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Abstract 
Our understanding of learning difficulties largely comes from children with specific diagnoses or 
individuals selected from community/clinical samples according to strict inclusion criteria. 
Applying strict exclusionary criteria overemphasizes within-group homogeneity and between-
group differences, and fails to capture comorbidity. Here we identify cognitive profiles in a large 
heterogeneous sample of struggling learners, using unsupervised machine learning in the form of 
an artificial neural network. Children were referred to the Centre for Attention Learning and 
Memory (CALM) by health and education professionals, irrespective of diagnosis or 
comorbidity, for problems in attention, memory, language, or poor school progress (n=530). 
Children completed a battery of cognitive and learning assessments, underwent a structural MRI 
scan, and their parents completed behaviour questionnaires. Within the network, we could 
identify four groups of children: i) children with broad cognitive difficulties, and severe reading, 
spelling and maths problems; ii) children with age-typical cognitive abilities and learning 
profiles; iii) children with working memory problems; and iv) children with phonological 
difficulties. Despite their contrasting cognitive profiles, the learning profiles for the latter two 
groups did not differ: both were around 1 SD below age-expected levels on all learning measures. 
Importantly a child’s cognitive profile was not predicted by diagnosis or referral reason. We also 
constructed whole-brain structural connectomes for children from these four groupings (n=184), 
alongside an additional group of typically developing children (n=36), and identified distinct 
patterns of brain organisation for each group. This study represents a novel move towards 
identifying data-driven neurocognitive dimensions underlying learning-related difficulties in a 
representative sample of poor learners. 
 
Keywords: cognitive development, education, learning difficulties, machine learning 
 
Research Highlights: 

• first study to apply machine learning to understand heterogeneity in struggling learners 
• large sample of struggling learners that includes children with multiple difficulties 
• rich phenotyping with detailed behavioural, cognitive, and neuroimaging assessments 
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Remapping the cognitive and neural profiles of children who struggle at school 
 
