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 2 

Summary 23 

Signaling pathway models are largely based on the compilation of literature data from 24 

heterogeneous cellular contexts. Indeed, de novo reconstruction of signaling interactions from 25 

large-scale molecular profiling is still lagging, compared to similar efforts in transcriptional and 26 

protein-protein interaction networks. To address this challenge, we introduce a novel algorithm 27 

for the systematic inference of protein kinase pathways, and applied it to published mass 28 

spectrometry-based phosphotyrosine profile data from 250 lung adenocarcinoma (LUAD) 29 

samples. The resulting network includes 43 TKs and 415 inferred, LUAD-specific substrates, 30 

which were validated at >60% accuracy by SILAC assays, including “novel’ substrates of the 31 

EGFR and c-MET TKs, which play a critical oncogenic role in lung cancer. This systematic, data-32 

driven model supported drug response prediction on an individual sample basis, including 33 

accurate prediction and validation of synergistic EGFR and c-MET inhibitor activity in cells lacking 34 

mutations in either gene, thus contributing to current precision oncology efforts.  35 

 36 
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 3 

Introduction  39 

Lung adenocarcinoma (LUAD) is a leading cause of cancer related deaths in United States, 40 

representing 40% of 225,500 new lung cancer cases every year, and has a 5-year survival rate 41 

of only 16 % (1). Excluding immunotherapeutic agents, which have recently shown significant 42 

success in a relatively small subset of patients (2), the most effective targeted therapies for this 43 

diseases were designed to inhibit tyrosine kinase proteins harboring genetic alterations that 44 

induce aberrant activation of downstream pathways (3-7). These the most frequent such 45 

actionable alterations include EGFR mutations and ALK-EML4 fusion events, in ~15% and ~3-46 

7% of LUAD patients, respectively (8, 9). Yet, while targeted therapy is initially effective in a 47 

significant fraction of tumors harboring these genetic alterations, the vast majority of treated 48 

patients will either fail to respond or will develop resistance to mono-therapy (10, 11). In addition, 49 

most patient lack actionable alterations altogether. This suggests that novel approaches are 50 

critically needed.   51 

A possible alternative to minimize emergence of resistance is combination therapy, a strategy 52 

that has been shown to be effective in many metastatic tumors, such as breast cancer and acute 53 

myeloid leukemia (12-14). However, systematic identification of effective drug combinations on a 54 

genetic alteration basis is difficult, because the number of patients presenting multiple actionable 55 

events is extremely low. As a result, combination therapy is generally hypothesized and tested on 56 

an empirical basis or based on elucidation of complex mechanisms of tumor cell adaptation. In 57 

addition, accurate prediction of response to available mono-therapy – including to EGFR inhibitors 58 

– in patients lacking any genetic alteration represents an equally relevant challenge, especially 59 

since a small fraction of EGFRWT patients have been shown to respond to Afatinib, even though 60 

a predictive biomarker is not available. To address these limitations, we and other have proposed 61 

that rational design of combination therapy and the identification of critical targetable 62 
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dependencies may require a more mechanistic and tumor-context-specific understanding of the 63 

molecular interactions that underlie their potential synergistic activity, starting with tyrosine 64 

kinases, which represent a critical class of pharmacological targets in cancer (15). Such an 65 

approach requires methodologies for the accurate and systematic elucidation of tumor-specific 66 

signaling transduction pathways. 67 

Dissection of signal transduction networks represents a complex endeavor, requiring elucidation 68 

of hundreds of thousands of tissue-specific molecular interactions that mediate the post-69 

translational modification of protein substrates. In vitro approaches generally fail to capture the 70 

tissue-specific nature of these interactions, thus providing “average” signal transduction pathways 71 

that are both incomplete and inaccurate. In addition, experimental approaches that have been 72 

successful in accelerating the analysis of molecular interactions in transcriptional regulation and 73 

protein-protein interaction in stable-complexes, such as those based on co-expression or yeast-74 

2-hybrid assays, do not easily translate to elucidating signaling interactions. Similarly, approaches 75 

based on the use of phospho-specific antibodies, while elegant and effective, are limited to only 76 

a handful of proteins. Computationally, compared to the many algorithms that have been 77 

developed for the reverse engineering of transcriptional and protein-complex interactions (16, 17), 78 

only a handful of experimentally validated algorithms are available for the dissection of signaling 79 

networks, none of which works at the proteome-wide level or is tumor-context specific (16, 18, 80 

19).  81 

Recent availability of proteome-wide molecular profile data, characterizing the abundance of 82 

phospho-tyrosine-enriched peptides by liquid chromatography coupled to tandem mass 83 

spectrometry (LC-MS/MS), suggests that additional methodologies may be developed to extend 84 

approaches that have been successfully applied to the dissection of transcriptional networks from 85 

gene expression profiling. In this manuscript, we propose extending the Algorithm for the 86 

Reconstruction of Accurate Cellular Networks (ARACNe) (20) for the reverse engineering of 87 
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signal transduction networks from large-scale phosphoproteomic profiles. The new method, 88 

pARACNe, addresses critical issues that prevented the direct application of the original ARACNe 89 

algorithm on phosphoproteomic profile data. Briefly, the new algorithm addresses critical 90 

computational challenges presented by LC-MS/MS and spectral counting data, while 91 

incorporating enzymatic signaling characteristics into the algorithm design. In particular, 92 

pARACNE is designed to handle three critical issues resulting from the use of LC-MS/MS assays, 93 

including the highly sparse nature of phosphopeptide abundance data, the large amount of noise 94 

and missing data, and the degenerate peptides-to-protein mapping. 95 

We applied pARACNE to the analysis of previously published, genome-wide phosphoproteomic 96 

data from 245 lung adenocarcinoma (LUAD) samples, including 151 fresh-frozen biopsies, 46 cell 97 

lines, as well as 48 normal lung tissues. The resulting network comprised 46 tyrosine kinases 98 

