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ABSTRACT7

High-throughput single-cell RNA-Seq (scRNA-Seq) is a powerful approach for studying heterogeneous
tissues and dynamic cellular processes. However, compared to bulk RNA-Seq, single-cell expression
profiles are extremely noisy, as they only capture a fraction of the transcripts present in the cell. Here,
we propose the k-nearest neighbor smoothing (kNN-smoothing) algorithm, designed to reduce noise
by aggregating information from similar cells (neighbors) in a computationally efficient and statistically
tractable manner. The algorithm is based on the observation that across protocols, the technical noise
exhibited by UMI-filtered scRNA-Seq data closely follows Poisson statistics. Smoothing is performed by
first identifying the nearest neighbors of each cell in a step-wise fashion, based on partially smoothed
and variance-stabilized expression profiles, and then aggregating their transcript counts. We show
that kNN-smoothing greatly improves the detection of clusters of cells and co-expressed genes, and
clearly outperforms other smoothing methods on simulated data. To accurately perform smoothing
for datasets containing highly similar cell populations, we propose the kNN-smoothing 2 algorithm, in
which neighbors are determined after projecting the partially smoothed data onto the first few principal
components. We show that unlike its predecessor, kNN-smoothing 2 can accurately distinguish between
cells from different T cell subsets, and enables their identification in peripheral blood using unsupervised
methods. Our work facilitates the analysis of scRNA-Seq data across a broad range of applications,
including the identification of cell populations in heterogeneous tissues and the characterization of
dynamic processes such as cellular differentiation. Reference implementations of our algorithms can be
found at https://github.com/yanailab/knn-smoothing.
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INTRODUCTION28

Over the past decade, single-cell expression profiling by sequencing (scRNA-Seq) technology has ad-29

vanced rapidly. After the transcriptomic profiling of a single cell (Tang et al. 2009), protocols were30

developed that incorporated cell-specific barcodes to enable the efficient profiling of tens or hundreds of31

cells in parallel (Islam, Kjällquist, et al. 2011; Hashimshony, Wagner, et al. 2012). scRNA-Seq methods32

were then improved by the incorporation of unique molecular identifiers (UMIs) that allow the identifica-33

tion and counting of individual transcripts (e.g., Islam, Zeisel, et al. 2014; Hashimshony, Senderovich,34

et al. 2016). More recently, single-cell protocols were combined with microfluidic technology (Klein et al.35

2015; Macosko et al. 2015; Zheng et al. 2017), combinatorial barcoding (Cao et al. 2017; Rosenberg et al.36

2017), or nanowell plates (Gierahn et al. 2017). These high-throughput scRNA-Seq methods allow the37

cost-efficient profiling of tens of thousands of cells in a single experiment.38

Due to the typically very low amounts of starting material, and the inefficiencies of the various39

chemical reactions involved in library preparation, scRNA-Seq data is inherently very noisy (Ziegenhain40

et al. 2017). This has motivated the development of many specialized statistical models, for example41

for determining differential expression (Kharchenko, Silberstein, and Scadden 2014), performing factor42

analysis (Pierson and Yau 2015), pathway analysis (Fan et al. 2016), or more general modeling of scRNA-43

Seq data (Risso et al. 2017). In addition, methods have been proposed to impute missing values (W. V. Li44

and J. J. Li 2017) and to perform smoothing (Dijk et al. 2017). Finally, many authors of scRNA-Seq45

studies have relied on ad-hoc approaches for mitigating noise, for example by clustering and averaging46
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cells belonging to each cluster (Shekhar et al. 2016; Baron et al. 2016).47

Fundamental to any statistical treatment are the assumptions that are made about the data. For48

methods aimed at analyzing scRNA-Seq data, assumptions about the noise characteristics determine49

which approach can be considered the most appropriate. All aforementioned approaches have assumed50

an overabundance of zero values, compared to what would be expected if the data followed a Poisson51

or negative binomial distribution. However, in the absence of true expression differences, the analysis52

by Ziegenhain et al. (2017) has suggested that across scRNA-Seq protocols, there is little evidence of53

excess-Poisson variability when expression is quantified by counting unique UMI sequences (“UMI54

filtering”) instead of raw reads (see Figure 5B in Ziegenhain et al. (2017)). This is consistent with reports55

describing individual UMI-based scRNA-Seq protocols, which have demonstrated that in the absence of56

true expression differences, the mean-variance relationship of genes or spike-ins closely follows that of57

Poisson-distributed data (Grün, Kester, and Oudenaarden 2014; Klein et al. 2015; Zheng et al. 2017).58