Prevalence rates of developmental disorders linked with learning difficulties, including attention 
deficit hyperactivity disorder (ADHD), dyslexia, dyscalculia and specific language impairment 
(SLI), range from 3–8 % (American Psychiatric Association, 2013; Norbury et al., 2016; 
Polanczyk et al., 2014; Shalev and Gross-Tsur, 2001). But the number of children who struggle 
at school is far higher. In the UK for example, around 30% of the school population fail to meet 
expected targets in reading or maths at age 11 (DfE, 2017). The long-term outcomes for children 
who struggle at school include continued educational underachievement, poor mental health 
(Roeser and Eccles, 2000) and underemployment (de Beer et al., 2014; Bynner and Parsons 
2005). 
Our understanding of the causes of learning difficulties comes largely from studying children 
with a specific diagnosis (e.g. ADHD or SLI) or those selected from community or clinical 
samples on the basis of strict inclusion criteria (e.g. children with poor reading skills, but age-
typical IQ and maths abilities). Most studies recruit children with “pure” problems (e.g. children 
with ADHD without comorbid dyslexia, or children with maths problems in the absence of 
reading problems or low IQ). There are practical advantages to this approach: it outlines clear 
criteria to inform practitioner decision-making about primary areas of weakness that can be used 
to identify intervention options.  
However, this approach can fail to accommodate the high rates of comorbidity within 
developmental disorders (Kotov et al., 2017; Coghill & Sonuga-Barke, 2012) and learning-
related difficulties (e.g., Angold et al., 1999). Over 80% of children with ADHD meet criteria for 
at least one additional diagnosis (e.g., Faraone et al., 1998; Willcutt & Pennington, 2000) and 15-
45% have co-occurring reading difficulties (e.g., Biederman et al., 1991; Faraone et al., 1993; 
Semrud-Clikeman et al., 1992). Reading difficulties also co-occur 50% of the time with maths 
(Moll et al., 2014) or language problems (McArthur et al., 2000).   
Using strict exclusionary criteria also overemphasizes similarities within groups, and the 
distinctiveness between groups (Kotov et al., 2017; Coghill & Sonuga-Barke, 2012). It is widely 
documented that symptoms vary between children with the same diagnosis. For example, 
performance on cognitive tasks within ADHD groups is notoriously variable (Castellanos et al., 
2005; Nigg et al., 2005). Symptoms also co-occur across groups. For example, symptoms of 
inattention are common in children with poor literacy and maths skills (Hart et al., 2010; Loe & 
Feldman, 2007; Zentall, 2007), ADHD, autism spectrum disorder (ASD; Rommelse, Geurts, 
Franke, Buitelaar & Hartman, 2011), SLI (Duinmeijer, Jong & de Scheper, 2012), and dyslexia 
(Willcutt & Pennington, 2000; Germano, Gagliano, & Curatolo, 2010). Finally, this approach of 
selectively grouping children does not capture the majority of struggling learners – they often do 
not receive a diagnosis or are characterised by complex and comorbid difficulties that would rule 
them out of studies with strict inclusion criteria.  
For these reasons a number of researchers have advocated empirically-based quantitative 
classification systems (Archibald et al., 2013; Coghill & Sonuga-Barke, 2012; Ramus et al., 
2013; Sonuga-Barke & Coghill, 2014), although few studies have done this. The aim of this 
approach is to move away from identifying highly selective discrete groups and instead focus on 
identifying continuous dimensions that distinguish individuals and can be used as potential 
targets for intervention. Dimensions are derived through data-driven explorations of the data, 
with no a priori assumptions about group membership. For example, factor analysis, a statistical 
method that groups variables based on shared variance, is used most commonly to derive 
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underlying dimensions from sets of symptoms or measures (e.g. Kotov et al., 2017). This 
technique has been used to identify dimensions of phonological and non-phonological skills in 
children with diagnosed SLI and dyslexia (Ramus et al., 2013) and separate latent constructs for 
inattention and hyperactivity in children with ADHD (Martel, von Eye & Nigg, 2010). An 
alternative approach, as yet rarely used, is to cluster children together according to shared 
profiles based on empirical data. In turn this can be used to inform classification systems, and 
consequently treatment approaches. Clustering algorithms have been used to identify groups of 
children with distinct learning (Archibald, Cardy, Joanisse & Ansari, 2013) and behavioural 
profiles (Bathelt, Holmes, the CALM Team & Astle, 2017).  
In this study we use a different data-driven approach – machine learning. Machine learning 
methods have rarely been applied to understanding developmental disorders (e.g. Fair et al., 
2012). Typical applications use supervised machine learning (Peng et al., 2013) in which the 
algorithm attempts to learn about pre-defined categories of children. Here we use an 
unsupervised learning approach whereby the algorithm attempts to learn about the structure of 
the data itself rather than which data correspond to pre-defined groups. Specifically, we used Self 
Organising Maps (SOMs; Kohonen, 1989), a type of artificial neural network. Due to their 
efficacy in visualising multidimensional data, SOMs have been successfully applied to a variety 
of tasks including textual information retrieval (Lin, 1991), the interpretation of gene expression 
data (Tamayo, 1999), and ecological community modelling (Giraudel, 2001). SOMs use an 
algorithm that projects the original data from a multidimensional input space onto a two-
dimensional grid of nodes called a ‘map’, while preserving topographical information. This 
produces an inter-variable representational space, wherein the geometric distance between nodes 
corresponds to the degree of similarity in the input data. Within the current context, input data 
are individual children from our sample. The map will represent the cognitive profiles of the 
children; the closer the children are represented within the map, the more similar their cognitive 
profiles. In this way, SOMs enable us to map the multidimensional space of our sample – the 
map will represent how different children group together because of their similar profiles, and in 
doing so it also learns about the dimensions that most reliably distinguish children.  
We applied this technique to a large heterogeneous sample of struggling learners. Children were 
referred to a research clinic, the Centre for Attention Learning and Memory (CALM), by health 
and education professionals for ongoing problems in attention, memory, language, or poor 
school progress in reading and / or maths. Recruitment was deliberately broad to capture the 
wide range of poor learners in the school population. Children were accepted into the study 
irrespective of diagnosis or comorbidity: only non-native English speakers and those with 
uncorrected sight or hearing problems were excluded. Our first aim was to test whether the 
multidimensional structure learnt by the map reflects in different sample characteristics, such as 
the primary reason for referral to the research clinic (e.g. problems in attention, learning, 
memory or language). 
A second aim of the current study was to use the information from the SOM to identify data-
driven groups within the sample. Even though it is likely that the dimensions that distinguish 
children are continuous, there may be important reasons to need to group children according to 
their shared cognitive profile: i) to identify shared etiological mechanisms, which will be easier 
with data-driven homogenous groups; and ii) to identify groups for a particular intervention. To 
do this the SOM was combined with another form of machine learning, k-means clustering 
(Lloyd, 1982). This combination identified groups of children with similar cognitive profiles. 
Having grouped the children with the cognitive data, we then explored the learning and 
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behavioural profiles of these groups. We also explored differences in white-matter connectivity 
between the data-driven groups. White matter maturation is a crucial process of brain 
development that extends into the third decade of life (Lebel et al., 2017) and relates closely to 
cognitive development (Clayden et al., 2012; Stevens et al., 2009). The brain can be modelled as 
a network of brain regions connected by white matter, commonly referred to as a connectome 
(Hagmann et al., 2008). We derived whole-brain connectomes and compared them across the 
groups produced by the machine learning. In short, our second aim was to use machine learning 
to identify groups of children with shared cognitive profiles, and then test whether these groups 
differ on learning and behavioural measures, and in terms of brain organisation. 
This mapping process is intentionally exploratory, and given this novel application of the 
analytical approach alongside a unique sample, it is difficult to make clear predictions about 
what the algorithm will learn. The children attending the clinic completed assessments of the 
cognitive skills known to be impaired in children with learning-related problems including 
measures of phonological processing, short-term and working memory, attention and fluid 
reasoning (non-verbal IQ). Children with deficits in reading or language, or associated diagnoses 
of dyslexia or SLI often have phonological processing problems (Bishop & Snowling, 2004; 
Joanisse et al., 2000; Ramus et al., 2010; Vellutino, Fletcher, Snowling & Scanlon, 2004). In 
contrast, those with specific problems in maths or diagnosed dyscalculia are typically 
characterised by more severe deficits in spatial short-term and working memory (Geary et al., 
2004; Holmes, Adams & Hamilton, 2008; McKenzie, Bull & Gray, 2003; McLean & Hitch, 
1999; Rasmussen & Bisanz, 2005; Simmons, Singleton & Horne, 2008; Swanson & Sachse-Lee, 
2001) and broader executive functions (Bull, Espy & Wiebe, 2008; Bull, Espy, Wiebe, Sheffield, 
& Nelson, 2011; Szucs et al., 2013; van der Ven, Kroesbergen, Boom, & Leseman, 2012). So, a 
reasonable prediction is that our large sample of struggling learners will include subgroups of 
children with either phonological problems or spatial short-term / working memory difficulties, 
and that these children will predominantly struggle with reading or maths, respectively. Below 
average non-verbal reasoning is common among individuals with reading (Duranovic et al., 
2014; Gathercole, Woolgar, Keivit, Astle, Manly, the CALM Team & Holmes, 2016; Pointus, 
1981; Winner et al., 2001) and maths problems (Gathercole, et al., 2016; Swanson & Beebe-
Frankenberger, 2004; Fuchs et al., 2005, 2006, 2015), as well as those with ADHD (Holmes et 
al., 2013). So, another reasonable prediction is that our sample of struggling learners will include 
a subgroup of children with low fluid reasoning skills, and this will be associated with problems 
in both reading and maths.  
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Method 
Participants 
Children were referred by practitioners working in educational or clinical services to the Centre
for Attention Learning and Memory (CALM), a research clinic at the MRC Cognition and Brain
Sciences Unit, University of Cambridge. Referrers were asked to identify the primary reason for
referral, which could include ongoing problems in ‘attention’, ‘learning’, ‘memory’ or ‘poor
school progress’. The only exclusion criteria were uncorrected problems in vision or hearing and
English as a second language. 
 

Figure 1: Consort diagram showing recruitment avenues and exclusions 
 
The initial sample consisted of 550 children. Twenty children (3.6%) were subsequently
removed because of missing data on any one of the 7 tasks used for the machine learning. All
subsequent details refer to the remaining 530 children (see Figure 1 for attainment). Thirty three
percent were referred for problems with attention, 11% for language difficulties, 10% for
memory problems, and 43% for problems with poor school progress (for 3% of children referrers
did not provide a primary referral reason). The final sample (mean age = 111 months, range = 65
to 215 months) contained 366 boys (69%). A high proportion of boys is consistent with
prevalence estimates for different developmental disorders within cohort studies (e.g. Russell,
Rodgers, Ukoumunne, Ford, 2014).  
Children were recruited with single, multiple or no diagnosis. The majority did not have a
diagnosis (340, 64%). The prevalence of diagnoses were: ASD=6%; dyslexia=6%; obsessive
compulsive disorder (OCD)=2%. Twenty-two percent of the sample had a diagnosis of ADD or
ADHD, and further 11% were under assessment for ADHD (on an ADHD clinic waiting list for
a likely diagnosis of ADD or ADHD). Finally, 19% of the sample had received support from a
Speech and Language Therapist (SLT) within the past two years, but did not typically have a
diagnosis of SLI.   
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Families attended the CALM clinic for the children’s cognitive and learning assessments. 
Testing lasted approximately 3 hours and was completed over multiple sessions where necessary. 
Parents /carers were invited to complete multiple questionnaires assessing the child’s behaviour 
and all children were invited for a subsequent magnetic resonance imaging (MRI) scan. Ethical 
approval was granted by the local NHS research ethics committee (Reference: 13/EE/0157). 
Written parental consent was obtained and children provided verbal assent. 
 