(TK) densely connected with 415 candidate substrates (including 377 proteins lacking any TK 99 

activity), representing the first genome-wide, tumor-context-specific model for a TK signal 100 

transduction network, capturing both protein-specific and phospho-site specific events. We 101 

validated substrate predictions for two “hubs,” whose activity may play a key role in determining 102 

sensitivity to Erlotinib and Crizotinib, two FDA-approved drugs for LUAD, including the EGFR and 103 

c-MET tyrosine kinases by independent SILAC assays and database analysis, with >60% 104 

accuracy. Of particular note, the inferred TK-substrate network provided unique information about 105 

tyrosine kinase auto-phosphorylation events, either direct (cis) or via a second kinase (trans). 106 

Analysis of the resulting TK-network – by extending the VIPER (Virtual Proteomics by Enriched 107 

Regulon analysis) algorithm (21), an established method for the inference of Master Regulator 108 

proteins – recapitulated established genetic determinants of LUAD and was effective in predicting 109 

sensitivity to Erlotinib and Crizotinib combination therapy. Predicted sensitivities were validated 110 

in an independent set of LUAD cell lines, the majority of which harbored no genetic alterations in 111 

the corresponding genes. Furthermore, predictions based on the analysis of the corresponding 112 
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patient cohort were strongly supported by genomic information, suggesting potential value in 113 

using these analyses for the identification of effective combination therapies in precision oncology.  114 

 115 

Results 116 

Overview of the pARACNe Algorithm 117 

Enzymatic activity of tyrosine kinase (TK) proteins – as assessed by the ability to phosphorylate 118 

their downstream substrates – is effectively determined by their phosphorylated isoform 119 

abundance (Fig. 1A, B). Therefore, we reasoned that computational inference of TK-substrate 120 

interactions (TK→S) could be effectively performed by measuring dependencies between their 121 

respective phospho-states by mutual information analysis (22) over a large sample compendium 122 

(Fig. 1C). Unfortunately, due to signal transduction cascade complexity and pathway cross-talk, 123 

such dependencies can manifest between protein pairs that are not involved in direct TK→S 124 

interactions. The ARACNe algorithm – previously designed for the reverse engineering of 125 

transcriptional networks – effectively addresses this problem by leveraging the Data Processing 126 

Inequality (23). This is a critical property of the mutual information that effectively allows 127 

disambiguating between direct and indirect interactions by assessing whether information transfer 128 

on any candidate direct interaction (e.g., TK1→S) is greater than transfer on every other indirect 129 

path (e.g., TK1→TK2→S). ARACNe has been highly successful in the experimentally validated 130 

dissection of transcriptional networks via analysis of large gene expression profile compendia. 131 

ARACNe-inferred targets of transcription factors were validated in multiple cellular contexts, with 132 

an accuracy of 70% to 80% (20, 24-27).  133 

However, ARACNe relies on molecular profile data that is both continuous and non-sparse, 134 

properties that are not always provided by quantitative proteomic data sets, which can be 135 
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generated by a variety of methods. Those based on LC-MS/MS represent the most popular 136 

approaches (28), but different implementations have specific performance profiles in terms of 137 

analyte throughput, consistency of measurement of peptides across samples and linear dynamic 138 

range (29). Depending on the data acquisition method, one or both of these assumptions of 139 

ARACNe are violated in proteome-wide datasets generated by the most popular methods based 140 

on data-dependent acquisition. Particularly when employing quantification by spectral counting, 141 

as is typically conducted for global protein-protein interaction studies (30, 31), phosphoproteomic 142 

data is both discrete (i.e., generally represented by spectral counts) and very sparse, with a 143 

majority of peptides having zero spectral counts and presenting a significantly skewed distribution 144 

for low-abundance peptides. 145 

 146 

To address these limitations, we developed a phospho-proteomic specific algorithm, pARACNe 147 

(phospho-ARACNe) (Fig. 1C), specifically designed to measure phospho-state dependencies 148 

between TKs and their candidate substrates from large-scale LC-MS/MS phosphoproteomic 149 

profiles. pARACNe thus extends the original ARACNe framework to allow systematic inference 150 

of TK→S interactions. Specifically, to handle the highly discrete nature of the data, we replaced 151 

the kernel-density and adaptive partitioning based mutual information estimators in the original 152 

algorithm with a bin-count based method (Fig. 1C4), using gold standard data to select the most 153 

effective number of bins [12] (see Methods). Furthermore, to deal with the skewed spectral count 154 

distribution, we introduce an iterative quantile discretization method, where samples are binned 155 

together, based on their spectral counts, to produce a distribution as close to uniform as possible 156 

(Fig. 1C3, Methods). 157 

 158 
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pARACNe-inferred LUAD-specific TK-phosphorylation Network  159 

We used pARACNe to reconstruct a LUAD-specific TK-signaling network, by analyzing 160 

phosphopeptide profiles obtained from 245 LUAD samples from Guo et al. (32). These data 161 

represent the abundance of peptides containing at least one phospho-tyrosine, as obtained by 162 

phosphoproteomic analysis of 46 LUAD cell lines, 151 LUAD tumors, and 48 adjacent normal 163 

samples. LC-MS/MS profiling produced spectral counts for 3,920 phospho-tyrosine containing 164 

peptides mapping to ~2,600 different proteins. Based on these data, pARACNE identified 2,611 165 

candidate phospho-peptide/phospho-peptide dependencies, which could be further mapped to 166 

2,064 unique TK→S interactions (Table S1, S2). These represent interactions between 46 unique 167 

TKs and their candidate substrates. These include 174   TK1→TK2 interactions between two TKs 168 

(Fig. 2A), representing a statistically significant bias toward TK-TK interactions in the network 169 

