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Super‐resolution	fluorescence	microscopy	improves	spatial	resolution,	but	this	comes	at	a	loss	of	image	throughput	and	
presents	unique	challenges	 in	 identifying	optimal	acquisition	parameters.	Microscope	automation	routines	can	offset	
these	drawbacks,	but	thus	far	have	required	user	inputs	that	presume	a	priori	knowledge	about	the	sample.	Here,	we	
develop	a	flexible	illumination	control	system	for	localization	microscopy	comprised	of	two	interacting	components	that	
require	no	sample‐specific	inputs:	a	self‐tuning	controller	and	a	deep	learning	molecule	density	estimator	that	is	accurate	
over	an	extended	range.	This	system	obviates	the	need	to	fine‐tune	parameters	and	demonstrates	the	design	of	modular	
illumination	control	for	localization	microscopy.

Single	molecule	localization	microscopy	(SMLM)	is	a	suite	of	techniques	for	super‐resolution	fluorescence	imaging	that	has	generated	great	interest	

for	bioimaging	applications.	Of	these	techniques,	photoactivated	localization	microscopy	(PALM)	and	stochastic	optical	reconstruction	microscopy	

(STORM)	achieve	super‐resolution	by	exploiting	optically‐induced	 transitions	of	single	 fluorescent	markers	between	emitting	and	non‐emitting	

states		[1–3].	Due	to	the	tradeoff	between	spatial	and	temporal	resolutions,	there	is	significant	interest	in	improving	their	throughput;	a	single	image	

typically	takes	minutes	to	acquire.	Several	approaches	to	this	problem	have	been	taken	including	high	frame	rate	imaging		[4],	tailored	illumination	for	

large	fields	of	view	(FOVs)		[5–7],	and	automation		[8–13].	All	of	these	approaches	may	be	interpreted	as	means	to	collect	more	data	at	a	fixed	cost	to	

the	microscopist’s	time.	Automation	is	a	particularly	appealing	line	of	technology	development	because	it	transfers	repetitive	tasks	to	a	computer.	

Automated	illumination	strategies	have	enabled	multiple	field	of	view	acquisitions	without	user	interference,	although	thus	far	they	have	required	

parameter	tuning	and	a	priori	knowledge	of	the	sample	response		[8],	and		have	often	been	targeted	to	specific	samples		[9–11].	

Automation	also	has	the	potential	to	enable—in	real‐time,	and	for	a	given	sample—the	optimization	of	acquisition	parameters	to	produce	datasets	

of	the	best	possible	resolutions;	that	contain	a	minimal	degree	of	artifacts;	and	that	take	the	least	amount	of	time	to	acquire.	For	example,	a	suboptimal	

transition	 rate	between	 fluorescence	 emitting	 and	non‐emitting	 states	will	 result	 in	measurements	 that	 are	 either	needlessly	 long	 or	 produce	

artifacts		[14–16].	These	artifacts	must	then	be	corrected	in	post‐processing,	lest	they	lead	researchers	to	incorrect	conclusions.	Minimizing	these	

errors	 at	 the	 point	 of	 acquisition	 is	 therefore	 an	 important	 step	 in	 the	quality	 control	 process.	 Even	 a	well‐trained	microscopist	 is	 unlikely	 to	

consistently	find	the	best	illumination	conditions	for	every	experiment.	

In	this	work,	we	go	beyond	specific	implementations	to	address	the	problem	of	designing	autonomous	illumination	control	systems	for	adaptive	

corrections	to	the	active	emitter	density	in	any	STORM/PALM	experiment.	We	begin	by	establishing	the	primary	components	within	the	negative	

feedback	loop	that	comprises	the	control	system.	The	function	of	each	component	is	decoupled	from	the	others,	which	allows	us	to	address	their	design	

independently	of	the	system	as	a	whole.	With	this	philosophy	in	mind,	we	then	develop	a	new	algorithm	for	each	component,	intended	to	reduce	the	

number	of	user	inputs	and	increase	the	generality	of	the	overall	control	system.	The	first	is	a	parameter‐free	algorithm	for	counting	emitters	in	an	

image.	This	algorithm,	called	Density	Estimation	by	Fully	Convolutional	Networks	(DEFCoN),	outperforms	fluorescent	spot	counters	that	are	based	on	

matched	filters	by	greatly	reducing	their	bias	when	signals	from	individual	emitters	are	highly	spatially	overlapping.	Furthermore,	it	can	be	readily	

adapted	to	new	classes	of	datasets	by	re‐training	the	network.	The	second	component	is	a	self‐tuning	controller	that	automatically	adapts	its	gain	

parameters	to	each	specific	field‐of‐view	by	measuring	the	fluorescence	excitation	step	response	prior	to	acquisition.	

Finally,	we	reintegrate	these	components	into	the	control	system	and	show	how	they	may	achieve	minimal	artifacts	for	PALM/STORM,	requiring	

as	 input	only	a	single,	sample‐independent	parameter	 that	 is	general	 to	 the	problem.	These	 tools	are	 freely	provided	 to	 the	community	as	 the	

Automated	Laser	Illumination	Control	Algorithms	(ALICA,	pronounced	ah‐LEETZ‐uh)	plugin	for	Micro‐Manager		[17],	a	free	and	open‐source	software	

library	for	microscopy	acquisition	control.	

   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295519doi: bioRxiv preprint 

https://doi.org/10.1101/295519


1. Design of the Illumination Control System 

A. Optical Control of the Active Emitter Density 

Common	photodynamical	models	employed	in	PALM/STORM	are	based	on	a	system	of	states	that	correspond	to	the	distinct	energy	levels	of	a	

fluorescent	molecule.	A	transition	from	one	state	to	another	during	a	given	time	interval	is	a	random	event	and	occurs	with	a	probability	that	depends	

only	on	the	rate	coefficient	ascribed	to	that	transition.	In	general,	the	rate	coefficients	can	depend	on	a	number	of	sample‐specific	factors,	such	as	a	

fluorophore’s	local	environment	and	its	chemical	structure.	At	least	one	rate	coefficient	between	fluorescence	emitting	and	non‐emitting	states	is	

proportional	to	the	irradiance	(power‐per‐area)	integrated	across	the	fluorophore’s	absorption	cross	section.	In	direct	STORM,	for	example,	the	

irradiance	of	excitation	light	determines	the	transition	rate	from	the	emitting	singlet	state	to	the	non‐emitting	triplet	state;	the	irradiance	of	ultraviolet	

(UV)	light	influences	the	return	rate	from	a	non‐emitting	reduced	state	to	the	singlet	state		[18].	As	another	example,	many	photoswitchable	fluorescent	

proteins	(PS‐FPs)	are	irreversibly	switched	into	a	red‐shifted	emission	state	at	a	rate	that	depends	on	the	local	UV	irradiance		[2,3].	

The	existence	of	 these	 light‐induced	transitions	allows	the	microscopist	to	optically	tune	the	density	of	 fluorophores	 in	 the	emitting	state	by	

adjusting	the	power	of	the	light	source(s).	Typically,	the	goal	is	to	adjust	the	power	until	there	is	approximately	one	active	emitter	per	diffraction‐

limited	area	on	average.	At	lower	densities,	the	acquisition	will	take	longer	to	sample	the	underlying	structure;	at	higher	densities,	artifacts	begin	to	

appear	in	the	final	dataset	because	localizations	may	correspond	to	the	centroid	of	multiple	overlapping	emitters	and	not	their	individual	locations.	

B. Design of the Control System 

The	purpose	of	the	illumination	control	system	is	to	find	and	maintain	a	fixed	density	of	active	emitters	throughout	an	acquisition.	The	system	is	

implemented	as	a	negative	feedback	loop	(Fig.	1).	

