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Abstract

Motivation: The rapid development of next-generation sequencing (NGS) technologies has lowered

the barriers to genomic data generation, resulting in millions of samples sequenced across diverse

experimental designs. The growing volume and heterogeneity of these sequencing data complicate the

further optimization of methods for identifying DNA variation, especially considering that curated high-

confidence variant call sets commonly used to evaluate these methods are generally developed by

reference to results from the analysis of comparatively small and homogeneous sample sets.

Results: We have developed xAtlas, an application for the identification of single nucleotide variants (SNV)

and small insertions and deletions (indels) in NGS data. xAtlas is easily scalable and enables execution

and retraining with rapid development cycles. Generation of variant calls in VCF or gVCF format from

BAM or CRAM alignments is accomplished in less than one CPU-hour per 30× short-read human whole-

genome. The retraining capabilities of xAtlas allow its core variant evaluation models to be optimized on

new sample data and user-defined truth sets. Obtaining SNV and indels calls from xAtlas can be achieved

more than 40 times faster than established methods while retaining the same accuracy.

Availability: Freely available under a BSD 3-clause license at https://github.com/jfarek/xatlas.

Contact: farek@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Improvements in the identification of single-nucleotide variation (SNVs)

and small insertions and deletions (indels) from next-generation

sequencing (NGS) data remains an active area of research. Small variant

calling pipelines using different components and techniques have been

able to achieve consistently high variant call accuracy rates, with surveys

of variant calling methods finding accuracy rates exceeding 97% as of

2015 (Highnam et al., 2015), and exceeding 99% as of 2016 (Altman

et al., 2016). Despite this, there are ongoing algorithmic developments

to refine small variant calling to address new demands in research and

clinical domains, such as the need for accurate and reproducible variant

calls in clinical settings (Richards et al., 2015), characterizing rare

variants in common diseases (Cirulli and Goldstein, 2010), and identifying

non-diploid variation (Campbell et al., 2015).

At the same time, there are also growing disparities in size and

heterogeneity between the data involved in current large-scale NGS

experiments and the data used to build high-confidence (or “gold standard”)

variant call sets that are widely used to evaluate variant calling methods.

The Trans-Omics for Precision Medicine program (https://www.

nhlbiwgs.org/), for example, has sequenced more than 54,000 whole

genomes to date and aims to sequence at least 120,000 samples in total.

The overall volume and heterogeneity of these data well exceeds those for

both the highly curated individual samples used to create high-confidence

variant call sets, such as those from the Genome in a Bottle project (Zook

et al., 2014), and even broader analyses of genetic variation that have been

carried out by earlier large-scale studies, such as the 1000 Genomes Project
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(The 1000 Genomes Project Consortium, 2015). The focus of existing

methods on managing the scale of current challenges has also been at the

expense of considerations of the diversity of experimental designs that

can affect variant call quality. Such factors include the analysis of DNA

samples of various quality, heterogeneous tissue types, different library

preparation and variable read lengths, insert sizes and read alignment, and

analysis filtering parameters.

Considerable efforts have also been focused on increasing the

computational efficiency of sequence analysis and variant calling at

scale, with GATK (McKenna et al., 2010), DeepVariant (Poplin et al.,

2017), Edico Genome’s Dragen (Miller et al., 2015), and other state-of-

the-art methods leveraging distributed software and hardware-optimized

technologies. However, these methods often require commitments to

external infrastructure or internal technology development to be applied

effectively, which may not be well-suited for rapid turnaround times or

cost-effective execution of variant calling at scale.

The ideal variant caller would therefore manage both scalability issues

and sources of data heterogeneity. Further, the method should also allow

rapid turnaround times for the generation of single-sample call sets so

that different parameters can be evaluated. We have previously reported

the software packages ATLAS (Havlak et al., 2004) for DNA assembly

and Atlas2-SNP (Shen et al., 2010) and Atlas2-INDEL (Challis et al.,

2012) for small variant calling. Here, we describe xAtlas, an accurate and

fully-featured variant calling application that requires only a fraction of

the computational resources of other small variant calling methods.