(p = 10-62). This suggests that, within the complete TK signaling network, TKs themselves may 170 

form a more densely inter-connected subnetwork than previously assessed, providing potentially 171 

valuable novel information about adaptive response, pathway cross-talk, and auto-regulatory 172 

loops.  173 

Such highly interconnected structure provides potential functional advantage compared to less 174 

interconnected (i.e., “flat”) architectures, including the ability to provide more fine-grain response 175 

to a highly heterogeneous variety of exogenous signals and conditions, the ability to provide rapid 176 

adaptive response to changing stimuli, and the ability to preserve cell state via autoregulatory 177 

feedback. Consistent with the underlying biology, and in contrast to transcriptional networks, the 178 

vast majority of pARACNe-inferred interactions have a positive Spearman correlation, with higher 179 

counts of TK-mapped phosphopeptides corresponding to higher counts of candidate substrate-180 

mapped ones. This is consistent with the fact that TKs only phosphorylate their substrates, thus 181 

inducing positive phospho-state correlation. Only a negligible number of inferred interactions 182 

(0.5%) were associated with a negative Spearman correlation (N = 11, p ≤ 0.05). These may 183 
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represent either indirect interactions where the TK activates a substrate-specific phosphatase or 184 

direct interactions where phosphorylation of one phosphosite may prevent phosphorylation of 185 

another site on the same protein. 186 

 187 

LUAD Network Accuracy and Sensitivity Analysis 188 

To estimate the accuracy of the inferred TK-signaling network, we investigated the substrates of 189 

two TK-proteins, EGFR and c-MET, representing high-affinity binding targets of existing FDA-190 

approved TK inhibitors for LUAD. Specifically, we compared their pARACNe-inferred substrates 191 

to those reported in the phosphoDB database (33) and those supported by experimental 192 

evidence, based on previously published SILAC assays, following cell line treatment with 193 

associated, selective TK inhibitors. pARACNe inferred 123 EGFR substrates (Fig. 2B). Of these, 194 

5 (blue and cyan) were included as high-confidence EGFR substrates in phosphoDB, out of 13 in 195 

total (38%), including the established EGFR auto-phosphorylation site. Moreover, 50 additional 196 

proteins (45%, green) showed significant decrease (at least 2 fold) in the abundance of their 197 

phosphorylated isoforms in SILAC assays (32), following treatment of H3255 cells with the EGFR 198 

inhibitor Gefitinib. Similarly, pARACNe predicted 179 c-MET substrates (Fig. 2C). Notably, both 199 

of the established substrates reported in PhosphoDB were identified by pARACNE (100%, blue). 200 

Moreover, 126 additional proteins (71.5%, blue) showed significant decrease in the abundance 201 

of their phosphorylated isoforms in SILAC assays(32), following treatment of MKN45 cells with 202 

the first-generation c-MET-specific inhibitor Su11274.  203 

We used MKN45 to assess overall prediction accuracy, even though it represents a gastric cancer 204 

cell line, because signaling networks should are much more conserved across tissue contexts 205 

than transcriptional ones. Indeed, while lineage-specific chromatin state represents a major 206 

determinant of transcriptional regulation, it only affects signal transduction in terms of overall 207 
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protein availability. As a result, it is reasonable to expect that an even greater overlap of inferred 208 

vs. SILAC positive substrates may be achieved in native LUAD cells.  209 

 210 

Taken together, these data suggest that pARACNe can identify a much larger subset of candidate 211 

substrates, while both identifying a significant proportion of established substrates (46% on 212 

average, based on phosphoDB) and maintaining high accuracy (~60% on average, by SILAC 213 

assays). This also suggest that, similar to transcription factor targets reported in the literature, TK 214 

substrates are still poorly characterized in existing repositories, even for highly relevant and 215 

exceedingly well-studied kinases such as EGFR and c-MET. As a result, pARACNe could provide 216 

significant novel hypotheses for TK→S interactions that can be validated as required. We should 217 

also note that the reported accuracy for pARACNe is estimated using SILAC data on a single cell 218 

line. SILAC assays have significant false negatives and it would be reasonable to expect that, 219 

once tested in additional cell lines, the accuracy of pARACNe could further increase. As a further 220 

performance benchmark, we used the same SILAC benchmark to test predictions by NetworkIN, 221 

a reverse engineering method based on protein sequence motif analysis and protein association 222 

networks (16). The analysis found almost no consensus with SILAC assays, with only one out of 223 

33 NetworkIN-predicted EGFR substrate identified as significantly dephosphorylated following 224 

treatment with TK-specific inhibitors. 225 

 226 

Systematic, Network-based Inference of Pharmacological Dependencies 227 

Once an accurate model of signal transduction in LUAD cells was established by pARACNe 228 

analysis, we interrogated the corresponding TK→S network using phosphoproteomic signatures 229 

from 46 LUAD cell lines to identify key dependencies for experimental validation. For this purpose, 230 

we extended the VIPER algorithm (Virtual Proteomics by Enriched Regulon analysis)(21), which 231 
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was originally developed to identify the MR proteins that mechanistically regulate the 232 

transcriptional state of a tumor by assessing the enrichment of their transcriptional targets in 233 

differentially expressed genes in the tumor signature. VIPER and its predecessor MARINa 234 

(Master Regulator Inference algorithm) (34) have been instrumental in inferring MR proteins 235 

representing key functional determinants of tumor-related phenotypes in many cancer types, from 236 

glioblastoma (26, 27, 35), neuroblastoma (34), lymphoma (36, 37), and leukemia (38) to prostate 237 

(39-41) and breast adenocarcinoma(42-44), among others. We thus reasoned that VIPER could 238 

be modified to identify master regulator TKs, most likely to mechanistically regulate the differential 239 

phosphorylation pattern observed in a specific tumor sample (Fig. 3A). A specific additional value 240 

of the algorithm is that, as previously shown {Lefebvre, 2010 #1763}{Aytes, 2014 #2520}{Carro, 241 