	

Figure	1.	The	autonomous	illumination	control	system.	The	three	primary	components	in	the	

feedback	loop	are	represented	as	modular	blocks,	and	the	data	passed	between	the	components	

are	indicated	in	italics.	

The	system	consists	of	three	generalized	components.	The	first	is	the	microscope,	which	contains	the	illumination	source	and	provides	raw	images	

from	its	camera.	The	images	are	fed	sequentially	into	an	analyzer	whose	job	is	to	estimate	the	density	of	active	emitters.	(In	general,	the	analyzer	may	

produce	estimates	of	other	quantities	as	well,	such	as	the	integrated	intensity.)		The	controller	is	the	third	component	and	takes	as	inputs	the	analyzer’s	

most	recent	estimate	of	the	active	emitter	density	and	the	density	set	point,	i.e.	the	desired	emitter	density	to	maintain	during	the	experiment.	The	

controller’s	purpose	is	to	compute	the	power	of	the	illumination	source	that	minimizes	the	absolute	difference	between	the	estimate	and	the	set	point.	

If	the	difference	deviates	from	zero—as	it	would	at	the	very	start	of	a	measurement	or	over	time	due	to	photobleaching—then	the	controller	will	apply	

a	corrective	adjustment	to	the	light	source’s	output	power.	

The	division	of	labor	between	the	components	carries	several	advantages.	The	components	are	weakly	coupled;	thus,	if	any	component	fails	to	

perform	its	computation	before	the	previous	one	in	the	feedback	loop,	the	other	components	can	still	continue	their	work	unimpeded.	Furthermore,	

the	algorithms	for	the	different	components’	functionalities	can	be	exchanged	at	will	without	affecting	the	others.	This	allows	microscopists	to	adapt	

the	control	system	to	their	particular	samples	and	use	cases.	This	also	means	that	the	optimization	of	each	component	may	be	seen	as	its	own	

independent	problem,	rather	than	one	of	the	control	system	as	a	whole.	

In	what	follows	we	will	leverage	these	abstractions	to	independently	address	a	problem	of	analyzer	design	and	a	problem	of	controller	design.		
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2. Estimating Emitter Counts with Density Maps 

A. The Spot Counting Problem 

A	natural	choice	for	an	analyzer	for	localization	microscopy	is	a	module	that	estimates	emitter	density.	This	can	be	translated	into	the	spot	counting	

problem,	which	refers	to	the	process	of	algorithmically	counting	the	number	of	single	fluorescent	molecules	in	an	image	(Fig.	2).	This	figure	shows	a	

single	frame	from	a	simulated	PALM	acquisition	with	the	ground	truth	positions	of	emitters	marked	as	red	x’s.	The	most	straightforward	way	to	count	

the	number	of	spots	in	this	image	is	to	run	a	spot	detection	algorithm	and	simply	count	the	number	of	detections.	Such	an	algorithm	usually	involves	

two	steps.	First,	the	image’s	power	spectrum	is	whitened	and	convolved	with	a	filter	that	amplifies	the	signal	from	the	fluorescent	molecules	while	

simultaneously	suppressing	the	background.	The	convolutional	kernel	is	often	a	matched	filter	whose	frequency	response	is	the	conjugate	of	the	

Fourier	transform	of	the	microscope	point	spread	function	(PSF)		[19].	Small	regions	of	interest	(ROIs)	surrounding	local	maxima	in	the	filtered	image	

are	then	identified	as	single	emitters.	The	detections	in	Fig.	2—marked	as	cyan	circles—were	identified	using	a	wavelet‐based	matched	filter	coupled	

with	watershed	segmentation	and	followed	by	a	calculation	of	the	centroid	of	connected	components	as	described	in		[20]	and	implemented	in	the	

software	package	ThunderSTORM		[21].		

	

	

Figure	2.	The	spot	counting	problem.	A	single	image	from	a	simulated	PALM	acquisition	

demonstrates	two	types	of	counting	errors:	undercounting	due	to	poor	signal‐to‐noise	(left	arrow)	

and	undercounting	due	to	overlapping	PSFs	(right	arrow).	Red	x’s:	ground	truth	emitters;	cyan	

circles:	detected	molecules	using	a	wavelet	matched	filter.	Scale	bar:	1	µm.	

One	can	immediately	see	that	the	number	of	detections	is	less	than	the	number	of	actual	emitters.	Furthermore,	the	bias	towards	undercounting	

appears	to	be	a	general	feature	of	counting	by	direct	detection	and	becomes	worse	as	the	true	density	of	emitters	increases;	this	makes	the	spot	

counter’s	response	to	the	true	density	nonlinear,	which	is	an	important	consideration	in	control	systems	design	(Fig.	S1).	Two	types	of	error	contribute	

to	this	bias.	The	first	is	missed	detections	due	to	a	poor	signal‐to‐noise	ratio	(SNR);	this	error	is	largely	inconsequential	because	the	absence	of	emitters	

with	poor	SNR	from	a	dataset	typically	does	not	have	an	adverse	effect	on	the	SMLM	reconstruction.	The	second	error	arises	from	the	overlapping	

signals	from	closely‐spaced	emitters.	In	the	context	of	automation	performance,	this	would	result	in	the	control	system	erroneously	concluding	that	

there	are	fewer	active	emitters	than	there	are	in	reality,	thereby	preventing	the	system	from	taking	corrective	action.	The	nonlinear	response	of	the	

detection‐based	spot	counter	furthermore	complicates	the	controller	design	because	using	it	may	necessitate	“gain	scheduling,”	a	process	of	retuning	

the	control	parameters	for	different	densities.	

One	alternative	to	spot	counting	is	to	compute	a	quantity	from	the	images	that	is	somehow	proportional	to	the	number	of	spots,	such	as	the	sum	

over	pixel	values	or	the	time	that	a	pixel	value	spends	above	a	given	threshold		[22].	While	this	approach	can	be	made	linear	in	the	number	of	active	

emitters,	it	is	susceptible	to	other	types	of	errors	that	limit	its	use	to	samples	where	the	only	significant	source	of	light	is	from	the	target	fluorophores.	

Autofluorescence,	contaminants,	and	out‐of‐focus	fluorescence	would	all	bias	the	emitter	count	estimate.	

Another	alternative	would	be	to	use	multi‐emitter	subpixel	localization	routines.	(An	extensive	and	recent	list	of	such	routines	may	be	found	at		[23].)	

In	principle,	these	algorithms	can	perform	unbiased	spot	counting	in	the	case	of	overlapping	signals	by	fitting	the	photon	count	distributions	to	models	

containing	multiple	emitters.	They	often	require	extensive	parameter	tuning,	however,	and	are	too	slow	to	use	for	real‐time	applications	or	large	FOVs.	
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B. Density Map Regression 

The	consistent	bias	of	detection‐based	counters	suggests	that	a	new	approach	is	required	to	alleviate	these	issues.	We	therefore	reformulated	the	

problem	of	fluorescence	spot	counting	as	a	regression	problem	over	a	density	map	(Fig.	3a).	In	this	formulation,	a	model	is	constructed	that	transforms	

an	input	image	of	fluorescent	spots	into	a	density	map,	i.e.		a	2D	image	of	the	same	size	as	the	input	and	upon	which	a	normalized	Gaussian	kernel	is	

placed	at	each	ground	truth	active	fluorophore	position.	The	integrated	sum	of	the	density	map	pixels	over	a	subregion	is	equal	to	the	number	of	spots	

it	contains;	the	integral	over	the	full	density	map	is	the	estimated	number	of	spots	within	the	FOV.		Density	map	regression	has	been	successfully	

applied	to	problems	in	counting	pedestrians,	cars,	and	cells		[24–26].	