2 Methods

xAtlas is a command-line C++ application that employs HTSlib (Li et al.,

2009) to handle alignment and variant call file formats. Input sample

alignment files may be in either BAM (Li et al., 2009) or CRAM (Fritz

et al., 2011) format. When writing output in VCF format (Danecek et al.,

2011), xAtlas may optionally include non-variant VCF entries spanning

regions not covered by variants formatted in genome VCF (gVCF) format

(https://sites.google.com/site/gvcftools/) to facilitate

downstream multi-sample variant analyses. The application also may be

built with multithreading support, which allows the processes of reading

the input alignment file, processing SNVs, and processing indels to be

handled each in a separate thread.

2.1 Variant Detection and Evaluation

xAtlas variant calling is performed in the following high-level stages:

preliminary read filtering; collecting candidates for variant calls from the

alignment file; evaluating each candidate variant; and reporting candidate

variants (Figure 1). As reads are scanned from the input alignment, a read

will be filtered out from variant calling if it is marked as an unmapped,

as a duplicate read, or alternatively has a mapping quality score below a

minimum threshold, with a default of one. Candidate sequence variations

are then collected from the unfiltered reads and grouped for variant calls. To

aggregate candidates, sequence variations are identified within each read

by locating the coordinates at which sequences differ from the provided

reference genome. The SAM format’s CIGAR string, which defines the

edit operations between the read’s sequence and the reference sequence

at its mapped position, is used to determine variant coordinates. SNVs

are defined as point differences between reference and aligned sample

sequences within the spans of CIGAR match operators. Variant alleles

are assigned reference coordinates that correspond to its parsimonious

representation within the alignment, as defined by Tan et al. (2015).

While collecting candidate variants to evaluate, xAtlas also records

multiple sequence and alignment attributes associated with each candidate

Fig. 1. Variant calling in xAtlas is performed in three stages: filtering out undesirable reads,

identifying and grouping alleles into candidate variants, and evaluating the likelihood of

each candidate variant.

variant, including base quality values and coverage ratios for reads

supporting the reference sequence vs. those supporting the variant allele.

These features are evaluated together to assign the a confidence score for

the candidate variant, utilizing either a SNV or indel candidate variant

evaluation model based on logistic regression. xAtlas allows the user

to redefine the logistic regression intercepts and variable coefficients of

these models with values that may be derived from retraining on new

samples. Thresholds for both confidence scores and candidate variant

features determine whether a candidate variant will be called and if a

called variant will be filtered in the output VCF file. Other filters may also

applied to candidate variants based on other features not evaluated by the

candidate evaluation models, such as if there are too few reads supporting

the candidate variant allele.

After assigning variant confidence scores from the logistic regression

models and applying filters, xAtlas then determines the most likely then

genotype and reports the candidate variant in the VCF. A variant call is

reported in the VCF only if the candidate’s logistic regression value is

greater than an adjustable cutoff, with a default value of 0.25. If multiple

variants may be reported at the same position, xAtlas reports only the

variant at that position with the greatest number of reads supporting the

variant sequence. For SNVs, if there are still multiple candidates tied for the

greatest number of supporting reads, the candidate variant with the highest

logistic regression value is then selected. xAtlas assigns the genotype 1/1,

0/1, or 0/0 to called variants. For indel, genotypes are assigned based

on cutoffs for the ratio of reads supporting the variant allele to the total

number of reads overlapping the indel. For SNVs, each SNV is assigned

the genotype with the highest genotype likelihood as determined by xAtlas

(Supplementary Information Section 1).
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2.2 Retraining Candidate Variant Evaluation Models