2010 #4021}, it could not only identify MR TK proteins, representing individual, pharmacologically 242 

accessible dependencies of the tumor, but also TKs representing potential synergistic MR-pair as 243 

candidate dependencies for combination therapy.  244 

VIPER can be easily modified to analyze phosphoproteomic signatures (pVIPER). Specifically, 245 

rather than assessing the enrichment of a protein’s transcriptional targets (regulon) in differentially 246 

expressed genes, pVIPER is designed to measure the enrichment of a TK’s substrates (signalon) 247 

in differentially phosphorylated proteins. Since inferred TK-substrate interactions are virtually all 248 

positive, this further increases the accuracy of the algorithm by supporting use of a single-tail 249 

enrichment analysis as opposed to the three-tail analysis of the original implementation. We first 250 

performed pVIPER analysis at the individual phosphopeptide level, rather than by averaging 251 

phosphopeptide state on a whole protein level. We then combined the result of the analysis across 252 

all phosphopeptides mapping to the same protein. Consistent with VIPER’s experimentally 253 

validated ability to identify synergistic master regulators proteins by transcriptional network 254 

analysis, pVIPER inferred several candidate synergistic TK interactions based on the statistical 255 

significance of the signature-enrichment of substrates shared by both TKs compared to that of 256 
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substrates uniquely mapped to either one or the other TK (see Method section). Systematic 257 

VIPER analysis of phosphoproteomic profiles from 46 LUAD cell lines generated between 2 and 258 

13 master regulator TKs or synergistic TK-pairs, as candidate pharmacologically actionable 259 

dependencies, for each cell line, thus generating a plausible number of hypothesis for each cell 260 

line (Fig. 3B and Fig. 3C).  261 

 262 

pVIPER Identifies LUAD-specific Dependencies 263 

pVIPER analysis inferred several TK proteins as highly conserved individual dependencies across 264 

multiple cell lines, including the Ephrin type-A receptor 2 (EPHA2), epidermal growth factor 265 

receptor (EGFR), c-Met proto-oncogene (MET), and HER2 receptor tyrosine kinase 2 (ERBB2), 266 

suggesting a critical role of these proteins in the maintenance of LUAD cell line state. This is also 267 

in agreement with the functional role of these genes and the use of inhibitors of these kinases 268 

across a large panel of patients in multiple cancer types (45-49).  269 

In contrast to these established LUAD cell line dependencies, we also identified several TKs as 270 

dependencies of specific cell lines. This can either be the result of associated genetic or 271 

epigenetic alterations in these cell lines or the result of field effects, where multiple genetic 272 

alterations or alterations in upstream pathway contribute to the cell line dependency on a specific 273 

TK activity. For instance, we identified ALK (Anaplastic Lymphoma Receptor Tyrosine Kinase) to 274 

be addiction point only in H2228 cell line. ALK is a conserved trans-membrane receptor tyrosine 275 

kinase (RTK) protein in the insulin-receptor super family. Chromosomal alterations involving ALK 276 

translocations and fusion events have been identified in several cancer types including LUAD (50, 277 

51), diffuse large B-cell lymphomas (52), neuroblastoma (53), and inflammatory myofibroblastic 278 

tumors (54), among others. Additionally, ALK fusion events with other genes, including EML4 279 

(Echinoderm Microtubule-associated protein Like 4) in LUAD lead to aberrant protein activity 280 
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eliciting “oncogene addiction” (51). Presence of ALK-EML4 fusion transcripts, in ~3–7% of LUAD 281 

patients (55-57), is a strong predictor of response to ALK inhibitors, such as Crizotinib, among 282 

others (58, 59). Interestingly, among all available LUAD cell lines for which a phosphoproteomic 283 

profile was available, H2228 was the only one with an established ALK-EML4 fusion event and 284 

with established sensitivity to ALK inhibitor (60, 61). This further reflects the specificity of our 285 

analysis as this was the only cell line predicted to depend on ALK activity. Interestingly, we 286 

identified 4 additional H2228 dependencies, namely EGFR, Epha2, c-MET, and PTK2. H2228 287 

sensitivity to EGFR inhibitors, in combination with ALK inhibitors, was already established (61).  288 

 289 

EGFR and c-MET are Predicted Dependencies in Multiple LUAD Cell Lines 290 

As discussed, pVIPER analysis revealed several TK-pairs as candidate synergistic dependencies 291 

across several cell lines, such as Epha2/c-MET, EGFR/PTK2, EGFR/Epha2, Epha2/c-MET, and 292 

EGFR/c-MET. Among these the EGFR/c-MET pair emerged as the most conserved synergistic 293 

TK-pair across the available cell lines. In addition, EGFR and c-MET were also identified as 294 

candidate TK MRs in several of these cell lines, suggesting either a complementary or synergistic 295 

role for these proteins and a potential therapeutic opportunity for combination therapy in LUAD 296 

(62, 63).  297 

 298 

To validate pVIPER-predicted, cell line specific EGFR/c-MET synthetic lethality, we selected a 299 

panel of 14 cell lines, 11 of which were predicted to be synergistically dependent on EGFR/c-MET 300 

(H226, H2122, H1666, H2172, Cal-12T, H2023, H1568, Calu-3, H1650, HCC78, and A549), as 301 

well as 3 negative controls with no predicted synergistic or individual dependencies on the two 302 

TKs (H2170, H460, and H520). To measure sensitivity to these agents, we used two different and 303 

complementary assays, including: (a) colony formation assay to assess long term sensitivity (Fig. 304 

4A and Methods) and (b) 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTS) 305 

assay for short term sensitivity analysis (Fig. 5A, Table S3 and Methods). For colony formation 306 
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assays, cells were treated with either an EGFR inhibitor (Erlotinib, 1uM) or a c-MET/ALK inhibitor 307 

(Crizotinib, 0.1uM), either individually or in combination (see Methods). To evaluate synergistic 308 

dependency on EGFR/c-MET we used Excess Over Bliss (64), which measures the difference 309 

between the observed effect on colony formation and the effect expected from a purely additive 310 

model. For MTT assay, first, cells were treated with EGFR inhibitor (Erlotinib) or MET inhibitor 311 