Previous	models	for	density	map	regression	have	utilized	an	ad‐hoc	MESA	distance		[24]	refined	with	ridge‐regression	[25],	a	random	forest	with	

hand‐crafted	features		[27],	or	fully	convolutional	neural	networks	(FCNNs)		[26,28,29].	FCNNs	are	particularly	attractive	because	they	do	not	require	

hand‐crafted	features	and	the	model	can	be	trained	directly	from	images.	In	addition,	their	computational	complexity	scales	linearly	with	the	number	

of	pixels,	rendering	them	useful	for	real‐time	computation	and	competitive	in	terms	of	speed	with	detection‐based	algorithms		[30].	To	this	end,	we	

designed	a	spot	counter	called	Density	Estimation	by	Fully	Convolutional	Networks	(DEFCoN)	for	density	map	regression	of	images	of	fluorescent	

spots	(Fig.	3b).	

	

Figure	3.	Density	map	estimation	for	fluorescence	spot	counting.	a)		A	target	density	map	generated	

from	ground	truth	simulated	data.	The	integral	over	the	density	map	is	the	number	of	fluorescent	

spots	in	the	FOV.	Red	x’s	denote	ground	truth	positions.	b)	The	architecture	of	DEFCoN.	

1. Network Architecture 

DEFCoN’s	architecture	consists	of	 two	fully	convolutional	networks	 in	series:	a	segmentation	network	and	a	density	network.	Each	network	 is	

comprised	of	layers	of	(de)convolutional	operations	and	nonlinear	image	transforms	that	first	form	a	downsampling	path	and	then	an	upsampling	

path.	In	the	downsampling	path,	the	convolutional	operations	serve	to	extract	features	in	the	image	at	length	scales	that	increase	with	each	successive	

layer.	In	the	upsampling	path,	an	output	image	(either	a	segmentation	map	or	density	map)	is	constructed	from	these	features.	Training	DEFCoN	

means	finding	the	values	of	all	the	square	(de)convolutional	filters	that	produce	accurate	segmentation	and	density	maps.	
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The	segmentation	network	computes	a	parameter‐free	segmentation	of	the	input	image	(Fig.	S2).	The	downsampling	path	of	the	segmentation	

network	consists	of	three	convolutional	layers	with	3	x	3	pixel	kernels	and	separated	by	strided	convolutional	layers.	The	receptive	field	of	the	deepest	

layer	corresponds	to	a	12	x	12	pixel	region	on	the	original	image,	which	is	large	enough	to	capture	information	about	the	shape	of	clusters	of	fluorescent	

spots	yet	small	enough	to	maintain	the	speed	of	the	network’s	computation.	The	upsampling	path	is	made	of	two	layers	of	eight	deconvolution	kernels	

followed	by	a	1	x	1	convolutional	layer	with	a	sigmoid	activation	function.	During	training,	the	network’s	output	is	compared	to	a	binary,	ground	truth	

segmentation	mask	using	pixel‐wise	binary	cross‐entropy	as	the	loss	function	(Fig.	S2).	Essentially,	the	segmentation	network	performs	a	per‐pixel	

classification	where	the	output	is	a	map	indicating	the	probability	that	the	value	of	a	pixel	is	determined	at	least	in	part	by	a	fluorophore.	

The	density	network	transforms	the	segmentation	map	into	the	final	density	map	and	possesses	a	similar	architecture	as	the	segmentation	network	

(Fig.	3b).	The	deepest	convolutional	layer	is	made	of	5	x	5	pixel	kernels—making	the	receptive	field	15	x	15	pixels—and	the	final	layer	has	a	linear,	

rather	than	sigmoid,	activation	function.	

The	reason	for	the	inclusion	of	the	segmentation	network	in	DEFCoN	is	empirical;	we	found	that	the	density	estimation	network	alone	does	not	

generalize	well	to	new	datasets.	This	is	likely	due	to	the	large	degree	of	similarity	between	the	input	images	and	the	density	map	estimates.	In	the	

absence	of	the	segmentation	network,	rather	than	learning	meaningful	representations	of	what	a	fluorophore	looks	like,	the	density	network	would	

instead	learn	how	to	minimize	the	counting	error	through	subtle	pixel‐wise	transformations.	The	result	is	that	non‐zero	values	would	be	sporadically	

placed	in	the	background	pixels	of	the	resulting	density	maps,	significantly	biasing	local	counts.	The	addition	of	the	segmentation	network	is	our	

solution	to	avoid	fine‐tuning	for	improved	generalization,	such	as	is	done	in		[26].	

2. Training DECON 

The	DEFCoN	network	is	trained	in	two	phases	(Fig.	S2;	Supplement	1).		The	segmentation	network	is	trained	alone	in	the	first	phase	using	ground	

truth	segmentation	masks	generated	from	simulated	data.	Next,	its	weights	are	frozen	and	the	combined	segmentation/density	network	is	trained	in	

full,	this	time	with	ground	truth	density	maps	also	generated	from	simulated	data.	As	in		[28],	the	loss	function	that	is	used	for	backpropagation	while	

training	the	full	network	is	comprised	of	two	terms.	

	 	 	 	 	 	 1 	

The	first	term	is	simply	the	sum	of	the	squared	pixel	errors	

∑ , ,, 	 	 	 	 	 	 2 	

where	 , 	and	 , 	are	the	values	of	pixel	 , 		in	the	predicted	and	ground	truth	density	maps,	respectively.	The	second	term,	 ,		penalizes	the	

network	for	counting	the	number	of	spots	incorrectly.	Since	the	count	is	merely	the	sum	of	all	the	density	map	pixel	values,	this	term	is	expressed	as	

∑ ,, ∑ ,, 	 	 	 	 	 3 	

The	parameter	γ	varies	the	relative	weight	attributed	to	each	term.	If	γ	is	too	small,	each	pixel	can	adopt	a	small	offset	that	leads	to	a	systematic	

counting	error	in	the	density	map;	if	γ	is	too	large,	the	network	will	lose	some	local	information,	resulting	in	misshapen	kernels.	We	empirically	found	

a	value	of	 0.01	to	give	the	best	results.	For	a	more	detailed	description	of	how	the	network	was	trained,	please	see	Supplement	1.	

C. DEFCoN Performance 

We	tested	DEFCoN	against	the	ThunderSTORM	implementation	of	the	wavelet	filtering	and	watershed	algorithm	because	it	is	currently	one	of	the	top‐

performing	segmentation	algorithms	for	SMLM	and	performs	well	when	spots	weakly	overlap		[20,21].	We	first	generated	several	simulated	SMLM	

stacks	consisting	of	100	images,	128	x	128	pixels	in	size,	of	randomly	distributed	fluorophores	with	different	mean	densities	of	active	emitters	(in	units	

of	 )	and	SNRs	(Fig.	S3).	Here,	the	SNR	is	defined	as	the	ratio	between	the	maximum	value	of	the	pixels	spanned	by	the	image	of	a	single	fluorescent	

molecule	and	the	standard	deviation	of	the	neighboring	background	pixel	values.	Next,	we	applied	each	algorithm	to	the	SMLM	stacks	and	calculated	

a	performance	metric	to	compare	the	two,	in	this	case	the	counting	error:	

	 	 	 	 	 	 	 4 	

where	 	and	 	are	the	predicted	and	ground	truth	fluorophore	counts,	respectively.	The	mean	counting	errors	from	the	test	are	displayed	in	Fig.	4.	
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Figure	4.	Comparison	between	DEFCoN	and	the	wavelet	filtering/watershed	method	from		[20].	a)	

The	mean	counting	error’s	dependence	on	the	density	of	randomly	distributed	fluorophores.	The	

magenta	tick	indicates	the	density	in	the	simulated	datasets	for	panel	b.	b)	The	dependence	of	the	

error	on	the	SNR.	The	magenta	tick	indicates	the	SNR	of	the	simulated	datasets	in	panel	a.	