The logistic regression model retraining performed as part of this study was

performed by building sets of positive and negative examples of variant

sites from pairs of sample alignments and using subsets of these variant

sites in logistic regression model fitting. The set of all possible candidate

variant sites and the values that xAtlas supplies to the SNV and indel

logistic regression models were compiled for each sample. Subsets of

positive and negative variant site examples were then derived from this set

based on variant site overlap with a truth set of high-confidence variants and

with high-confidence variant regions. Positive variant sites were selected

from variant sites present in both technical replicates, overlapping the

NIST high-confidence variants, and restricted to the NIST high-confidence

regions. Two types of negative variant sample sites were compiled, where

variant sites are either present in both technical replicates or present in

only one of the two replicates, with both types restricted to the NIST

high-confidence regions but not overlapping the NIST high-confidence

variants. Each of these comprised half of the negative example variant

sites in assembled training and testing sets. Training and testing sets were

compiled as non-overlapping sets of 10,000 randomly sampled positive

and negative variant site examples, with a 1:1 ratio of positive vs. negative

examples in each set. Logistic regression model fitting using these training

and testing sets was performed using the LogisticRegression classifier from

scikit-learn (Pedregosa et al., 2011).

3 Results

3.1 Variant Call Quality Assessment

xAtlas variant call quality was assessed by comparing variants called on

alignments for multiple samples with multiple retrained logistic regression

model parameters to NIST high-confidence variant sets. Seventeen sets

of NA12878 WGS technical replicates or pairs of alignments sequenced

on the Illumina HiSeq X and Illumina NovaSeq platforms, which

include down-sampled alignments, were used to generate retrained logistic

regression model parameters (Supplementary Table S1). These samples

and additional samples of NA12878 and HG002 were used to evaluate the

sets of trained logistic regression parameters. All samples sequenced at the

Baylor College of Medicine Human Genome Sequencing Center (BCM-

HGSC) were aligned with BWA-MEM (Li and Durbin, 2009) version

0.7.12 and had indels realigned using GATK IndelRealigner (McKenna

et al., 2010) version 3.4.0. For all sample sets, version 3.3.2 of either the

NA12878 or HG002 high-confidence variants using GRCh37 reference

coordinates from the NIST Genome in a Bottle Consortium (Zook et al.,

2014) and the accompanying high-confidence variant regions were used

as the truth set to refine variant sites for positive and negative examples

during retraining.

Sensitivity was calculated as the rate of concordance with the NIST

high-confidence set, as measured by RTG vcfeval version 3.8.4 (Cleary

et al., 2015). Variants from the NIST high-confidence set were restricted

for this comparison to those within high-confidence regions and to variants

which were listed as not having multiple variant alleles or sequences

associated with the same parsimonious position in the VCF. Figure 2

shows plots of precision against sensitivity for SNVs and indels. For the

sample with the highest sensitivity and precision values, a NA12878 WGS

sample sequenced on an Illumina NovaSeq sequencer with an average

depth of coverage of 54.5, sensitivity was measured at 94.82% for indels

and 99.85% for SNVs, and precision was measured at 91.19% for indels

and 99.63% for SNVs. F-score measures of variant accuracy for published

precisionFDA Truth Challenge (https://precision.fda.gov/

challenges/truth) entries range from 97.77% to 99.96% for SNVs

whereas xAtlas achieved 98.70% to 99.74% for SNVs. For indels,

precisionFDA reported F-scores from 70.50% to 99.40% while xAtlas

ranged from 84.76% to 92.97%, depending on coverage. With HG002,
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Fig. 2. Sensitivity vs. precision for xAtlas SNVs (A) and indels (B) compared to the NIST

NA12878 high-confidence variant set v3.3.2. Each point represents the sensitivity and

precision of variants called by xAtlas using one of the retrained set of logistic regression

parameters for its variant evaluation models. Clusters of similar sensitivity and precision

values become apparent when these data points are grouped by sample (C).

xAtlas achieved an F-score accuracy of 99.57% for SNVs and 93.07% for

indels.
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Table 1. Runtimes for xAtlas and a Samtools/BCFtools-based small variant calling pipeline in HH:MM:SS and fold decrease in runtime from the

Samtools/BCFtools-based pipeline to xAtlas when generating output in VCF format.