In this work, we propose two smoothing algorithms that make direct use of the observation that59

after normalization to account for efficiency noise (Grün, Kester, and Oudenaarden 2014), the technical60

noise associated with UMI counts from high-throughput scRNA-Seq protocols is entirely consistent with61

Poisson statistics, implying that the observed transcripts for each cell represent a small, random sample of62

all the transcripts present. Instead of developing a parametric model, we propose algorithms that smooth63

scRNA-Seq data by aggregating gene-specific UMI counts from the k nearest neighbors of each cell.64

To accurately determine these neighbors, we propose to proceed in a step-wise fashion using partially65

smoothed profiles, and to make use of an appropriate variance-stabilizing transformation. Conveniently,66

the noise associated with the smoothed expression values is again Poisson-distributed, which simplifies67

their variance-stabilization and downstream analysis. We demonstrate the improved signal-to-noise ratio68

of scRNA-Seq data processed with our algorithms on real-world examples, and quantitatively compare69

the accuracies of the smoothing methods proposed here and elsewhere (Dijk et al. 2017; W. V. Li and70

J. J. Li 2017) on simulated scRNA-Seq data.71

RESULTS72

The normalized UMI counts of replicate scRNA-Seq profiles are Poisson-distributed73

To validate the Poisson-distributed nature of high-throughput scRNA-Seq data in the absence of true74

expression differences, we obtained data from control experiments conducted on three platforms: in-75

Drop (Klein et al. 2015), Drop-Seq (Macosko et al. 2015), and 10x Genomics (Zheng et al. 2017). In76

these experiments, droplets containing identical RNA pools were analyzed. Assuming that the number of77

transcripts in each droplet was sufficiently large, there are no true expression differences among droplets,78

and all of the observed differences among droplets can be attributed to technical noise arising from79

library preparation and sequencing. As expected from published results (cf. Figure 5A in Klein et al.80

(2015), Supplementary Figure 2f in Zheng et al. (2017)), data from both the inDrop platform and the 10x81

Genomics platform followed the Poisson distribution (see Figure 1a,c; see Methods), with the exception82

of highly expressed genes, which is likely due to global droplet-to-droplet differences in capture efficiency,83

previously referred to as “efficiency noise” (Grün, Kester, and Oudenaarden 2014).84

For the Drop-Seq data, Macosko et al. (2015) did not discuss the mean-variance relationship, but85

we observed a pattern consistent with inDrop and 10x Genomics data (see Figure 3b). Interestingly, the86

y axis intercept of the Drop-Seq CV-mean relationship was clearly above 0, suggesting that transcript87

counts followed a scaled Poisson distribution (see Methods). A possible explanation could be that the88

computational pipeline used to derive the Drop-Seq UMI counts generated artificially inflated transcript89

counts, but we did not explore this hypothesis further.90

To test whether the larger-than-expected variance of highly expressed genes can indeed be explained91

by efficiency noise, we normalized the expression profiles in each dataset to the median UMI count across92

profiles (Model I in Grün, Kester, and Oudenaarden (2014); see Methods). This resulted in an almost93

perfectly linear CV-mean relationship (see Figure 1d-f), suggesting that efficiency noise is indeed the94

dominating source of variation for very highly expressed genes.95

Finally, we directly compared the frequency of UMI counts of zero for each gene to that predicted by96

Poisson statistics, and found that for the inDrop and 10x Genomics data, the observed values matched the97

theoretical prediction almost perfectly (see Figure 3g,i). For the Drop-Seq data, the frequency of zeros98

was slightly shifted upwards across the entire expression range (see Figure 3h), which may be due to99

artificially inflated UMI counts (see Methods).100
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In summary, we found that for all three high-throughput scRNA-Seq platforms examined, Poisson-101

distributed noise, in combination with the efficiency noise observed for very highly expressed genes,102

described virtually all of the observed technical variance, and that there was no evidence of substantial103

zero-inflation. We note that the recent publication describing the Quartz-Seq2 single-cell platform also104

reports a Poisson noise relationship (see Figure 2e in Sasagawa et al. (2017)), bringing the total number105

of high-throughput scRNA-Seq protocols with reported Poisson noise characteristics to four.106

Aggregation of n replicate profiles results in Poisson-distributed values with the signal-107

to-noise ratio increased by a factor of
√
n108

Since the sum of independent Poisson-distributed variables is again Poisson-distributed, we reasoned that109

the aggregation of normalized expression values from n independent measurements of the same RNA110

pool would result in Poisson-distributed values, with the signal-to-noise ratio increased by a factor of
√
n111