DEFCoN	performs	extremely	well	at	counting	fluorescent	spots	across	a	range	of	fluorophore	densities	(Fig.	4a),	with	the	mean	counting	error	

increasing	from	approximately	0.07	to	0.10	for	sparse	to	moderate	densities	of	randomly	distributed	emitters.	The	wavelet	filtering	algorithm	with	

watershed	performs	as	well	as	DEFCoN	at	sparse	densities.	However,	its	mean	counting	error	grows	linearly	with	density	at	a	rate	that	is	~5‐7	times	

faster	than	DEFCoN’s	for	an	SNR	of	10.	DEFCoN	performs	slightly	worse	than	the	wavelet/watershed	method	at	low	SNRs	(Fig.	4b),	with	a	mean	

counting	error	of	0.39	for	DEFCoN	vs.	0.27	for	wavelets.	This	disparity	decreases	with	increasing	SNR	until	they	perform	similarly	above	an	SNR	~	7.	

In	addition,	we	qualitatively	compared	DEFCoN,	wavelet	filtering/watershed	in	ThunderSTORM,	and	a	simple	spot	counter	based	on	local	maxima	

identification		[31]	by	running	each	on	a	simulated	microtubule	dataset	(Fig.	S4).	The	results	show	the	decreased	bias	of	DEFCoN	relative	to	the	other	

two	methods.	Though	the	bias	has	not	been	entirely	eliminated,	the	linear	response	regime	of	DEFCoN	covers	a	significant	proportion	of	the	full	range	

of	densities	applicable	to	SMLM.	

Equally	important	for	real‐time	spot	counting	is	the	speed	with	which	each	algorithm	executes.	A	rough	criterion	is	that	the	time	required	for	the	

algorithm	to	produce	a	spot	count	should	be	less	than	10	ms,	which	is	the	fastest	running	exposure	time	of	commercially	available	sCMOS	cameras	

with	a	2048	x	2048	pixel	ROI.	(EMCCD	cameras	are	slower	than	their	sCMOS	counterparts	at	the	full	ROI	size	and	equivalent	bit	depth.)	The	results	of	

the	speed	comparisons	calculated	from	the	same	dataset	are	shown	in	Fig.	5.	
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Figure	5.	Execution	times	for	DEFCoN	and	wavelet‐based	segmentation.	The	dependence	of	the	

execution	time	on	the	image	size	scales	linearly	with	the	number	of	pixels.	

When	 implemented	 on	 a	 GPU,	 DEFCoN	 can	 produce	 a	 spot	 count	 in	 less	 than	 10	ms	 for	 images	 that	 are	 512	 x	 512	 pixels	 in	 size.	 The	 CPU	

implementation	of	DEFCoN	performs	similarly	in	speed	to	a	CPU‐based	wavelet/watershed	combination	for	image	sizes	larger	than	256	x	256	pixels.	

As	expected,	the	computation	time	of	DEFCoN	grows	linearly	with	the	number	of	pixels	and	is	independent	of	the	density	of	fluorescence	spots	(Fig.	

5).	

Finally,	we	tested	DEFCoN	on	the	RealLS	and	RealHD	datasets	from	the	2016	SMLMS	Challenge		[32].	RealLS	is	a	low	density	dataset	where	the	

active	emitters	are	sparsely	distributed	in	space;	RealHD	is	a	high	density	dataset	containing	many	overlapping	fluorophores.	Because	no	ground‐truth	

data	exists	for	these	experimentally‐derived	datasets,	10	frames	from	RealLS	and	5	from	RealHD	were	given	dot	annotations	by	hand,	where	each	dot	

marked	the	ground	truth	position	of	a	visible	fluorophore	(Fig.	S5).	The	mean	counting	errors	for	DEFCoN	and	wavelets/watershed	are	displayed	in	

Table	1.	As	expected,	both	algorithms	perform	well	at	low	density,	but	DEFCoN	produces	more	accurate	counts	(with	respect	to	the	annotations)	in	

the	high	density	dataset.	

Table	1	Mean	counting	errors	on	real	datasets.	

	 RealLS RealHD

DEFCoN	 1.4 2.4

Wavelets/Watershed 1.7 19.0

	

Taken	together,	these	results	indicate	that	DEFCoN	outperforms	the	state‐of‐the	art	detection‐based	approaches	for	fluorescence	spot	counting.	

The	improved	linearity	and	ability	to	work	across	a	large	range	of	active	emitter	densities	makes	its	application	in	an	illumination	control	system	both	

general	and	robust.	

3. Controller Self‐Tuning 

A. The Controller Tuning Problem 

Having	dealt	with	the	problem	of	making	accurate	estimates	of	the	density	of	emitters,	we	now	turn	to	the	problem	of	control:	how	does	one	compute	

the	required	illumination	intensity	to	activate	and	maintain	a	set	density	of	emitters?	In	what	follows,	we	will	restrict	the	discussion	to	control	of	a	UV	

illumination	source	because	fluorophores	respond	strongly	to	even	relatively	weak	UV	irradiance	and	because	it	controls	the	density	of	active	emitters	

in	both	PALM	and	STORM.	

We	can	divide	a	PALM	acquisition	into	two	distinct	periods	for	which	we	would	like	the	controller	to	autonomously	determine	the	optimal	laser	

power.	During	the	initial	period	at	the	very	beginning	of	the	acquisition,	the	problem	is	to	determine	how	much	power	activates	the	ideal	number	of	

emitters.	During	the	second	period,	which	extends	from	when	the	emitter	density	has	reached	a	quasi‐steady	state	to	the	end	of	the	acquisition,	the	

problem	 is	 to	make	 continuous	and	small	 adjustments	 to	 the	power	 to	 compensate	 for	 a	 gradual	decline	 in	 the	active	emitter	density	due	 to	

photobleaching.	
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Automation	methods	for	photobleaching	correction	were	first	proposed	in		[8]	and		[22].	The	controller	in		[8]	counted	fluorescent	spots	in	real‐

time	using	the	wavelet	approach	of		[20],	accepting	as	inputs	three	free	parameters.	The	first	two	are	thresholds	for	the	average	and	maximum	emitter	

counts;	if	either	of	these	two	values	exceeds	±15%	of	their	original	value,	then	the	controller	adjusts	the	illumination	power.	The	third	parameter	is	the	

amount	by	which	 the	 illumination	power	 is	adjusted	during	each	step.	Likewise,	 the	controller	of	 	[22]	also	makes	discrete	adjustments	 to	 the	

illumination	power	in	values	that	are	predetermined	by	the	user.	In	addition,	it	requires	a	threshold	value	to	separate	the	noise	from	the	signal	and	

another	threshold	that	helps	identify	and	remove	pixels	from	the	analysis	that	are	always	active,	such	as	those	contaminated	by	autofluorescence	from	

dust	particles.	