(Crizotinib) individually at various concentrations to identify IC50 (concentration resulting in 50% 312 

cell death). Next, cells were treated with 1 uM of Erlotinib and varying concentrations of Crizotinib 313 

to identify combinations resulting in IC50 and used  the combination index (CI) statistic (65) to 314 

measure interaction between the two drugs.  315 

 316 

Across all 11 cell lines tested in colony formation assay, 8 showed significant sensitivity to either 317 

individual inhibitors (H226E,C, H2122E, H1666E,C, Cal-12TE, Calu-3E,C, H1650E) or synergistic 318 

sensitivity to the combination (HCC78E+C and H2023 E+C) (Fig. 4B-C). Surprisingly, all of these cell 319 

lines were EGFRWT, ALKWT, and c-METWT, except for H1650, which was EGFRMut. Thus, based 320 

on standard of care criteria, 7 out of 8 cell lines would not have been considered as sensitive to 321 

either EGFR or ALK/c-MET inhibitors. Several cell lines presented striking sensitivity to either one 322 

(H2122E, Cal-12TE, H1650E) or both inhibitors (H226E,C, H1666E,C, Calu-3E,C) in isolation, thus 323 

making the assessment of synergistic drug sensitivity difficult. In addition, three EGFRWT cell lines 324 

harboring BRAF (Cal-12T and H1666) or KRAS (H2122) mutations were also highly sensitive to 325 

Erlotinib as a single agent, as predicted by pVIPER, despite the fact that KRAS pathway mutations 326 

are mutually exclusive with EGFR mutations and predictive of Erlotinib resistance (Fig. 4C). 327 

Finally, none of these cell lines was predicted to be sensitive to ALK inhibitors, suggesting that 328 

Crizotinib sensitivity is mediated by c-MET specific dependencies. Of the negative controls, only 329 

one (H2170) showed high sensitivity to Erlotinib. Taken together, 8/11 cell lines (73%) predicted 330 

as sensitive to the inhibitors were validated long term colony formation assays, while only 1/3 331 

negative controls showed sensitivity to these agents (33%).  332 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/289603doi: bioRxiv preprint 

https://doi.org/10.1101/289603
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 333 

To evaluate the short-term interaction between EGFR and c-MET, we performed MTT assay 334 

across 11 cell lines (HCC78, H2023, H1650, Calu-3, H2172, H2122, H1568, A549, H1666, H520 335 

and H2170) including 2 negative control cell lines (H520 and H2170). Similar to colony formation 336 

assay, we found synergistic sensitivity to EGFR and c-MET inhibitors in 6/9 cell lines (67%), with 337 

5 cell lines showing strong synergy (CI ≤ 0.8) (Fig. 5B-C) and 1 borderline synergy (CI = 0.82), 338 

showing the consistency between two assays. However, for two cell lines, H1666 and H2170 (a 339 

negative control), results were inconsistent between long term colony formation and MTT assays. 340 

For both H1666 and H2170 cell lines, colony formation and MTT assay to showed sensitivity to 341 

Erlotinib alone, where colony formation assay has complete abrogation of colonies at 1 μM of 342 

Erlotinib, and later had IC50 =1.25 μM and 3.7 μM for H1666 and H2170 respectively. However, 343 

in combination therapy, MTT assay showed antagonism (CI >1), despite the fact that colony 344 

formation assay still showed complete abrogation which could be associated to the accumulation 345 

of new mutations in these cell lines. However, this is just hypotheses and needs to be verified by 346 

further experiments such as sequencing of these cell lines pre-and post-treatment.  347 

 348 

Phosphosite-specific Phosphorylation Predicts EGFR/c-MET Inhibitor Synergy.  349 

In previous section, we assessed the pVIPER predictions after consolidating the result at protein 350 

level. Following the results from MTT and colony formation assays, we reanalyzed the pVIPER 351 

predictions at the phosphopeptide level. Interestingly, this revealed that whenever synergistic 352 

EGFR/c-MET dependencies were predicted from phosphosite EGFR1197 and phosphosites other 353 

than c-MET1003 (H1666, Cal-12T, H1650), cell lines responded to Erlotinib in isolation, while when 354 

predictions were based on phosphosites EGFR1197 and c-MET1003 (HCC78, H2023, and Calu-3), 355 

cells exhibited bona fide synergistic sensitivity to the two inhibitors, with the only possible 356 

exception of Calu-3, which showed synergistic sensitivity in MTT assays and additive sensitivity 357 

to both inhibitors in colony formation assays. Conversely, when predictions were not based on 358 
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either phosphotyrosine, cells exhibited no sensitivity to the individual inhibitors or the combination 359 

(H2172, H226, A549, H460, H520, H1568). Thus, predictions based on these two phosphosites 360 

produced no false positives (6 out of 6 predicted and validated as non-sensitive) and only 2 false 361 

negatives (H2170 and H2122), resulting in an error rate of only 2 out of 14 cell lines (14%, p = 362 

0.0093 using fisher exact test).  363 

  364 

This finding is in agreement with the established role of EGFR1197 as a predictor of EGFR inhibitor 365 

sensitivity (66). Intriguingly, when sensitivity was predicted using phosphosites other than 366 

EGFR1197 and c-MET1003, cell lines did not respond to the inhibitors, either individually or in 367 

combination. For these two peptides, we found their common substrates to be hyper 368 

phosphorylated in the sensitive cell lines (Fig. 6A) compared to the specific substrates of each of 369 

them, whereas cell line responding only to EGFR inhibitors showed more hyper phosphorylation 370 

of EGFR only substrates (Fig. 6B). Cell lines resistant to both EGFR and c-MET inhibitors either 371 

showed no change in the phosphorylation status or hypo-phosphorylation compared to the normal 372 

samples (Fig. 6C). Hence, either the common substrates of EGFR and c-MET, or the 373 

phosphorylation status of EGFR1197 and c-MET1003 could potentially be used as biomarkers for 374 

predicting therapy with the dual inhibitors. However, this conclusion is based on a very limited 375 

number of observations and lacks the statistical power. This finding needs a re-376 

evaluation/validation using larger cohort of samples to establish an appropriate biomarker for 377 

combination therapy.  378 

 379 

Systematic Inference of Patient-specific Dependencies 380 

Similar to cell lines, when applied on patient data (32), pVIPER identified EGFR as one of the 381 

most common addiction points (Fig. 6). We inferred EGFR dependency in 12 patients. Of these, 382 