(see Methods). Similarly, we predicted that averaging instead of aggregating (summing) would result in a112

scaled Poisson distribution with the same increased signal-to-noise ratio. We tested this idea on the inDrop113

pure RNA dataset previously shown in Figure 1a, which consisted of 935 expression profiles. Averaging114

randomly selected, non-overlapping sets of 16 profiles resulted in 58 new expression profiles, with genes115

exhibiting an almost exact four-fold increase in their signal-to-noise ratios, i.e., a four-fold reduction of116

their coefficients of variation, as expected (see Figure 2a). As an example, the UMI count distribution of117

the GADPH gene before and after averaging is shown in Figure 2b, and can be seen to closely match the118

theoretically predicted Poisson and scaled Poisson distributions, respectively. In summary, the results119

showed that independently of gene expression level, aggregating expression values from replicate profiles120

led to more accurate expression estimates that again exhibited Poisson-distributed noise profiles.121

The Freeman-Tukey transform effectively stabilizes the technical variance of high-122

throughput scRNA-Seq data123

Based on the aforementioned results, we conceived an algorithm to smooth single-cell RNA-seq data,124

with the following outline:125

• For each cell C:126

1. Determine the k nearest neighbors of C.127

2. Calculate a smoothed expression profile for C by combining its UMI counts with those of the128

k nearest neighbors, on a gene-by-gene basis.129

3. (Optional) Divide C’s new expression profile by k + 1, to retain the scale of the original data.130

The main challenge in implementing this algorithm is to devise an appropriate approach for determin-131

ing the k nearest neighbors of each cell, and to choose an appropriate k. We defer the question of how to132

choose k to the Discussion, and focus here on the problem of determining the k nearest neighbors.133

Due to the Poisson-distributed nature of scRNA-Seq data, the technical variance (noise) associated134

with each gene is directly proportional to its expression level. This type of extreme heteroskedasticity135

poses a problem when attempting to calculate cell-cell similarities, because the noise of highly expressed136

genes can drown out the true expression differences of more lowly expressed genes, therefore strongly137

biasing the analysis towards the most highly expressed genes. One strategy to address this issue is the138

application of an appropriate variance-stabilizing transformation, designed to render the technical variance139

independent of the gene expression level (Love, Huber, and Anders 2014). For bulk RNA-Seq data, a140

log-TPM (or log-RPKM) transform is commonly used for this purpose, even though lowly expressed141

genes will still exhibit unduly large variances under this transformation (Love, Huber, and Anders142

2014). Based on our results, we reasoned that for scRNA-Seq data, the Freeman-Tukey transform (FTT),143

y =
√
x +
√
x+ 1, would be a more appropriate choice, as it is designed to stabilize the variance of144

Poisson-distributed variables (Freeman and Tukey 1950).145

To compare the abilities of the FTT and the log-TPM (transcripts per million) transform to stabilize146

the technical variance of scRNA-Seq data, we applied both transformations to the inDrop pure RNA147

dataset, and found that the FTT produced significantly better results (see Figure 3): With the log transform,148

genes with low-intermediate expression, which we considered to be those with expression values between149

the 60th and 80th percentile rank (of all protein-coding genes, not only genes expressed by K562 cells),150
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had between three- and ten-fold higher levels of variance than the 10% most highly expressed genes151

(see Figure 3b). In contrast, with the FTT, the difference was no larger than two-fold, and the variances of152

lowly expressed genes were biased downwards, not upwards (see Figure 3c). Moreover, we found that the153

FTT also stabilized the variance of the aggregated profiles (see Figure 3d-f), which was expected, given our154

earlier observation that the aggregated UMI counts are again Poisson-distributed. In particular, a greater155

share of genes now had variances close to 1. This closely mirrored theoretical results, according to which156

the variance Poisson-distributed variables with mean λ ≥ 1 should be within 6% of the asymptotic value157

of 1 after FTT (Freeman and Tukey 1950). In summary, our analysis showed that distance calculations158

performed on Freeman-Tukey transformed (FT-transformed) UMI counts would give similar weight to159

genes with intermediate and high expression. Expression differences from lowly expressed genes would160

tend to be suppressed, but this suppression would become less severe for aggregated expression profiles.161