Parameter	tuning	for	these	control	systems	may	be	performed	in	exploratory	experiments	to	collect	a	priori	knowledge	about	the	typical	sample	

response.	The	system	performance	will	necessarily	depend	on	how	well	the	parameter	values	generalize	to	variability	in	the	response	during	and	

between	acquisitions.	Large	variability	in	labeling	density,	sample	preparation,	and	the	appearance	of	edge	cases	like	brightly	autofluorescent	dust	

particles	can	invalidate	a	previously	defined	set	of	control	parameter	values,	resulting	in	a	suboptimal	density	of	activated	fluorophores.	

To	our	knowledge,	no	one	has	yet	addressed	the	first	problem,	which	is	determining	the	optimal	control	parameters	to	use	on	a	previously	unseen	

FOV.	We	therefore	addressed	these	issues	by	implementing	a	self‐tuning	controller	that	adapts	itself	to	each	FOV.	

B. Self‐Tuning for Density Set Point Control 

In	the	context	of	SMLM,	our	strategy	is	to	implement	a	proportional‐integral	(PI)	controller	(Fig.	6)	to	compute	the	power	of	the	UV	illumination	source	

that	will	maintain	a	constant	density	of	active	emitters.	It	accepts	two	inputs:	the	estimate	of	the	density	of	emitters	 	and	the	desired	density	 ,	

which	is	also	called	the	set	point.	The	difference	between	these	two	quantities	is	the	error	signal	 	which	is	fed	in	parallel	into	the	

proportional	and	integral	block	components.	The	computed	power	 	of	the	illumination	source	is	

′ ′	 	 	 	 	 5 	

where	 	and	 	are	the	proportional	and	integral	gain,	respectively.	The	value	in	choosing	PI	control	over	either	purely	proportional	control	or	

stepping	the	illumination	by	pre‐determined	amounts	is	that	it	can	maintain	a	long‐term	zero	error	signal	while	still	achieving	a	fast	response	to	

perturbations		[33].	

	

Figure	6.	A	proportional‐integral	(PI)	controller.	

Finding	the	correct	values	for	the	gain	parameters	is	essential	to	achieving	a	stable	and	fast	response	to	changes	in	both	the	set	point	and	error	

signal.	Severe	oscillations	in	the	illumination	output	or	a	slow	response	to	changes	in	the	emitter	density	may	occur	when	the	PI	controller	is	not	

properly	tuned.	Furthermore,	the	optimal	values	for	the	gain	parameters	will	vary	with	each	FOV.	For	these	reasons,	we	implemented	a	self‐tuning	

procedure	that	is	based	on	a	set	of	rules	derived	from	internal	model	control	known	as	lambda	tuning		[34].	These	rules	are	used	to	calculate	the	

optimal	values	for	 	and	 	on	a	given	FOV	by	measuring	the	sample’s	step	response	to	UV	light	(Fig.	7).	
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Figure	7	Construction	of	the	self‐tuning	procedure	for	the	PI	controller.	

The	lambda	tuning	rules	for	the	PI	controller	are	

∆

∆
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In	these	expressions,	Δ 	represents	the	change	in	the	analyzer’s	average	output	in	response	to	a	step	change	Δ 	in	the	output	power	of	the	

illumination	source.	 	and	 	are	the	response	time	and	the	dead	time	of	the	system,	respectively.	The	former	represents	the	amount	of	time	it	takes	

for	the	analyzer’s	output	to	reach	approximately	1 63%	of	its	quasi‐steady	state	value	at	the	new	laser	power,	whereas	the	latter	represents	

the	time	after	the	change	in	laser	power	when	a	response	is	first	detected.	In	our	experience,	the	initial	change	in	emitter	density	is	nearly	instantaneous	

when	compared	to	the	exposure	time	for	a	camera	frame,	so	we	set	 	to	zero.	Small	values	of	the	parameter	 	will	result	in	a	fast	response	to	changes	

about	the	set	point,	whereas	large	values	will	result	in	a	slow	response.	The	lambda	tuning	rules	produce	a	response	to	a	change	in	set	point	that	settles	

out	in	a	time	of	approximately	4λ	without	overshooting	the	set	point	value.	 3 	is	recommended	for	stable	set	point	control			[34].	

In	practice,	we	find	that	it	is	easy	to	measure	the	step	response	 	but	difficult	to	precisely	measure	 .	Fortunately,	the	value	selected	for	τ	varies	

little	between	experiments	and	need	not	be	precise;	a	guess	often	suffices.	For	example,	 10	frames	and	 0	frames	in	Fig.	7.	Using	the	

recommended	value	from	the	lambda	tuning	rules	of	 3 30	frames,	this	means	that	 0.33	 ∆ ∆⁄ —irrespective	of	the	value	of	 —and	

0.03	frames 	∆ ∆⁄ .	Even	if	τ	was	overestimated	by	an	order	of	magnitude,	the	controller	would	bring	the	system	into	a	quasi‐steady	

state	within	a	small	fraction	of	the	total	acquisition	time,	which	often	extends	over	tens	of	thousands	of	frames.	

When	applied	at	the	beginning	of	an	acquisition,	the	self‐tuning	procedure	determines	the	gain	parameter	values	that	map	the	emitter	density	to	

the	laser	power.	This	circumvents	the	need	to	“search”	for	the	correct	power	in	step‐wise	increments.	There	remains,	however,	another	problem	that	

results	when	the	integral	term	in	Eq.	5	becomes	large.	The	integral	acts	as	a	form	of	memory	for	the	error	signal	and,	if	allowed	to	accumulate,	can	

cause	the	controller	to	become	saturated	such	that	it	only	outputs	its	maximum	or	minimum	value.	Large	error	signals	accumulate	in	the	controller’s	

memory,	for	example,	when	selecting	a	value	for	the	set	point	that	is	either	too	high	for	the	available	illumination	power	or	close	to	zero.	(In	the	latter	

case,	spurious	detections	keep	the	value	of	 the	measured	density	above	zero	and	cause	the	integral	term	to	accumulate	a	negative	value.)	This	

condition,	more	generally	known	as	integral	windup		[33],	is	solved	by	placing	upper	and	lower	limits	on	the	value	for	the	integral	term.	The	upper	

limit	is	set	as	the	difference	between	the	maximum	possible	laser	output	and	the	value	of	the	proportional	error	term;	the	lower	limit	is	the	difference	

between	the	minimum	output	and	the	proportional	term.	

The	last	remaining	piece	of	the	controller	is	the	determination	of	the	set	point,	which	is	addressed	in	the	next	section.	

4. Set Point Determination 

A. The Problem of Optimal Set Point Determination 

In	the	previous	discussion,	we	took	for	granted	that	the	optimum	value	for	the	set	point	could	be	easily	determined.	Roughly	speaking,	the	optimum	

density	of	emitters	should	produce	super‐resolved	reconstructions	with	the	fewest	artifacts,	the	best	resolution,	and	should	take	the	least	amount	of	
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time.	However,	the	autonomous	determination	of	an	optimum	value	that	satisfies	these	requirements	is	more	challenging	than	it	might	first	appear.	

For	one,	the	optimum	density	is	not	a	global	property	but	varies	across	the	FOV	with	the	structure’s	dimensionality		[15].	Second,	the	quality	of	a	super‐

resolution	reconstruction	depends	on	the	algorithm	chosen	to	perform	the	reconstruction		[35].	The	control	system	would	therefore	have	to	decide	

whether	single	or	multi‐emitter	fitting	routines	would	be	more	suitable	and	activate	the	required	density	accordingly.	Third,	we	lack	a	rigorous,	

functional	definition	of	SMLM	image	quality	for	real‐time	optimization.	In	part,	this	is	because	a	SMLM	image	is	a	function	of	all	the	images	that	

contribute	to	the	eventual	reconstruction;	it	is	difficult	to	predict	the	final	image	quality	as	the	data	is	being	acquired.	Finally,	the	tradeoffs	that	one	is	

forced	to	make	between	the	number	of	artifacts,	resolution,	and	acquisition	time	make	this	a	multiobjective	optimization	problem	whose	general	

solutions	contain	not	one	but	families	of	so‐called	“Pareto	optimal”	solutions.	To	select	one	solution	from	this	set	requires	that	the	microscopist	

explicitly	specify	the	degree	of	tradeoffs	that	she	or	he	is	willing	to	make	between	these	quantities.	