Measures 
Cognitive 
A large battery of cognitive, learning and behavioural measures are administered in the CALM 
clinic (full protocol: http://calm.mrc-cbu.cam.ac.uk/protocol/). Seven cognitive tasks meeting the 
following criteria were used for the machine learning: i) data were available for all 530 children; 
ii) accuracy was the outcome variable; and iii) age standardised norms were available. For all 
measures, age standardised scores were converted Z scores using the mean and standard 
deviation from the respective normative samples to put all measures on a common scale (original 
age norms were a mix of scaled, t, and standard scores). The following measures of fluid and 
crystallised reasoning were included: Matrix Reasoning, a measure of fluid intelligence 
(Wechsler Abbreviated Scale of Intelligence (WASI), Wechsler, 2011); Peabody Picture 
Vocabulary Test (PPVT, Dunn & Dunn, 2007). Phonological processing was assessed using the 
Alliteration subtest of the Phonological Awareness Battery (PhAB, Frederickson, Reason, Frith, 
1997). Verbal and visuo-spatial short-term and working memory were measured using Digit 
Recall, Dot Matrix, Backward Digit Recall and Mr X subtests from the Automated Working 
Memory Assessment (AWMA, Alloway, 2007). 
 
Learning 
Spelling, reading and maths measures were taken from the Wechsler Individual Achievement 
Test (WIAT, Wechsler, 2001). Data were available for 98% of the sample. The Woodcock 
Johnson III Test of Achievement (WJ, Woodcock, McGrew, & Mather, 2007) was administered 
to the first 68 children attending the CALM clinic. It was substituted for the WIAT because a 
large proportion of recruits seemed to be poor at maths. (We wondered whether the timed nature 
of the subtest was constraining children’s scores disproportionately.) However, scores did not 
improve for subsequent recruits. A small number of children completed both maths assessments. 
There were no significant differences in performance across the tests.  Age standardised scores 
were converted to z scores using the normative sample mean and standard deviation for all 
learning measures. 
 
Behaviour 
Parents/ carers completed the Behavioural Rating Inventory of Executive Function (BRIEF, 
Gioia, Isquith, Guy, Kenworthy, 2000). This is designed to assess behavioural skills associated 
with executive function on eight scales, including planning, working memory, inhibition, 
impulse control, and emotional regulation. Complete data were available for 99% of our 530 
children.  
The Children’s Communication Checklist (CCC-2, Bishop, 2003) was also administered. This 
consists of eight scales assessing a child’s structural language (e.g. speech, syntax, semantics), 
pragmatic communication skills (e.g. turn taking, initiation, and use of context), and two 
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additional scales to assess ASD-related dimensions (social relations and interests). Complete 
CCC-2 data were available for 99% of the sample.  
 
Statistical Methods 
A SOM consists of a predefined number of nodes laid out on a two-dimensional grid plane; each 
node corresponds to a ‘node-weight vector’ with the same dimensionality as the input data. In 
our case, each node will have 7 weights associated with it (one for each cognitive task). A rule of 
thumb for determining map size, is to use a number of nodes equal to around 5 times the square 
root of the number of observations (Tian, Azarian & Pecht, 2014). In this case, we used a 10 by 
10 grid of nodes.  
 
Training the map 
The map trained using the neural network toolbox in Matlab (MathWorks, 2017a). We initialised 
the node weight vectors using linear combinations of the first two principal components of the 
input data. SOMs were then trained using a batch implementation, in which each node � is 
associated with a model �� and a ‘buffer memory’. One cycle of the batch algorithm can be 
broken down into the following: Each input vector ���� is mapped onto the node with which it 
shares the least Euclidean distance, at time �, known as its Best Matching Unit (BMU); Each 
buffer first sums the values of all input vectors ���� for which its corresponding node is the 

BMU and stores the addends; compute ∑ ����

��

  , where �� is the neighbourhood set belonging to 

node �; divide this by the total number of input vectors mapped to �� to derive a mean value for 
these partial sums; All�� are then updated concurrently according to these values, in this way 
neighbouring nodes become more similar to one another. This cycle is repeated, clearing all the 
buffers on each cycle and distributing new copies of the input vectors into them. The 
neighbourhood size decreases as a function of � (Equation 1.) in an ‘ordering’ phase, from the 
initial neighbourhood size of 3, down to 1. In the ‘fine tuning’ phase the neighbourhood size is 
fixed at <1, meaning that the node weights are updated according only to the input vectors for 
which they are the BMU. This node adjustment process is the mechanism by which the SOM 
learns about the input data. 

�
 � �  ����
� � �� � ��
���� 

At the end of the training process: i) the weight vector for each individual node reflects the 
scores of the children for whom that node was the BMU; ii) neighbouring nodes have similar 
weights, such that children with similar cognitive profiles are allocated to nodes that are near 
each other. In essence, the machine learning process generates a model of the multi-dimensional 
cognitive data set on which the SOM was trained.   
 
Exploring the distributions of different groups of children 
Once the map had been trained we tested whether different groups of children cluster together. 
For example, if a child’s diagnosis predicts their cognitive profile, then children with the same 
diagnosis ought to cluster together. That is, they ought to sit on nodes that are near one another. 
However, if there is no systematic relationship between this characteristic and a child’s cognitive 
profile then this group will be randomly scattered across the map. We tested this both for 
diagnosis (ASD, dyslexia and ADHD) and the referrer’s primary reason for sending the child to 
the CALM clinic (problems with attention, language, memory or poor school progress).  
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To do this, the BMU was tested for each different group. The topographical distribution of this 
was tested statistically using a version of the Kolmogrov-Smirnov test adapted for 2-dimensional 
data from two samples (Peacock, 1983). The statistic (D) tests whether the two samples are 
drawn from the same or different 2-dimensional distributions. In each case we compared the 
distribution of members of a particular category (e.g. referred for language problems) with that 
of non-members (e.g. those not referred for language problems). A significant statistic indicates 
that the two distributions are not drawn from the same underlying population – i.e. that this 
particular way of categorising children is significantly predictive of the cognitive profile that 
they have. Conversely a non-significant result indicates that the category’s members are equally 
likely to appear anywhere within the map. 
 
