate ratio in cases verses controls, assuming the average 
number of synonymous as the data sets were sequenced and processed 
separately) (Table S10), which partly reduced the signal but ensures that our 
results were not inflated by the technical difference in data processing.  
 
Denote the number of cases and controls as N1 and N0, respectively; the number 
of predicted pathogenic de novo missense variants as M1 and M0, in cases and 
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controls, respectively; the rate of synonymous de novo variants as S1 and S0, in 
cases and controls, respectively; technical adjustment rate as 𝛼; and the 
enrichment rate of variants in cases compared to controls as R.  
 

We first estimate 𝛼 by: 

𝛼 =
𝑆2		
𝑆3	

 

Then assuming the rate of synonymous de novo variants in cases and controls 
should be identical if there is no technical batch effect, we use 𝛼 to adjust 
estimated enrichment of pathogenic de novo variants in cases compared to the 
controls by:  

𝑅 =		

𝑀2
𝑁2

𝑀3
𝑁3

× 𝛼
 

Then we can estimate number of true pathogenic variants (𝑀2
8) by: 

𝑀2
8 =

𝑀2(𝑅 − 1)
𝑅  

And then precision by: 

	𝑃𝑟𝑒𝑐𝚤𝑠𝚤𝑜𝑛@ =
𝑀2
8

𝑀2
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