For	these	reasons,	we	have	instead	employed	a	heuristic	solution	to	the	problem:	the	criterion	that	there	should	not	be	more	than	one	emitter	active	

per	diffraction‐limited	area	in	any	given	camera	frame.	(We	note,	however,	that	other	heuristics	may	be	incorporated	into	this	modular	framework.)	

B. Maximum Local Count Control 

The	approach	we	employ	here	is	to	compute	the	highest	local	density	of	active	emitters	in	an	image	from	a	density	map	estimate	and	subsequently	

use	this	quantity	as	the	controller’s	input.	At	the	same	time,	we	choose	as	the	set	point	a	free	parameter	that	is	slightly	higher	than	one	emitter	per	area	

spanned	by	the	PSF.	

The	maximum	local	density	of	emitters	arises	naturally	from	a	density	map	estimate	because	the	sum	of	the	pixels	over	any	subregion	produces	the	

number	of	emitters	within	that	same	subregion.	We	can	transform	the	DEFCoN	output	into	a	map	of	local	emitter	densities	through	an	extension	of	

the	so‐called	“gliding	box	algorithm”		[36].	Briefly,	a	kernel	of	size	n	x	n	pixels	and	whose	values	are	all	unity	is	convolved	with	the	density	map.	During	

a	single	step	of	the	convolution,	the	value	of	the	pixel	currently	at	the	center	of	the	gliding	window	is	replaced	with	the	sum	of	the	pixels	that	fall	within	

the	window.	The	final	result	is	a	map	whose	values	represent	the	local	densities	of	emitters	(Fig.	S6).	The	maximum	local	count	(MLC)	is	the	maximum	

value	over	the	entirety	of	this	new	map:	

∈
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where	 	is	the	set	of	all	 	subregions	within	an	estimated	density	map	 , .	

Due	to	the	stochastic	switching	of	emitters,	large	fluctuations	are	expected	in	the	MLC	time‐trace.	A	more	reliable	control	value	is	therefore	the	

average	MLC	(AMLC),	which	is	simply	a	moving	average	over	the	most	recently	computed	MLC	values.	(A	Kalman	filter	may	be	a	more	robust	solution,	

but	photobleaching	causes	the	mean	density	of	emitters	to	decrease	so	slowly	that	a	simple	moving	average	will	typically	suffice.)	

Fig.	8	displays	the	results	of	activating	fluorophores	on	a	simulated	2D	microtubule	network	with	different	AMLC	values.	Briefly,	fluorophores	whose	

photodynamics	followed	that	of	a	simple	two	state	ON/OFF	model	were	simulated	with	a	2D	Gaussian	PSF.	5000	raw	frames	were	generated	for	each	

of	four	different	mean	fluorophore	off‐times	and	the	fluorophores	were	localized	with	subpixel	accuracies	in	ThunderSTORM		[21].	The	AMLC	for	each	

stack	was	computed	over	7	x	7	pixel	windows	(pixel	size:	100	nm)	from	DEFCoN’s	density	maps.	

Qualitatively,	we	see	that	the	AMLC	correlates	well	with	the	final	density	of	localizations	on	the	structure	and	therefore	the	final	resolution	of	the	

image		[37,38].	It	is	also	positively	correlated	with	the	number	of	false	positive	localizations	(red)	which	reflects,	for	a	fixed	acquisition	time,	the	tradeoff	

between	 resolution	 and	 the	 degree	 of	 artifacts.	 Importantly,	 the	 AMLC	 is	 a	 local	 property.	 Regions	with	 the	 highest	 ground	 truth	 density	 of	

fluorophores,	such	as	the	intersections	of	different	tubules,	will	contribute	more	often	to	the	AMLC	than	regions	with	a	low	ground	truth	density.	As	

demonstrated	in	Fig.	8,	these	high	density	regions	are	precisely	those	that	are	most	prone	to	artifacts.	
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Figure	8	The	AMLC	as	a	heuristic	for	set	point	determination.	AMLC	values	are	in	the	upper	left	

corner	of	each	image.	False	positive	localizations	are	in	red.	Scale	bar:	1	µm.	

In	this	light,	the	AMLC	is	a	heuristic	for	determining	a	set	point	that	minimizes	artifacts	across	the	entire	FOV.	It	does	this	at	a	cost	of	potentially	

increasing	the	acquisition	time	because	the	regions	that	are	less	dense	with	fluorophores	may	be	under‐activated.		One	possible	solution	could	instead	

be	to	average	the	MLC	over	time	and	space,	taking	care	to	exclude	empty	regions	from	the	spatial	average.	The	value	in	this	example	is	 that	it	

demonstrates	how	to	apply	domain	knowledge	when	determining	the	set	point:	translate	the	set	point	from	a	quantity	that	depends	on	the	FOV	into	

one	that	is	more	general	to	the	problem.	

5. Discussion 
To	promote	further	development	in	this	field,	we	have	packaged	these	tools	into	a	plugin	for	Micro‐Manager	2.0,	an	open	source	software	suite	for	

microscope	control		[17].	The	plugin,	called	ALICA,	implements	the	control	system	in	Fig.	1	and	allows	users	to	select	between	different	algorithms	for	

the	analyzer	and	controller	based	on	their	needs.	

One	may	ask	though	why	control	systems	like	those	developed	here	are	necessary	for	SMLM	or	more	generally	for	super‐resolution.	Beyond	saving	

time	and	increasing	throughput,	they	stand	to	improve	the	quality	and	reproducibility	of	microscopy	data.	Properly	designed	and	tested	algorithms	

do	not	make	mistakes.	Once	established,	they	do	not	require	laboratory	training	to	distinguish	good	imaging	from	bad.	For	this	reason,	they	can	play	a	

significant	role	in	helping	to	ensure	that	super‐resolved	data	acquisition	is	unbiased	and	contains	minimal	errors.	

It	is	important	therefore	to	distinguish	between	automated	and	autonomous,	or	“optimal,”	imaging.	Simple	automation	of	an	acquisition	implies	

that	microscope	hardware	executes	a	predetermined	list	of	actions	without	regard	to	the	quality	of	the	data.	It	can	save	time,	but	some	of	its	benefits	

are	offset	by	the	rigorous	quality	control	steps	that	must	necessarily	follow	acquisition.	Optimal	imaging	systems	on	the	other	hand	attempt	to	find	the	

best	combination	of	hardware	settings	for	producing	datasets	that	are	most	faithful	to	the	structure	in	terms	of	both	accuracy	and	precision,	while	

simultaneously	ensuring	maximal	resolution	and	minimal	acquisition	time.	Optimal	 imaging	 is	much	harder	than	automation	to	 implement.	As	

demonstrated	here,	it	requires	engineering	multiple	components	of	feedback	loops	to	make	them	robust	against	a	range	of	possible	sample	conditions.	

It	also	involves	reducing	the	number	of	free	parameters	that	require	tuning;	in	doing	so	we	reduce	the	number	of	assumptions	and	instead	force	the	

measurement	system	to	adapt	to	the	sample.	Finally,	with	both	the	self‐tuning	PI	controller	and	the	AMLC	we	demonstrated	the	value	in	constructing	

systems	whose	control	parameters	reflect	quantities	within	the	general	problem	domain,	rather	than	those	that	are	sample‐specific.	