Data driven subgrouping  
The artificial neural network maps cognitive profiles in a continuous 2D plane of nodes, where 
space indicates similarity. We carved our map into sections and grouped the children who fell 
within that section, thereby clustering children with similar cognitive profiles. Clustering 
children who sit close together ought to yield groups with relatively homogenous cognitive 
profiles that are necessarily distinct from children in other clusters.  
 There is no clear theoretical rationale for how many clusters the map should be carved 
into. By definition, the map is fully continuous without clear boundaries. One way to validate the 
clusters is to test whether they generalize to data not included in the initial machine learning – 
this could be other cognitive data, learning measures, behavioural questionnaires or brain data. 
For example, if clusters cannot be distinguished with unseen data then it suggests that the 
machine learning is over-fitting the data and /or the number of clusters is too high. In this case, 
the maps would need to be trained with fewer repetitions, a reduced set of nodes, or most likely a 
reduced number of clusters. To foreshadow our results, in the current sample we can identify 
four clusters of children. This is the maximum number of clusters that yield generalizable unique 
profiles. The Supplementary Materials includes a five cluster solution, which replicates the 
clusters from the four cluster solution, and a statistical comparison between the two. The 
Supplementary Materials also includes an alternative means of grouping children that is not 
reliant on machine learning – community detection via a network analysis (e.g. Bathelt et al. in 
press).   
To identify data-driven clusters the node weight values from the SOM were submitted to k-
means clustering. Once the nodes were grouped according to the similarity of their weights, we 
identified children assigned to each group of nodes. This provided us with clusters of children 
based on nodes they were assigned to in the original mapping. This process was repeated 1000 
times, with the map retrained on every iteration and the k-means clustering recalculated, to check 
that the clusters were robust. Inevitably some children sit on the arbitrary cluster boundary 
within the map and thus fall inconsistently into multiple different clusters on each iteration. 
Across the 1000 iterations we were able to identify the children’s modal cluster, which was used 
for subsequent analyses. There was a clear modal cluster for 529 children (chi-squared test, 
ps<0.05). To check the clustering, each cluster distribution was plotted on the original map. If 
the process had worked then all cluster members ought to sit on neighbouring nodes within the 
original map. 
The cognitive profiles of the clusters were compared to identify the ways in which they differ (it 
is necessarily the case that they will differ). Importantly the groups were then compared on other 
measures not included in the machine learning, namely learning and behavioural assessments 
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and in terms of brain organisation. For all of our assessments we corrected for multiple 
comparisons using a Bonferroni Correction within each data type (i.e. cognition, learning and 
behavioural measures). 
 
Neuroimaging 
 
MRI participant sample 
254 children participated in the MRI part of the study. 64 scans were not useable due to 
excessive motion (>3mm movement during the diffusion sequence estimated through FSL eddy 
or visual inspection of T1-weighted images). The finally sample for MRI analysis consisted of 
184 children (123 male, Age [months]: mean=117.62, SE=1.938). The ratios of SOM-defined 
groups did not differ from the behavioural sample (Cluster 1: n=48, Cluster 2: n=44, Cluster 3: 
n=51, Cluster 4: n=41, �2=0.01, p>0.999). There were no significant differences between the 
groups in residual movement (see Table 1). For an additional comparison with a typically-
developing sample, we selected children from a concurrent study about risk and resilience in 
education that shared many of the same cognitive assessments and used an identical 
neuroimaging protocol (Ethical approval number: Pre.2015.11). For the comparison, children 
with good-quality MRI who scored above the 40th percentile for their age on assessments of fluid 
reasoning, vocabulary, verbal and visuospatial short-term and working memory were selected. 
The additional control sample consisted of 36 children (18 male, Age [months]: mean=117.79, 
SE=3.129, range: 83.02-150.05).  
 

Table 1: Comparison of residual movement during the diffusion sequence between groups. The upper 
triangle of the table shows the p-value of an independent sample t-test. The lower triangle shows the 
corresponding t-value. 
 
 C1 C2 C3 C4 C0 
C1  0.119 0.668 0.401 0.208 
C2 1.57  0.247 0.291 0.847 
C3 0.43 -1.17  0.225 0.309 
C4 -0.84 -1.69 -1.22  0.100 
C0 1.27 0.19 1.02 1.66  
 
 
MRI data acquisition 
Magnetic resonance imaging data were acquired at the MRC Cognition and Brain Sciences Unit 
in Cambridge, on the Siemens 3 T Tim Trio system (Siemens Healthcare, Erlangen, Germany) 
using a 32-channel quadrature head coil. T1-weighted volume scans were acquired using a whole 
brain coverage 3D Magnetisation Prepared Rapid Acquisition Gradient Echo (MP RAGE) 
sequence acquired using 1mm isometric image resolution. Echo time was 2.98ms, and repetition 
time was 2250ms. Diffusion scans were acquired using echo-planar diffusion-weighted images 
with an isotropic set of 60 non-collinear directions, using a weighting factor of b=1000s*mm-2, 
interleaved with a T2-weighted (b = 0) volume. Whole brain coverage was obtained with 60 
contiguous axial slices and isometric image resolution of 2mm. Echo time was 90ms and 
repetition time was 8400ms. 
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Structural connectome construction and comparison 
First, MRI scans were converted from the native DICOM to compressed NIfTI-1 format. Next,
correction for motion, eddy currents, and field inhomogeneities was applied using FSL eddy (see
Figure 2 for an overview of processing steps). Further, we submitted the images to non-local
means de-noising (Manjon et al. 2009) using DiPy v0.11 (Garyfallidis et al., 2014) to boost
signal-to-noise ratio. The diffusion tensor model was fitted to derive maps of fractional
anisotropy (FA) using dtifit in FSL v.5.0.6 (Behrens et al., 2003). A constant solid angle (CSA)
model was fitted to the 60-gradient-direction diffusion-weighted images using a maximum
harmonic order of 8 using DiPy. Whole-brain probabilistic tractography was performed with 8
seeds in any voxel with a General FA value higher than 0.1. The step size was set to 0.5 and the
maximum number of crossing fibers per voxel to 2. 
 