Sequencing platform Sample type Total reads Whole-genome coverage Samtools/BCFtools xAtlas (gVCF) xAtlas (VCF) Fold decrease (VCF)

Illumina HiSeq 2500 Panel 4,399,370 N/A 0:06:57 0:02:45 0:01:00 6.95

Illumina HiSeq 2500 Whole exome 119,003,254 N/A 2:52:22 0:16:13 0:11:45 14.67

Illumina HiSeq X Whole genome 452,321,930 20.51 18:24:38 0:31:58 0:25:12 43.83

Illumina HiSeq X Whole genome 673,989,846 30.51 24:33:56 0:42:38 0:34:52 42.27

Illumina HiSeq X Whole genome 911,872,368 41.35 30:54:37 0:55:39 0:49:39 37.35

Illumina NovaSeq Whole genome 1,045,849,198 51.18 43:50:00 1:06:05 1:03:59 41.10

Read lengths were 101 bp for Illumina HiSeq 2500 and 151 bp for Illumina HiSeq X and Illumina NovaSeq. Capture design sizes totaled 534,703 bp for panel and 35,810,763

bp for whole exome.

3.2 Performance Benchmarking

Table 1 shows runtime and memory benchmarks of xAtlas runs with

samples of varying coverage levels and with various runtime options.

All runtimes were measured using a compute node with an Intel Xeon

processor (Haswell series) in a high-performance computing cluster at the

BCM-HGSC. When run as a single-threaded operation, xAtlas produced

SNV and indel VCFs for an Illumina HiSeq X WGS sample at 30×

coverage with a walltime of 2,096 seconds. Total memory usage remained

stable across all samples and coverage levels, with resident memory usage

averaging 3.7 GB and not exceeding 4 GB across all runs. For comparison

we used a best-practices variant calling pipeline based on Samtools and

BCFtools that generated output in VCF format. Runtimes for this Samtools

and BCFtools variant calling pipeline across alignments ranging from

approximately 20× to 50× coverage took on average 41 times longer (with

an approximately 24 hour difference for the sample with 30× coverage)

to run than xAtlas on the same sample, with runtimes for this pipeline also

listed in Table 1.

3.3 Applications of xAtlas in Large-scale Variant Analyses

To highlight the versatility of xAtlas as a method to identify SNV and indel

calls across multiple scenarios, we describe three real use cases where we

applied xAtlas at the BCM-HGSC.

First, xAtlas was was run on a whole-exome data set comprising of

15,000 BAMs (approximately 10 GB/sample) that is routinely used to

annotate other samples. xAtlas allowed us to create gVCFs for these

samples in 6708 total core hours, resulting in a single 1.5 TB resource

for cost-efficiently harmonizing this set with new samples as needed.

Second, we performed a similar analysis on 22,609 whole-genome

CRAMs (approximately 25 GB/sample) in parallel with multi-method

structural variant analysis. Its low memory and CPU usage allowed us to

run xAtlas for no additional cost by incorporating it in an existing cloud-

based structural variant application that executes multiple structural variant

and quality control methods simultaneously on a 32-core AWS instance.

Third, we used xAtlas to assess putative mosaic sites in 16,000 clinical

panel BAMs (approximately 6 GB/sample). We modified xAtlas runtime

parameters to report all evidence of variation in gVCF format, similarly to

a traditional pileup. These gVCFs were then merged into a project-level

VCF and filtered for putative mosaic sites by examining multi-sample

profiles. Creating all 16,000 gVCFs took less than 2 walltime hours when

split naively across 500 4-core AWS instances, allowing for inexpensive

and rapid adjustment of variant calling parameters based on iterative

assessment of the full data set without necessarily having to optimize for

cloud instance types or minimizing cloud-specific data-transfer overheads.