DEFCoN	works	by	recognizing	how	to	count	molecules	based	on	the	shapes	of	multiple,	overlapping	spots.	It	does	not,	however,	currently	extract	

count	information	that	is	encoded	in	time.	Accounting	for	such	information	may	improve	its	accuracy	in	high	density	conditions,	such	as	when	imaging	

so‐called	zero‐dimensional	structures	that	appear	as	diffraction‐limited	spots	in	widefield	images.	We	expect	that	extending	DEFCoN	to	include	

temporal	information	would	further	decrease	its	bias,	although	it	already	works	well	across	the	range	of	emitter	densities	frequently	encountered	in	
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SMLM.	The	real	value	in	incorporating	temporal	information	would	be	to	extend	ALICA’s	toolset	into	more	general	fluctuation‐based	super‐resolution	

modalities,	such	as	SOFI	and	SRRF		[39,40],	which	excel	in	dense	environments	of	active	emitters.	We	also	note	that	the	purpose	of	DEFCoN,	i.e.	

counting,	is	different	from	other	recent	Deep	Learning	approaches	to	SMLM,	Deep‐STORM	and	DeepLoco		[41,42].	DEFCoN	directly	computes	local	

densities	of	molecules	and	is	tailored	for	real‐time	control	systems.	Both	Deep‐STORM	and	DeepLoco	are	intended	to	compute	localizations	and	are	

tailored	for	high	precision,	post‐acquisition	analysis.	

In	summary,	we	presented	solutions	to	three	problems	in	illumination	control	for	localization	microscopy.	In	doing	so,	we	exercised	the	design	

principles	that	we	believe	are	most	important	for	autonomous	super‐resolution	illumination	systems:	implement	feedback,	modularize	the	control	

loop,	optimize	the	subsystems,	and	translate	control	parameters	into	quantities	that	are	independent	of	the	sample.	Finally,	we	provide	open‐source	

tools	so	that	these	developments	may	continue	to	improve	the	quality	and	reproducibility	of	super‐resolution	microscopy	data.	

	

Data	associated	with	this	manuscript	is	available	at	http://doi.org/10.5281/zenodo.1212352		[43].	The	software	tools	presented	in	this	work—ALICA,	

DEFCoN,	and	SASS—are	available	at	https://github.com/LEB‐EPFL.	
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This	document	provides	 supporting	 information	about	 the	performance	of	various	 spot	 counters,	details	about	
training	DEFCoN,	and	additional	material	that	supports	the	main	text.	

1. Spot Counter Bias 

The	bias	of	spot	counters	refers	to	the	nonlinear	shape	and	of	the	curves	obtained	by	plotting	the	estimated	counts	against	the	true	number	

of	active	emitters	in	an	image.	Spot	counting	by	detection	with	matched	filters	and	local	maxima	search	displays	a	bias	towards	undercounting	

at	high	densities,	indicated	by	a	saturation	of	the	curve.	

To	demonstrate	this	effect,	we	simulated	15,000	frames	of	a	2D	SMLM	image	stack	and	ran	different	spot	counting	algorithms	on	the	stack	

for	comparison.	The	average	number	of	active	emitters	was	increased	every	1000’th	frame	by	slightly	increasing	the	transition	rate	from	the	

off	to	the	emitting	state.	The	fluorophores	were	randomly	arranged	on	a	2D	microtubule	network	from	the	2016	SMLMS	Challenge		[1]	and	

were	modeled	with	a	two‐state	system	whose	simulated	lifetimes	were	exponentially‐distributed.	We	tested	four	different	algorithms	for	

counting:	three	detection‐based	algorithms	using	filtering	and	peak	finding	and	AutoLase,	an	algorithm	which	indirectly	counts	spots	by	

measuring	pixel	on‐times	[2].	The	detection‐based	counters	included	SpotCounter		[3],	a	simple	local	peak	finder,	the	wavelet	+	watershed	

method	of	Izeddin	et	al.		[4],	and	ComDet,	a	spot	finder	optimized	for	heterogeneous	backgrounds		[5].	

Fig.	 S1	 displays	 the	 results	 of	 this	 simulation	 for	 varying	 input	 parameters	 of	 the	 different	 algorithms.	With	 the	 exception	 of	 the	

wavelets/watershed	algorithm	at	the	smallest	spline	scale	parameter,	all	of	the	response	curves	display	a	saturation	at	high	densities	within	

the	range	tested	here.	The	wavelet/watershed	curve	that	does	not	saturate,	however,	grossly	over	counts	the	number	of	spots	at	low	densities	

because	it	detects	noisy	pixels.	

The	AutoLase	tests	were	performed	by	simulating	150,000	frames	and	recording	only	every	10’th	frame	to	avoid	introducing	spurious	

correlations	from	emitters	that	were	on	for	multiple	frames	into	the	count.	The	AutoLase	curve	with	a	threshold	just	above	the	pixel	offset	

value	(a	threshold	of	120	and	offset	of	100	ADU)	displays	the	best	linearity	over	the	range	of	emitter	counts.	However,	this	comes	at	a	cost	of	

not	knowing	the	absolute	count	numbers	but	rather	the	pixel	on‐times.	(Note	the	vertical	offset	relative	to	the	gray	line.)	To	avoid	bias	by	

bright	continuous	objects	such	as	dust	particles,	AutoLase	implements	an	ad	hoc	routine	to	remove	pixels	from	the	analysis	that	have	been	on	

for	too	long.	Furthermore,	AutoLase	assumes	the	same	photodynamics	model	that	was	used	in	the	simulation;	it	is	not	clear	how	well	it	

performs	in	realistic	scenarios	where	the	fluorescence	dynamics	can	no	longer	be	modeled	as	a	memoryless	two‐state	system.	Finally,	the	

underperformance	 of	 ComDet	 relative	 to	 the	 other	 algorithms	 for	 counting	 should	 not	 be	 taken	 as	 a	 negative	 sign	 about	 ComDet’s	

segmentation	performance.	Because	it	combines	clusters	of	spots	into	single	detections,	it	undercounts	by	design.	
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Supplementary	Figure	S1.	Spot	counters	and	bias	towards	undercounting.	The	gray	line	indicates	a	

perfect,	unbiased	result.	Data	points	are	binned	averages	with	error	bars	representing	the	95%	

confidence	 interval	 of	 the	mean.	 a)	 SpotCounter	with	 a	 variable	 “Box	 size”	 parameter.	 b)	 The	

wavelet/watershed	algorithm	with	a	variable	B‐spline	scale	argument.	c)	ComDet	with	a	variable	

noise	setting.	d)	AutoLase	with	various	threshold	values.	e)	The	widefield	and	example	images	from	

the	simulated	stack	with	the	ground‐truth	number	of	active	emitters	indicated.	Scale	bar:	2	µm.	