5 harbored EGFR mutations, while the remaining 7 patients had not been tested for this mutation, 383 

showing a high consistency between our predictions and the genetic predisposition for sensitivity 384 
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to EGFR inhibitors. In the entire cohort, there were only 3 patients with EGFR mutations that were 385 

not identified as EGFR dependent by pVIPER, resulting in an overall sensitivity of 62.5% (5/8). 386 

However, it is well known that >50% of patients harboring EGFR mutations do not respond to 387 

Erlotinib, suggesting that these may not be false negatives but rather patients with low activation 388 

of downstream EGFR pathways, despite their EGFRMut state.  Similarly, our analysis identified 389 

candidate ALK dependencies in 4 patients. Of these one had an established TFG-ALK fusion, 390 

whereas the others had not been tested for ALK fusion events. 391 

Across all patient samples, we observed Discoidin Domain Receptor-1 (DDR1) to be the most 392 

frequent addiction point, which was not predicted for any of the 46 cell lines. One reason for the 393 

difference is that DDR1 is collagen dependent and there may be differences in the 3D structure 394 

of the tumor and the cell lines growing on the plate. An independent study (67) in a cohort of 83 395 

lung cancer specimens found that silencing of DDR1 in these samples leads to the hampering of 396 

cell survival, reduced invasiveness in collagen matrices, increased apoptosis in basal condition 397 

and decreased metastatic activity in model of tumor metastasis to bone, signifying it as a potential 398 

novel therapeutic target.  399 

Discussion 400 

In this paper, we developed pARACNe to infer Tyrosine Kinase (TK) signaling network using 401 

published genome-wide phosphoproteomic data from lung cancer. The network prediction was 402 

validated using SILAC experiments, with high accuracy. Interrogation of the predicted TK-403 

substrate network generated biologically meaningful hypotheses, followed by experimental 404 

validations illustrating the effectiveness of predicted kinase inhibitor combination, EGFR and c-405 

MET combination inhibitors, in treating lung cancer cell lines. Furthermore, Master Regulator 406 

Analysis using patient proteomics data provides implications for using targeted agent 407 

combinations to treat patients based on their proteomic profile data.   408 
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 409 

Notably, pARACNe is significant and powerful as of its genome-wide scale and context-specificity 410 

in discovering global signaling cascading relationships, which were missing by previous methods. 411 

For example, methods proposed by Linding et al. (16) combine motif-based phospho-site 412 

predictions with information of physical association, co-occurrence, and co-expression to identify 413 

substrates with high specificity and accuracy, but with low coverage and lack of contextual 414 

specificity. Bender et al (17) used reverse phase protein assay data after various stimulations to 415 

cells and inferred signaling network using hidden Markov models and genetic algorithms. Even 416 

though the resulting networks are context specific, they lack genomic-scale coverage. There have 417 

been methods which used existing large-scale protein networks and prune them using 418 

transcriptomic information to identify signaling pathways (68-70). In addition, attempts have been 419 

made to reconstruct signaling network using gene expression data (71, 72). However, as signaling 420 

complexity lies mostly in upper level of cellular processes, inferring the cascades from 421 

downstream gene expression fails to capture all the dynamics. Also, PrePPI proposed by Zhang 422 

et al. (73) used protein structure-based methods to infer global protein-protein interaction, but this 423 

approach fails to address phosphorylation context specificity. Innovative uses of multiplex and 424 

microarray-based approaches, where multiple antibodies can be used to probe an ensemble of 425 

phosphoproteins, are finally becoming sufficiently mature to allow characterization of small 426 

pathways. Yet, these methods are still far from providing an unbiased, genome-wide view of 427 

signal-transduction processes and continue to be completely dependent on antibody specificity 428 

and availability. Similarly, assays developed specifically to monitor phosphorylation pathways, 429 

such as Stable Isotope Labeling with Amino acids in Cell culture (SILAC), provides a simple and 430 

straightforward approach to detect differential protein abundance. Coupled with phosphorylation 431 

enriched assays, it can provide high quality quantification for post-translation phosphorylation 432 

changes in cell lines. However, these methods are 1) laborious and costly; 2) can only be 433 
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performed to dissect the substrates of a single enzyme at a time and 3) do not differentiate 434 

between direct and indirect targets. 435 

 436 

To be noted, as the LC-MS/MS experiments used here was generated based on Tyrosine-kinase 437 

enrichment, which is only about ~2% of whole phosphoproteome. pARACNe is shown only on 438 

TK-substrates network. The current methodology could be extended to whole phosphoproteomic 439 

data based signaling network reconstruction where the data is available.  In addition to label free 440 

based LC-MS/MS proteomics data used in this work, label based approaches, such as ITRAQ or 441 

TMT, could generate higher throughput whole proteomic profiles which might require future 442 

redesign of ARACNe to incorporate both kinases and phosphatases in regulating their 443 

downstream substrates. It is reasonable to expect that a version of ARACNe developed 444 

specifically to dissect signaling networks should work at least as well as its transcriptional 445 

counterpart. Since the relationship between the mRNA abundance of a gene encoding a 446 

transcription factor (TF) and the activity of the corresponding protein is much looser than that 447 

between the abundance of a phospho-isoform of a kinase and its enzymatic activity. 448 

 449 

 450 

Even though research has attempted to identify addiction points based on gene expression data 451 

(74), predictions based on phosphoproteomic data appear superior in a way that they can directly 452 

reflect contextual specific signaling activity and are able to be directly targeted by kinase 453 

inhibitors. It is important to note that clinically, only patients with base-pair deletion at exon 19 454 

(del746_A750) or a point mutation at exon 21 mutation (L858R) in EGFR shows sensitivity to 455 

EGFR inhibitor such as Cedirinib or Erlotinib (75). 456 

 457 
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Figure Legends 665 

Figure 1. Framework for the reverse engineering of TK signaling networks from 666 
phosphoproteomic profiles.  667 