For ROI definition, T1-weighted images were submitted to non-local means denoising in DiPy,
robust brain extraction using ANTs v1.9 (Avants et al. 2011), and reconstruction in FreeSurfer
v5.3 (http://surfer.nmr.mgh.harvard.edu). Regions of interests (ROIs) were based on the
Desikan-Killiany parcellation of the MNI template (Desikan et al., 2006) with 34 cortical ROIs
per hemisphere and 17 subcortical ROIs. The cortical parcellation was expanded by 2mm into
the subcortical white matter. The parcellation was moved to diffusion space using FreeSurfer
tools. 
 
For each pairwise combination of ROIs, the number of streamlines intersecting both ROIs was
calculated. A symmetric intersection was used, i.e. streamlines starting and ending in each ROI
were averaged. The weight of the connection matrices represented the log10-transformed number
of streamlines between the ROIs.  
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Figure 2: Overview of processing steps to reconstruct a white matter connectome from diffusion-
weighted and T1-weighted MRI data 

 
To investigate regional differences, we calculated the sum of all connections per region within 
the connectome. Regions that showed a significant difference between a deficit group (C1, C2, 
C4) and an age-appropriate performance group (C3) were selected (t-test: puncorrected<0.05) and 
further tested against the external control group (method adapted from Shen et al. 2017). Only 
regions that displayed a significant difference in comparison with the control sample were 
included (FDR-corrected p<0.05).  
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Results 
Comparison of the weight matrices 
A good way to demonstrate how the SOM represents the cognitive data is to plot the values for
each weight vector (i.e. the weights that correspond to each individual task) across the grid of
nodes. This can be seen in Figure 3. 
 

Figure 3: Weight distributions from the self-organising map, split by task. For each task the map depicts
high weights (i.e. good performance) as yellow squares and low weights (i.e. poor performance) as black
squares. The Pearson correlation between the weight distributions can be seen in the bottom-right matrix. 
 
If tasks discriminate children in similar ways they should have similar node weight topographies.
This was quantified by correlating the weight vectors. The resulting correlation matrix can be
seen in the bottom right corner of Figure 2. There are some noteworthy relationships. For
example, the two measures traditionally combined to produce a full-scale IQ score, the Matrix
Reasoning and PPVT vocabulary measure, have very highly correlated weights. Tasks that share
a phonological component have highly correlated weight matrices: alliteration, verbal STM and
verbal WM measures. Finally, spatial STM and WM measures are somewhat distinct from other
measures, with weight matrices that are only moderately correlated with the other tasks.  
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Exploring distributions of different categories of children  
To explore whether different sample characteristics (diagnostic status, referral reason) are
reflected within the map, the best matching node for different groups of children was selected. If
category membership significantly predicts a child’s cognitive profile then these children should
sit together in the map. Conversely if membership is not predictive then the distribution of
members should not differ significantly from that of non-members. Figure 4 shows the
distribution of all children within our network, then for each category of primary referral reason
and then each of the major diagnoses. The statistics are shown under each topography. None are
significant. That is, children are evenly scattered regardless of the primary reason for referral or
diagnosis; each of these characteristics provides no information about a child’s cognitive profile
on our measures.  
 

 

Figure 4: The distributions of children’s best matching unit (BMU) within the map. This is first shown
for all children and then for children categorised by referral reason and diagnosis. Beneath each plot the
statistic indicates whether the BMUs are evenly scattered or grouped.  
 
Common cognitive profiles  
To identify children with common cognitive profiles, the map was carved into four sections by
applying k-means clustering to the node weights of the SOM. Each cluster has a distinct spatial
distribution within the map (Figure 5), as expected, and this is reflected in the distribution
statistic. 
Each group necessarily has a distinct cognitive profile. The first cluster includes children with
broad and severe cognitive difficulties – these children are around a standard deviation or more
below the age-expected level on all cognitive measures. The third cluster includes children with
age-typical cognitive abilities, performing close to age-expected levels on all tasks. These two
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clusters are subsequently referred to as the ‘Broad Cognitive Deficits’ and the ‘Age Appropriate’
groups, respectively. The remaining two clusters have intermediate profiles. They have similar
moderate difficulties with Matrix Reasoning, but distinct profiles on the remaining measures.
The second cluster has difficulties on the spatial STM, and verbal and spatial WM measures.
This group is called the ‘Working Memory Deficits’ group. The fourth cluster has difficulties
tasks with a verbal component: vocabulary, phonological awareness, verbal STM and verbal
WM. This cluster is called the ‘Phonological Deficits’ group.  
 

 

Figure 5: The top panel shows the distributions of children assigned to each of the four clusters. Beneath
each map the statistic indicates that all four clusters occupy a non-random set of nodes within the map.
Beneath the maps the cognitive profile of each cluster is shown, ordered by cluster number. The scale
indicates performance as a z score relative to age expected levels. The dots indicate individual children
with the shade indicating the child’s consistency within that cluster over the 1000 iterations – the darker
the shade the more consistent the child.   
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The profiles of the four clusters can be seen in Figure 5, with scores and group comparisons 
presented in Table 2. All measures differed significantly across groups (all ps<0.001). Post-hoc 
Tukey tests were used to identify the underlying pairwise comparisons that produce these 
significant effects. For Matrix Reasoning all post-hoc tests were significant at p<0.001, except 
between clusters 2 and 4 (Working Memory versus Phonological Deficits groups). The Working 
Memory Deficits and Phonological Deficits groups have equivalent Matrix Reasoning scores 
(p=0.86). For Vocabulary, all post-hocs were significant at p<0.001. For the Phonological 
Awareness task, all post-hocs were significant at p<0.007. For Verbal STM, all post-hocs were 
significant at p<0.001. For Spatial STM, all post-hocs were significant at p<0.001, except 
between clusters 1 and 2 (Broad Deficits versus Working Memory deficits groups). The Broad 
Cognitive Deficits and Working Memory Deficits groups have equivalent Spatial STM scores 
(p=0.51). For Verbal WM, all post-hocs were significant at p<0.001, except for between cluster 2 
and 4 (Working Memory versus Phonological Deficits groups). The Working Memory Deficits 
and Phonological Deficits groups had equivalent Verbal WM scores (p=0.68). And finally, for 
Spatial WM all post-hocs were significant at p<0.001, except for between clusters 3 and 4 (Age 
Appropriate versus Phonological Deficits groups). The Age Appropriate and Phonological 
Deficits group had equivalent Spatial WM performance (p=0.13). 
The four groups are roughly equivalent in size, and although the children in the Phonological 
Deficits group tend to be younger, there are no significant age differences. The Broad Cognitive 
Deficit group contains a disproportionate number of girls, relative to the rest of the sample (�2 = 
6.12, p=0.0133). Conversely the Age Appropriate group contains more boys than expected (�2 = 
6.80, p=0.009). The Working Memory deficit and Phonological Deficit groups contain the 
proportions of boys and girls expected (�2 = 0.01, p=0.91; and �2 = 0.01, p=0.92, respectively).  
 