2. DEFCoN Training 

A. Training data generation, augmentation, and preprocessing 

DEFCoN	is	trained	exclusively	on	simulated	data	from	SASS,	our	in‐house	simulation	and	development	platform		[6].	The	training	process	is	

illustrated	in	Fig.	S2.	89,500	64‐by‐64	pixel	training	images	were	generated	with	signal‐to‐noise	(SNR)	varying	between	2.0	and	17.2	and	with	

fluorophore	densities	between	0.0	and	1.5	µm‐2,	to	reflect	the	broad	range	of	conditions	encountered	in	SMLM.	The	camera	pixel	size	varies	

between	50	nm	and	135	nm.	Half	the	training	sets	contain	out‐of‐focus	fluorophores	using	the	Gibson‐Lanni	model	for	the	point	spread	

function	(PSF)		[7,8].	A	third	of	the	set	is	built	using	realistic	microtubule	simulations,	while	the	other	two	are	made	of	randomly	distributed	

fluorophores.	Finally,	a	low‐frequency	random	background	is	generated	on	half	of	the	images	using	simplex	noise		[9,10].	
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The	generated	images	are	augmented	further	by	random	shifts	of	the	brightness	and	contrast.	The	network	is	trained	using	the	full	images.	

Training	on	random	crops	of	the	images	was	also	tested,	but	this	method	does	not	give	better	training	performance.	Finally,	before	being	fed	

to	the	network,	the	input	images	are	preprocessed	using	linear	normalization,	i.e.	histogram	stretching.	If	 , 	is	the	original	intensity	of	pixel	

, ,	then	the		transformation	is	given	by:	

,
, min ,

max , min ,
		 	 	 	 	 	 (1)	

	

As	a	result,	every	pixel	value	in	the	image	is	between	0	and	1.	Normalizing	the	inputs	improves	training	speed	and	generalization.	

	

	

Supplementary	Figure	S2.	Training	DEFCoN’s	neural	networks.	The	training	takes	place	in	two	steps:	

first	the	segmentation	network	alone	is	trained	on	target	segmentation	maps.	Then	its	weights	are	

frozen	and	the	full	network	is	trained	on	the	target	density	maps.	

B. Target construction and training 

To	train	DEFCoN,	two	target	images	were	built	for	each	image:	one	segmentation	mask	and	one	density	map.	The	density	maps	are	created	

by	adding	Gaussian	kernels	to	an	empty	image	at	the	ground‐truth	positions	of	the	emitters.	Emitters	whose	total	signals	were	less	than	250	

photons	per	frame	were	not	included	in	the	density	map	because	they	were	likely	to	have	had	a	very	poor	SNR	in	the	simulated	image.		For	

the	kernels,	we	use	the	standard	deviation	σ	=	1	pixel.	We	found	this	value	to	be	a	good	compromise;	smaller	kernels	do	not	have	a	good	

resolution,	while	larger	kernels	overlap	too	much.	Each	training	image	is	stored	with	its	corresponding	density	map.	

The	segmentation	masks	are	built	from	the	density	maps.	First	a	threshold	is	applied	to	the	Gaussian	kernels	in	the	ground	truth	density	

maps;	every	pixel	with	density‐map	value	over	0.03	is	given	the	value	1,	every	pixel	under	is	set	to	0.	

Training	is	done	in	two	phases	(Fig.	S2).	First,	the	segmentation	network	alone	is	trained	on	80550	images,	holding	out	8950	images	for	

validation.	A	0.5	dropout	regularization	layer		[11]	is	applied	after	the	deepest	convolutional	layer	to	prevent	overfitting.	The	training	is	

stopped	when	the	performance	on	the	validation	data	has	stopped	improving	(early	stopping).	This	double	regularization	(dropout	and	early	

stopping)	ensures	that	the	network	generalizes	well	to	new	datasets.	

The	complete	network	 is	 then	 trained	end‐to‐end,	 feeding	 the	 images	and	comparing	 the	output	 to	 the	ground	 truth	density	maps.	

However,	to	keep	the	segmentation	task	completely	separated	from	the	density	map	inference,	the	weights	in	the	segmentation	network	are	

frozen;	only	the	weights	of	the	density	network	are	adjusted	with	backpropagation	during	the	second	training	phase.	In	this	configuration,	the	

density	network	is	trained	with	the	same	validation,	optimization	and	regularization	parameters	as	the	segmentation	network.	
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C. Implementation Details 

The	network	is	implemented	and	trained	using	Tensorflow	1.3.0		[12]	with	the	Keras	2.0.8	API	by	François	Chollet		[13].	We	use	the	Adam	

optimization	algorithm		[14],	with	an	initial	learning	rate	of	0.001	for	both	training	phases	and	with	a	batch	size	of	32.	These	parameters	are	

not	of	crucial	importance,	but	are	chosen	to	achieve	fast	convergence.	Training	takes	between	one	and	two	hours	with	an	Nvidia	GeForce	GTX	

1060	6GB	GPU	and	an	Intel	Core	i5‐7600K	CPU,	clock	speed	of	3.80	GHz.	

D. Simulated dataset for comparison 

Fig.	S3	shows	various	examples	of	the	dataset	of	simulated	SMLM	images	that	were	used	to	compare	the	counting	accuracy	of	DEFCoN	to	that	

of	the	approach	introduced	by	Izeddin	et	al.		[4].	These	example	images	were	simulated	with	SASS		[6].	

Fig.	S4	demonstrates	the	degree	of	undercounting	of	three	different	spot	counters:	DEFCoN,	the		ThunderSTORM		[15]	implementation	of	

the	wavelet‐based	filtering	approach	of	 Izeddin	et	al.,	and	Spot	counter	 	[3].	The	tests	were	performed	on	the	simulated	dataset	whose	

examples	are	displayed	in	Fig.	S1e.	

	

Supplementary	Figure	S3.	Examples	of	the	fluorophore	densities	and	SNRs	used	to	test	DEFCoN.	The	

top	row	depicts	constant	SNR	and	increasing	density	from	left	to	right;	the	bottom	decreasing	SNR	

and	constant	density.
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Supplementary	Figure	S4.	Qualitative	comparison	demonstrating	the	slower	saturation	of	DEFCoN	

as	compared	to	wavelets/watershed	and	a	simple	spot	counting	algorithm	called	Spot	Counter	that	

is	based	on	local	maxima	detection.	Solid	lines	are	averages	and	shaded	areas	are	standard	deviation	

about	the	mean.	The	dashed	line	represents	a	perfect	accuracy.	

E. Real dataset for comparison 

Fig.	S5	displays	examples	from	the	two	real,	i.e.	not	simulated,	datasets	from	the	SMLMS	2016	Challenge		[1],	Tubulins:	Long	Sequence	(RealLS)	

and	Tubulins:	High	Density	(RealHD).	Ten	frames	from	RealLS	and	 five	from	RealHD	were	selected	and	the	 localizations’	ground	truth	

positions	were	annotated	by	hand.	These	annotations	correspond	to	the	blue	circles	in	Fig.	S5.	

	

	

	

Supplementary	Figure	S5.	Example	of	annotated	datasets	from	the	SMLMS	Challenge		[1].	

3. Maximum Local Count 

The	concept	behind	the	maxium	local	count	(MLC)	is	illustrated	in	Fig.	S6.	The	sum	of	the	pixel	values	over	a	subregion	of	the	estimated	density	

map	returns	the	count	estimate	within	that	subregion.	The	local	count	around	each	pixel	is	the	sum	of	all	the	pixel	values	from	the	density	

map	within	a	neighborhood	centered	on	the	that	pixel;	convolution	of	the	density	map	with	a	square	kernel	containing	values	all	equal	to	one	

produces	a	local	density	map.	The	maximum	value	of	the	local	density	map	is	the	MLC.
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Supplementary	Figure	S6.	The	local	density	estimates	are	made	by	computing	the	sum	of	the	pixels	

in	a	subregion	of	a	density	map.	(In	this	example,	the	size	of	 the	subregion	is	7	x	7	pixels.)	The	

maximum	local	count	(the	red	square	on	the	right)	is	the	largest	value	found	in	the	map	of	local	

density	estimates.
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