(A) Schematic diagram of a TK→S interaction. The non-phosphorylated kinase is inactive in terms 668 

of phosphorylating a substrate, while the active isoform successfully phosphorylates the 669 

substrate. (B) Schematic diagram showing the correlation between TK phosphorylation and that 670 

of its potential substrates. The first two rows in the heatmap show proteins representing candidate 671 

TK substrates (C) Illustration of the pARACNe framework including 6 steps. Step-1 depicts 672 

peptides collection from primary lung cancer tissue and cell lines for whole phosphrtyrosine 673 

proteomics quantification. Step-2 depicts inferences of TKàS interactions using Mutual 674 

Information by Step-3  Naïve-Bayes estimator and Step-4 of the iterative quantile discretization 675 

methods. Step-5 and 6 depict network pruning and bootstrapping to construct final network. (C). 676 

Workflow of pARACNe from LC-MS/MS data normalization, IQD process, MI calculation, DPI 677 

process, bootstrapping to network consolidation. 678 

Figure 2. Predicted TK-TK network and validation of EGFR and c-MET prediction  679 

(A) pARACNe-inferred densely inter-connected TK-TK network, with red nodes representing 680 

candidate TKs involved in auto-phosphorylation, where the phospho-state of a tyrosine is 681 

correlated with the phospho-state of a different tyrosine on the same TK protein. (B) pARACNe-682 

inferred EGFR and (C) c-MET substrate overlap with SILAC-based and Database reported 683 

substrates, respectively.  684 

 685 

Figure 3.  Inference of Master Regulator and combination  686 

(A). Schema of Master Regulator analysis in lung cancer using pVIPER. Prioritized Master 687 

Regulators (B) and Prioritized Master Regulator Pairs (C) as significantly activated (red circle) or 688 
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de-activated (blue) in different lung cancer cell lines (column). Red color represents an enrichment 689 

of substrates hyper-phosphorylation by a Master Regulator or Master Regulator Pairs. Blue color 690 

represents that of hypo-phosphorylation. 691 

Figure 4. Experimental validation of EGFR and c-MET combination by colony 692 
formation assay  693 

(A) Colony formation assay schema. (B) shows the image of long-term EGFR and c-MET double 694 

inhibition effects in HCC78 cell line with different treatments. (C) shows long-term clony formation 695 

data for 14 cell lines with different EGFR, BRAF and KRAS genomic mutation status.  696 

Figure 5. MTT Assay validation of EGFR and c-MET combination 697 

(A). MTT assay experimental schema. (B) MTT assay of HCC78 cell line shows synergistic effects 698 

of Crizotinib and Erlotinib treatment. (C) shows short-term effects of EGFR and c-MET inhibitors’ 699 

combination index in 11 cell lines include 2 control cell lines (red). 700 

Figure 6. Master Regulating peptides in primary lung cancer samples 701 

EGFR and c-MET co-regulate in three scenarios (A) when their common substrates are 702 

hyperphosphrylated, the patient responds to combination treatment well; (B) when most EGFR 703 

substrates are hyper-phosphorylated, the patient responds to EGFR inhibitor; (C) when 704 

substrates of both EGFR and c-MET are mostly hypophosphorylated, the patient does not 705 

respond. (D) show the Master Regulator and Master Regulator Pairs regulating hyper/hypo-706 

phosphorylation of their network substrates in each primary samples.  707 
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 708 

Methods and Data 709 

Phosphoproteomic Data  710 

The previously published phosphoproteomic data used to reconstruct signaling network was 711 

download from (50). This dataset, representing the abundance of phospho-tyrosine containing 712 

peptides, was obtained by tandem mass spectrometry analysis of 46 non-small cell lung cancer 713 

(NSCLC) cell lines, 151 NSCLC tumors, and 48 normal lung tissue samples. 714 

Immunohistochemistry and a phospho-tyrosine specific antibody were used to screen 96 paraffin-715 

embedded, formalin fixed tissue samples from NSCLC patients as described by Rikova et al.(50). 716 

About 30% of tumors showed high-levels of phospho-tyrosine expression. Immunoblotting of 46 717 

NSCLC cell lines with a phospho-tyrosine specific antibody also showed heterogeneous reactivity 718 

especially in the molecular weight range characteristic of receptor tyrosine kinases. 719 

Since phospho-tyrosine represents less than 1% of the cellular phosphoproteome, as determined 720 

by tandem mass spectrometry (MS/MS), and is difficult to analyze by conventional methods, 721 

immuno-affinity purification was performed with a phospho-tyrosine antibody to enrich for 722 

phospho-tyrosine containing peptides prior to tandem mass spectrometry. All tumors were 723 

identified as NSCLC based on standard pathology. Only those tumors with greater than 50% of 724 

cancer cells were considered for further analysis. NSCLC cell lines were grown overnight in low 725 

serum to reduce background phosphorylation from culture conditions. 726 

Tandem MS profiling identified 3920 tyrosine phosphorylation sites on approximately 2600 727 

different proteins. 85% of these sites appeared to be novel when compared against PhosphoSite 728 

(http://www.phosphosite.org), a comprehensive resource of known phosphorylation sites. 729 
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pARACNe Algorithm 730 