4 Discussion

The development of xAtlas has produced an accurate, scalable, and

retrainable DNA variant calling method. While its variant calling behavior

has been shown to be both accurate and adaptable through model retraining,

its utility as a component in a variant calling pipeline derives immensely

from its computational efficiency. With runtimes of one CPU-hour per 30×

whole-genome short read alignment, xAtlas has permitted variant analysis

at the BCM-HGSC to scale to sample sizes that would have previously

posed much greater challenges in terms of both computational resources

and analytical interpretation.

Different alignment properties were found to variously affect the

measured rates of sensitivity and precision of variants called by xAtlas.

Across all variant call sets produced from all samples, xAtlas variant

precision is highly positively correlated with sensitivity, with a Pearson

correlation of r = 0.97. Precision and sensitivity rates are more closely

clustered by sample (within each coverage level) than by which specific

retrained logistic regression parameter set was used, suggesting that

sample-specific alignment characteristics are a greater determining factor

of variant call quality than variant evaluation model retraining. The use

of retrained candidate evaluation model parameters produced measurable,

but less pronounced, differences in rates of variant sensitivity and precision

within different runs on the same sample. Depth of coverage also has a clear

effect on sensitivity and precision rates. Differences in variant sensitivity

and precision within the same sample were more pronounced in samples

with lower coverage levels. Variant sensitivity and precision rates steadily

improve across all samples as coverage level increases, with the highest

sensitivity and precision values recorded for samples with coverage levels

of at least 50×.

xAtlas is most similar in functionality to variant calling methods that

have similar hardware requirements and entry points (i.e. a “finished” BAM

or CRAM alignment). As such, xAtlas does not implement read-based

refinements such as indel realignment or base quality score recalibration.

The customizable and rapid generation of gVCFs allows for development

at scale, which is critical when analyzing data sets larger than those defined

for established best practices. While xAtlas can be used as a supplement or

replacement for other variant calling pipeline steps, one important feature

that has not yet been fully implemented in xAtlas is the ability to report

multiple variant alleles for a single variant call. Since the variant calling

processes for SNVs and indels in xAtlas are not complementary (indels

are not recognized by the SNV calling procedure, and vice versa) accurate

variant discovery and evaluation for multi-allelic variant calling would

require SNVs and indels to be processed concurrently. Modifying xAtlas’

candidate variant evaluation model to support multiple variant alleles

should not only produce more accurate genotypes by allowing accurate

genotyping of multiple variant alleles at a given site, but also allow more

comprehensive retraining and variant evaluation.
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Since xAtlas variant call quality was evaluated using largely NA12878

datasets (primarily NA12878 WGS samples sequenced on the Illumina

NovaSeq, HiSeq X, and HiSeq 2500 platforms, and comparing to the

NIST GIAB for NA12878), expanding retraining and evaluation to include

a more diverse set of samples, sequencing platforms, and application types

should allow a more complete assessment for how these factors affect the

efficacy of retraining the logistic regression models and possibly which

sequence or alignment features have the greatest effects on variant call

quality.

5 Conclusion

xAtlas has demonstrated a combination of computational efficiency and

variant call accuracy. Sensitivity and precision rates for both SNVs and

indels called by xAtlas rank among those of other variant calling methods

that have been used in practice. xAtlas has permitted fast and cost-effective

variant analysis across multiple projects at the BCM-HGSC consisting

of tens of thousands of whole-genome samples. For small or large-scale

variant analysis, xAtlas can be scaled run in compute environments ranging

from a single laptop to large HPC clusters or arrays of cloud instances.

With the ability to generate VCFs and gVCF-formatted variant call sets in

terms of minutes or hours per sample, development of new variant analysis

methods can also be carried out with rapid turnaround rates.
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