Children referred primarily for problems with attention, poor learning, or memory were equally 
likely to be assigned to each group. Similarly, a diagnosis did not predict group membership. The 
only category predictive of group membership was whether the child was under the care of an 
SLT (these are highly overlapping categories). These children were disproportionately likely to 
be members of either the Broad Cognitive Deficits or Phonological Deficits groups. All of these 
statistics can be found in Table 2.  
 

Table 2: Cognitive, learning and behavioural measures split by cluster 
 

    Cluster 1 Cluster 2 Cluster 3 Cluster 4     

  Label 
Broad 

Deficits 
WM 

Deficits 
Age 

Appropriate  
Phon. 

Deficits     

Descriptives 
     

 
N 146 121 132 131 

  

 
Male 87 83 105 91 

  

 
Female 59 38 27 40 F P Value 

 
Mean Age 113 114 112 106 2.136 0.0947 

        Reason for 
referral 

   
Chi Sq Pcorr 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295725doi: bioRxiv preprint 

https://doi.org/10.1101/295725
http://creativecommons.org/licenses/by/4.0/


COGNITIVE PROFILES OF STRUGGLING LEARNERS 18 

 
Attention 36 48 52 39 6.755 0.320 

 
Memory 16 11 12 16 0.877 1.000 

 
Language 25 7 12 15 8.321 0.159 

 
Poor School 67 51 51 58 0.938 1.000 

        
Diagnosis 

   
Chi Sq Pcorr 

 
ADD/ADHD 29 35 22 28 4.718 0.968 

 
SLT 43 16 15 24 14.931 0.010 

 
Dyslexia 11 9 5 5 3.186 1.000 

 
ASD 9 6 11 6 1.850 1.000 

 
Sus ADHD 15 14 18 10 2.312 1.000 

        Cognitive 
Measures 

   
F Pcorr 

 

Matrix 
Reasoning -1.42 -0.71 0.04 -0.63 82.40 <0.001 

 
Vocab -1.10 0.08 0.87 -0.47 157.13 <0.001 

 
Phon. Aware. -1.17 -0.41 -0.17 -0.91 86.46 <0.001 

 
Verbal STM -1.44 -0.19 0.44 -0.79 157.35 <0.001 

 
Spatial STM -1.24 -1.12 0.29 -0.11 139.36 <0.001 

 
Verbal WM -1.41 -0.55 0.18 -0.66 95.59 <0.001 

 
Spatial WM -0.87 -0.45 0.45 0.23 73.48 <0.001 

        Learning 
Measures 

   
F Pcorr 

 
Spelling -1.58 -1.05 -0.47 -1.17 40.613 <0.001 

 
Reading -1.60 -0.90 0.02 -1.09 65.932 <0.001 

 
Maths -1.77 -1.02 -0.32 -1.13 55.957 <0.001 

 
Learning and behavioural profiles of the data-driven groups 
The four clusters also have important differences on other measures not included in the machine 
learning, which are also shown in Table 2. Age Appropriate children had age appropriate 
learning skills across spelling, reading and maths. Children in the Broad Cognitive Deficits 
group had severe problems on all learning outcomes, being more than 1.5 standard deviations 
below the age expected levels. The other two groups, despite their highly contrasting cognitive 
profiles did not differ in their learning profiles – moderate phonological problems or working 
memory difficulties were associated with very similar learning profiles. This is reflected in the 
statistics – all measures show a significant group difference (all ps<0.001), and all the post-hoc 
tests are significant at p<0.001, except between the Phonological and Working Memory deficit 
groups (spelling, p=0.22; reading, p=0.41; maths, p=0.79).   
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The subscale scores for both BRIEF and CCC-2 questionnaires, split by group, can be seen in 
Table 2. Correlation matrices for both the BRIEF and CCC-2 can be found in Supplementary 
Tables 1 and 2. Before comparing the groups a PCA was conducted separately for the subscales 
of each questionnaire to reduce the number of comparisons. These analyses identified two factors 
in the BRIEF, which together explained 76.1% of the variance. The rotated factor solution and 
scale loadings can be found in Supplementary Table 3. The first factor captured the working 
memory, initiate, planning, organization, and monitor subscales. The emotional control, shift, 
inhibit and monitor subscales loaded most highly on the second factor. The first factor therefore 
corresponds to ‘Cold’ executive functions associated with behavioural regulation, while the 
second corresponds more closely to ‘Hot’ cognitive aspects of executive function. Factor scores 
were saved and compared across groups: there were no significant differences in behaviour 
across the clusters (all ps>.05).  
There were also two factors within the CCC-2, explaining 74% of the variance. The rotated 
factor solution can be found in Supplementary Table 4. Subscales tapping pragmatic aspects of 
communication load most highly on Factor 1: coherence, inappropriate initiation, stereotyped 
language, context, nonverbal social skills and interests subscales. Factor 2 was comprised of 
scales measuring structural language skills: speech, syntax, semantics and coherence. These 
factors were labelled “Pragmatic Communication” and “Structural Language” respectively. 
There were no significant group differences in Pragmatic Communication factor scores. The 
groups did, however, differ significantly on Structural Language factor scores (p<0.001). Post-
hoc tests revealed children in the Broad Cognitive Deficits or Phonological Deficits groups were 
rated as having significantly greater structural language problems than either of the other two 
groups (all ps<0.001).  The respective Structural Language difference between the Age 
Appropriate and Working Memory Deficit groups was marginal (p=0.043), as was that between 
the Broad Cognitive Deficits and Phonological Deficits groups (p=0.043).  
 
White matter differences between the data-driven groups 
Differences in white matter connections between the SOM-defined groups were investigated to 
uncover the neurobiological correlates of the grouping. Each of the deficit groups (Clusters 1, 2 
and 4) was compared to the Age Appropriate group (Cluster 3) and an independent sample of 
typically-developing children (TD). Statistical comparison of connection strengths by region 
indicate significantly lower connection strengths for frontal, temporal, parietal, and subcortical 
connections in Cluster 1 compared to Cluster 3 and TD (see Table 3). There was no significant 
difference in regional connection strength between Cluster 2 and Cluster 3 or between Cluster 2 
and TD. The comparison of Cluster 4 and Cluster 3 indicated significantly lower strength of 
parietal connections and the comparison with TD indicated significantly different frontal 
connections.  
 