ARACNe is originally designed for gene expression data, where expression of genes is usually 731 

continuous and non-sparse. Quantitative data obtained from label-free LC-MS/MS by data-732 

dependent acquisition via spectral counting is discrete and very sparse, with many 733 

phosphopeptides counts not observed for multiple peptides in each sample causing the current 734 

version of ARACNe to be not suitable for this data, which thus required major modifications to 735 

handle discrete data. To handle discrete abundances, we modified the mutual information 736 

computation approach from a kernel density estimation based method to a Naïve based 737 

estimation of mutual information, which is a histogram based technique(76). Briefly, consider a 738 

collection of N simultaneous measurements of two genes X and Y. Data is partitioned into M 739 

discrete bins , and denotes the number of measurements that lie within the bin . The 740 

probabilities  are then approximated by the corresponding relative frequencies of 741 

occurrence  and the mutual information between datasets X and Y is 742 

expressed as  743 

   744 

Here denotes the number of measurements where X lies in  and Y in  and N total number 745 

of samples.  746 

Accuracy of mutual information is dependent on correct numbers of bins, M. To find the optimal 747 

number of bins we applied ARACNe on the whole dataset by varying M from 1 to 20 and testing 748 

the connections in predicted sub-network against the set of known connections (gold standard) 749 

from databases (phosphoDB) (33). 750 
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In case of continuous data, partitioning can be achieved by dividing the range of data into M 751 

equally spaced distance bins. Our data being discrete, equally spaced partitioning was not 752 

possible. So, to overcome this problem, we used an iterative approach of partitioning (Fig. 1C, 753 

Fig. S1A). The basic idea is to divide the number of N data points into M with each bin containing 754 

equal number of data point. If the data point(s) with the same value falls into consecutive bin(s), 755 

we put those data point(s) into current bin and repartition the remaining points into remaining 756 

number of bins. We keep iterating this till we finish either the bins or there are no more data points 757 

to bin. For example, in Fig. S1A, we initially partition N points into 4 bins. The data points with 0 758 

value does not fit into first bin and falls into subsequent bins, so we assign all data points with 0 759 

value into first bin and repartition the remaining points into 3 bins. We keep on doing this process 760 

till we achieve 4 bins. 761 

To evaluate initial performance and decide number of bins, we computed the network among all 762 

tyrosine kinases and substrates, parsed the sub-network between 49 tyrosine kinases and 114 763 

substrates which were present in PhosphoSite database and compared the results with the 764 

connections present in database. From our analysis, we found that M=10 to be an optimal number 765 

(Fig. S1B) which gave us precision of 14% and sensitivity of 24%. This precision is an 766 

underestimate of real precision as in the gold standard many interactions are not present.  767 

Master Regulator Analysis 768 

To discover the master regulator in various cell lines, we interrogated the network obtained from 769 

pARACNe using a novel algorithm, VIPER (Virtual Proteomics by Enriched Regulon analysis) 770 

(21), designed to infer kinases that are key players in a particular cell line. Protein activity is a 771 

good indicator of key kinases in a particular phenotype but often phosphorylated state of a protein 772 

is not sufficient to determine its activity both due to measurement noise in phosphorylated state 773 

as well as LC-MS/MS technique noise.  To overcome this problem, VIPER infers kinase activity 774 
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from the global kinase substrate relationship and its biological relevance by overlapping this 775 

information in a particular phenotype-specific program.  776 

VIPER requires a network model and signature of the phenotype transition (i.e., all genes ranked 777 

by their differential phosphorylation in two phenotypes). Here, the signature, Skin, was obtained 778 

by t-test analysis by comparing each cell line against all normal samples. First, we associate each 779 

kinase with positive and negative activity targets, by computing the correlation between each 780 

kinase and its predicted substrates and selecting only those substrates which had a significant 781 

correlation (p-value ≤ 0.05, Bonferroni corrected). Second, for each kinase we computed an 782 

activity by measuring the enrichment of the Skin signature in predicted substrates list, separately 783 

for both positive and negative correlated, (Skin-enrichment). Enrichment was computed by Gene 784 

Set Enrichment Analysis (GSEA). Since very small percentage of kinases are found to have 785 

negative correlation, we did not use those interactions to evaluate enrichment.  786 

Cell Culture 787 

All cell lines were grown in RPMI-1640 with 5% fetal bovine serum and incubated at 37oC in a 788 

humidified atmosphere containing 5% CO2. Cell lines were fingerprinted using the Perplex 1.2 789 

system (Promega, Madison, WI). Fingerprints were compared to those generated at ATCC and/or 790 

our internal database. 791 

MTS Assays 792 

Short term MTS assays (CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega, 793 

Madison WI) were performed as previously described in (77). Specifically, each drug 794 

concentration is octuplicated and the mean with standard deviation of all replicates were used to 795 

generate a curve to allow calculation of the drug IC50 (Inhibitory Concentration of 50%) value.   796 

The assays were repeated at least 3 times and the IC50s are the average of all replicates. 797 

 798 
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Colony-formation Assays 799 

Long term colony formation assays were performed in triplicate in 6-well plates. Cells were added 800 

to media containing drug and incubated for 1-2 weeks such that control wells (no drug) contained 801 

colonies of 50-70 cells each. At such time media was removed and all wells stained with a solution 802 

containing 0.5% crystal violet and 6% glutaraldehyde for 1 hour. The plates were then rinsed, 803 

dried, and colonies were manually counted. 804 

SILAC Experiments 805 

EGFR SILAC experiment was performed in H3255 cell line by treating samples with Gefitinib. c-806 

MET SILAC experiment was performed in c-MET-driven gastric cancer cell line, MKN45, by using 807 

c-MET inhibitor Su11274. For both genes, cells were treated with inhibitors for 3 and 24hr. For 808 

control, cells were grown in same conditions but were not treated with the drug. For our 809 

comparison we combined the peptides, which were differentially obtained between treated and 810 

untreated samples, for 3 and 24 hr. More details about the experiment can be obtained from Guo 811 

et al (32). 812 

Gold standard: In PhosphoSite database, there were 282 connections between 49 tyrosine 813 

kinases and 114 substrates.  814 

 815 

Supplemental Information 816 

Fig. S1. Performance of the pARACNe Algorithm.  817 

(A). To select optimal bin number in pARACNe algorithm, precision and recall curves for various 818 

number of bins were computed. Black curve is when no binning of data is done. When using 10 819 

bins, the algorithm achieved the best performance. 820 
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Table S1. pARACNe-inferred TK-peptides/substrate-peptides Interaction Network.  821 

Table S2. pARACNe-inferred TK-Protein/Substrate Interaction Network.  822 

Table S3. Colony Formation Assay and MTS Assay Results.  823 

 824 
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