Table 3: Results of regional connection strengths between C3 and the other groups 
 
 C1 C2 C4 C3 C0 
 median mad median mad median mad median mad median mad 
frontal 0.68 0.053 0.70 0.047 0.69 0.058 0.72 0.069 0.72 0.038 
temporal 0.52 0.037 0.54 0.030 0.54 0.039 0.55 0.033 0.54 0.025 
parietal 0.66 0.052 0.67 0.045 0.67 0.042 0.70 0.067 0.68 0.050 
occipital 0.60 0.073 0.63 0.062 0.63 0.048 0.63 0.093 0.62 0.081 
subcortical 0.55 0.074 0.59 0.055 0.57 0.055 0.58 0.055 0.59 0.046 
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 C1 vs C3 C2 vs C3 C4 vs C3  
 U p pcorr. U p pcorr. U p pcorr.  
frontal 823 0.003 0.013 979 0.144 0.216 793 0.024 0.060  
temporal 772 0.001 0.006 1027 0.240 0.277 924 0.171 0.224  
parietal 758 0.001 0.006 890 0.042 0.090 715 0.005 0.018  
occipital 996 0.056 0.104 1064 0.334 0.358 889 0.110 0.184  
subcortical 916 0.016 0.047 1085 0.393 0.393 928 0.179 0.224  
 C1 vs C0 C2 vs C0 C4 vs C0  
frontal 520 0.001 0.010 657 0.196 0.321 505 0.012 0.034  
temporal 588 0.08 0.032 785 0.344 0.364 726 0.307 0.364  
parietal 577 0.004 0.032 694 0.327 0.364 567 0.022 0.056  
occipital 751 0.113 0.212 685 0.214 0.321 735 0.247 0.336  
subcortical 594 0.007 0.032 755 0.364 0.364 617 0.057 0.122  
 
 

 

Figure 6: Comparison of node degree of white matter connections per region between C1 (blue) and the
control groups, and C4 and the control groups. 
 
Regional comparison indicated a significant reduction for Cluster 1 (Broad Deficits) compared to
both control groups for the right inferior frontal gyrus (see Figure 6, C1: mean=0.59, SE=0.027;
C3: mean=0.65, SE=0.025; C0: mean=0.72, SE=0.028; t(82)=-3.19, pcorrected =0.018), the right
lateral orbitofrontal gyrus (C1: mean=0.66, SE=0.021; C3:mean=0.72,  SE=0.021; C0:
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mean=0.75, SE=0.025; t(82)=-2.91, pcorrected =0.032), the left fusiform gyrus (C1: mean=0.69, 
SE=0.017; C3: mean=0.76, SE=0.017; C0: mean=0.79, SE=0.021; t(82)=-3.69, pcorrected=0.011), 
and the left precentral gyrus (C1: mean=0.95, SE=0.019; C3: mean=1.01, SE=0.019; C0: 
mean=1.04, SE=0.016; t(82)=-3.42, pcorrected =0.013). The comparison between Cluster 4 
(Phonological Deficits) and both control groups indicated significantly lower connection strength 
in the left precentral gyrus (C4: mean=0.97, SE=0.016; C3: mean=1.01, SE=0.019; C0: 
mean=1.04, SE=0.016; C4 vs C0: t(75)=-3.03, pcorrected=0.013) and left rostral anterior cingulate 
gyrus (C4: mean=0.30, SE=0.009; C3: mean=0.33, SE=0.01; C0: mean=0.35 SE=0.009; C4 vs 
C0: t(75)=-3.51, pcorrected=0.006). There were no significant differences between Cluster 2 
(Working Memory Deficits) and the control groups, once controlling for multiple comparisons. 
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Discussion 
 
We used machine learning to identify the cognitive profiles within a large heterogeneous sample 
of children with learning-related problems. These profiles were represented as topographical 
maps. None of the known characteristics of the children (e.g. diagnosis or referral route) were 
predictive of the cognitive profiles identified by the machine learning. To highlight the cognitive 
profiles that exist within the dataset, we subsequently carved the topographical maps into four 
sections. The children that correspond to these four sections will necessarily have distinct 
cognitive profiles, but they could also be distinguished in terms of learning and behavioural 
scores, and patterns of brain organisation. The four groups cut across any traditional diagnostic 
groups that existed within the data. 
 More than half of the sample fell into two extreme groups, one with age-appropriate 
cognitive abilities and the other with widespread cognitive deficits that were at least one standard 
deviation below age-typical levels across all tasks. There was no evidence that children with age-
expected scores on the cognitive measures had learning difficulties. Their performance was in 
the age-typical range across all measures of learning and their structural communication skills 
were rated as normal for their age. But we should be very cautious in regarding these children as 
typically developing; they have been referred by professionals in children’s services, and as a 
group they have elevated behavioural difficulties. For this reason in our neuroimaging analysis 
we used an additional external control group.  
The learning scores of the broad deficit group place them within the bottom 5% of the population 
on measures of spelling, reading and maths, and they were rated as having difficulties in both 
structural and pragmatic aspects of communication. Generalised cognitive deficits therefore 
appear to constrain multiple aspects of learning. They also had behavioural problems related to 
executive function, although this was true for all four groups. Relative to both control groups, 
this group also had reduced structural connectivity in the left precentral gyrus, right inferior 
frontal gyrus, right lateral occipital cortex, and the left fusiform. These areas have been 
previously identified as playing a key role in multiple higher-order cognitive skills. For example, 
the right inferior frontal gyrus is implicated in multiple different executive functions, most 
commonly measures of inhibitory control (Aron et al. 2014); the lateral occipital cortex has been 
found to be modulated by visual attention (Sprague et al., 2013); left pre-motor areas have been 
linked to language-related difficulties in both children and adults (Mayes et al., 2015, Scott et al., 
2009); and the fusiform gyrus has been suggested as a locus of immature processing of word 
forms in dyslexia (Tamboer et al., 2016). These general struggling learners are rarely studied, but 
our data suggest that they are common amongst those coming to the attention of children’s 
specialist services. Their relative under-representation in studies of learning-related problems 
means that we have little understanding of the key underlying deficits, mechanisms or potential 
routes to effective intervention. It is also interesting to note that girls were disproportionately 
common in this group, relative to the sample as a whole or indeed relative to most studies of 
learning difficulties. Conversely very few girls appeared in the age-appropriate cognitive profile 
group. In short, the girls referred to the study tended to have more severe cognitive and learning 
difficulties. One possibility is that there is a gender bias in the reason for children coming to the 
attention of children’s specialist services, with boys being identified more commonly for 
behavioural difficulties (which may be less closely tied to cognitive and learning profiles), 
whereas more severe cognitive or learning difficulties are needed for girls to come to the 
attention of specialists.   
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Two intermediate groups, both with fluid reasoning scores in the low-average range, were also 
identified. One intermediate group was characterised by problems on tasks requiring 
phonological processing, with performance around three quarters of a standard deviation below 
age-expected levels on measures of phonological awareness, and verbal short-term and working 
memory. These children had significant problems with structural aspects of communication, 
mirroring the well-documented link between phonological processing difficulties and specific 
difficulties with language (Bishop & Norbury, 2002; Bishop & Snowling, 2004; Ramus et al., 
2013). However, the learning profile demonstrates equivalent and large deficits across measures 
of reading, spelling and mathematics. Poor phonological processing is associated with both poor 
reading (Snowling, 1995; Carroll & Snowling, 2004; Wagner & Torgesen, 1987) and 
mathematical development (De Smedt, Taylor, Archibald & Ansari, 2009; Hecht, Torgesen & 
Wagner, 2001; Swanson & Sachse-Lee, 2001). A consistent finding within the field of learning 
difficulties is that phonological problems are linked selectively with reading. The majority of 
these findings come from studies that select poor readers, but this is not the same as 
demonstrating that phonological impairments will always result in selective reading difficulties. 
Our data suggest that children selected on the basis of phonological difficulties will actually have 
more widespread learning problems. Membership of the phonological deficit group was 
associated with reduced structural connectivity in the left precentral gyrus and rostral anterior 
cingulate, relative to both control groups. The precentral gyrus has been implicated in language 
processing is thought to be involved in speech production and also decoding via articulatory 
simulation (Scott et al., 2009). This area has also been implicated in selective language 
impairment (Mayes et al., 2015). Further, tracts of the perisylvian language network that connect 
temporal and frontal language areas deficits are passing the precentral gyrus and may be 
substantially contributing the connectomics differences. Differences in white matter properties of 
these tracts have been repeatedly implicated in language deficits (Rimrodt et al., 2010; Roberts et 
al., 2014).  This would also mirror the structural communication difficulties that these children 
demonstrate. Indeed, this is the only behavioural measure that aligns well with the cognitive 
profiles – children who perform poorly on phonological tasks are also rated as having significant 
structural language problems by their parents. Other behavioural measures of executive control 
do not align well with cognitive profiles.  
The fourth group had a somewhat contrasting profile of cognitive deficit to the phonological 
deficit group. They were characterised by similar fluid IQ scores but had more pronounced 
difficulties in working memory. Their spatial short-term memory scores were over a standard 
deviation below age-expected levels, and half a standard deviation down on the verbal and 
spatial working memory measures. Their phonological abilities were less impaired, they were not 
rated as having the structural language difficulties reported for the phonological deficit group, 
and their neural profile was less homogenous. One possibility is that multiple different 
aetiological routes can result in this profile of difficulties.  
Despite contrasting cognitive and neural profiles, the learning profiles of the working memory 
and phonological deficit groups were nearly identical. This diverges strongly from a preceding 
literature that emphasises a marked association between phonological difficulties and problems 
with literacy (Lyytinen et al., 2004; Snowling et al., 2000; Tanaka et al. 2011), and an emerging 
literature that suggests strong associations between spatial short-term and working memory 
problems and numeracy difficulties (Bull et al., 2008; Raghubar et al., 2010; Szucs et al., 2013). 
These previous studies all recruit on the basis of highly selective learning profiles (e.g. maths 
problems in the absence of reading difficulties) or diagnostic group, which will have 
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overestimated the distinctiveness of these impairments within the general population of 
struggling learners.  
Despite their utility, machine learning approaches to exploring cognitive profiles have 
limitations. The current combination of a multi-dimensional mapping method with a data-driven 
clustering algorithm suffers from the drawback that the number of groups within the data is 
under-specified. The mapping process is continuous, with no obvious boundaries, which makes it 
difficult to have a clear rationale about the formation of groups. Inevitably some children will sit 
close to a group boundary within the map. Our approach was to add clusters until the clusters did 
not differ on measures not included in the machine learning. This is how we arrived at four 
clusters. This is a relatively conservative approach, since different cognitive profiles could exist 
that genuinely have identical learning, behavioural and neural correlates. Furthermore, we 
suspect that datasets with higher dimensionality, stemming from a more widespread battery of 
measures, could have greater success in identifying more widely differing cognitive profiles.  
An alternative to machine learning is to use a network analysis with a community detection 
algorithm (e.g. Bathelt et al. in press; Fair et al. 2012). An example of this approach applied to 
our data can be found in our Supplementary Materials section. This represents the children as 
nodes and the correlation between their profiles as edges. It is possible to use this approach to 
identify communities of clusters that maximise the correlation within cluster and the 
distinctiveness across clusters. This iterative process includes a quality of separation metric (Q) 
which the clustering algorithm is designed maximise. A major advantage of this approach is that 
no a priori assumptions about the number of clusters need to be made. However, there are also 
drawbacks to this alternative. The primary limitation is that a network analysis clusters children 
on the basis of a correlation matrix. As such it is blind to overall severity. The current sample 
contains a large number of children with relatively consistent poor scores across all cognitive 
measures and many children with stable age-appropriate scores. A network analysis would not be 
able to distinguish these two groups because the two profiles are highly correlated (this is indeed 
the case, see Supplementary Materials). The SOM uses Euclidean Distance as its primary means 
of locating children within the 2D topographical space, and as such is able represent both 
selective cognitive impairments and overall differences in severity. A further limitation is sample 
size. Whilst we included 530 children in the topographical mapping process, only 220 children 
were used in the structural neuroimaging comparison. This likely means that we only have 
sufficient power to detect the largest and most consistent group differences. More diffuse but 
equally important differences in whole brain connectome organisation might exist, but a larger 
sample would be needed to identify them.  
In summary, we used a machine learning approach that represents high-dimensional data as a 2D 
topography, to map the profiles of struggling learners. We combined this with a clustering 
algorithm to identify particular cognitive profiles represented within the map. Specifically, four 
profiles could be identified that comprise children with: 1) general and severe deficits 2) age-
appropriate performance 3) working memory deficits 4) phonological deficits. Further, these 
data-driven groups are likely to align closely with underlying aetiological mechanisms, as 
evidenced by differences in brain organisation across two of the deficit groups, and provide the 
opportunity to devise interventions that more specifically target the cognitive difficulties faced 
by individuals with particular profiles.  
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