A k-nearest neighbor smoothing algorithm for scRNA-Seq data162

The previously discussed ideas suggested that a simple way to determine the k nearest neighbors for all163

cells would be to normalize their expression profiles, apply the FTT, and then find the k closest cells for164

each cell using the Euclidean distance metric. However, we reasoned that this simple approach could be165

improved upon, because the noisiness of the data itself can interfere with the accurate determination of166

the k nearest neighbors. We therefore instead decided to adopt a step-wise approach, whereby initially,167

each profile is only minimally smoothed (using k1 = 1). In the second step, a larger set of nearest168

neighbors (e.g., k2 = 3) is identified for each cell based on those minimally smoothed profiles, and the169

raw data is then smoothed using these larger sets of neighbors. Additional steps using increasing ki are170

performed until the desired degree of smoothing is reached (i.e., ki = k). By choosing the i’th step to171

use ki = min{2i − 1, k}, each step theoretically improves the signal-to-noise ratio of each individual172

expression measurement by a factor of
√
2 — except for the last step, for which the improvement173

can be smaller —, and only a small number of steps are required even for large choices of k (e.g.,174

six steps for k = 63). The resulting “kNN-smoothing” algorithm is formalized in Algorithm 1 (see175

https://github.com/yanailab/knn-smoothing for reference implementations in Python,176

R, and Matlab). Using simulation studies, we found that in contrast to a simple “one-step” algorithm, the177

step-wise approach resulted in a significantly more accurate selection of neighbors, especially for large k178

(see below).179

Application of kNN-smoothing to scRNA-Seq data of human pancreatic islets improves180

clustering results and recovers specific expression patterns for marker genes181

To test whether kNN-smoothing would improve the ability to distinguish between different cell types182

in a scRNA-Seq experiment, we applied the algorithm (with k=15) to a single-cell expression dataset183

obtained from human pancreatic islet tissue, containing at least 14 distinct cell populations (Baron et al.184

2016) (PANCREAS dataset). We first performed principal component analyses (PCA; see Methods)185

and observed several improvements after smoothing (see Figure 4a): First, cell type clusters appeared186

significantly more compact in principal component space, indicating that the smoothed expression profiles187

were more similar than unsmoothed profiles for cells of the same type, but more different for cells from188

distinct types. Second, a single cluster of cells that contained alpha cells as well as other cells separated189

into two highly distinct clusters after smoothing. Notably, all alpha cells were still contained within a190

single cluster after smoothing. This suggested smoothing helped reveal important differences that were191

not previously captured by the first two principal components. Third, the proportion of cells of each type192

that could be identified using simple marker gene expression thresholds increased slightly, suggesting that193

the expression values of individual marker was less noisy in the smoothed data. Finally, a much greater194

share of total variance was explained by the first two principal components (PCs) for the smoothed data195

than for the unsmoothed data (40.3% vs 20.8%), which is consistent with a greater share of variance196

originating from true biological differences rather than technical noise.197

We next performed hierarchical clustering on the smoothed data after filtering for the 1,000 most198

variable genes (see Methods). When we visualized the results as an expression heatmap (Eisen et al.199

1998), several gene and cell clusters were readily discernible (see Figure 4b). A direct comparison200

between the smoothed and unsmoothed data showed that smoothing produced significantly less noisy201

expression patterns while preserving expression differences between relatively similar cell populations202

(see Figure 4c). To assess whether cell clusters delineated different cell types, we examined the expression203

patterns of known marker genes for nine cell types present in the data (Baron et al. 2016), and found204
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Algorithm 1: K-nearest neighbor smoothing for UMI-filtered scRNA-Seq data

Input:
p, the number of genes.
n, the number of cells.
X , a p× n matrix containing the UMI counts for all genes and cells.
k, the number of neighbors to use for smoothing.

Output:
S, a p× n matrix containing the smoothed (aggregated) UMI counts.

1: procedure KNN-SMOOTH(p, n, X , k)
2: S = COPY(X)
3: steps = dlog2 (k + 1)e
4: for t = 1 to steps do
5: M = MEDIAN-NORMALIZE(S) // a new p× n matrix
6: F = FREEMAN-TUKEY-TRANSFORM(M) // a new p× n matrix
7: D = PAIRWISE-DISTANCE(F ) // a new n× n matrix
8: A = ARGSORT-ROWS(D) // a new n× n matrix
9: k step = MIN({2t − 1, k})

10: for j = 1 to n do // empty matrix S
11: for i = 1 to p do
12: Sij = 0
13: end for
14: end for
15: for j = 1 to n do // go over all cells
16: for v = 1 to k step+ 1 do // go over all nearest neighbors (including self)
17: u = Ajv
18: for i = 1 to p do // aggregate original UMI counts for each gene
19: Sij = Sij +Xiu

20: end for
21: end for
22: end for
23: end for
24: return S
25: end procedure

Notes: For a two-dimensional matrix X , Xij refers to the element in the i’th row and j’th column of
X . COPY(X) returns an independent memory copy of X (not a reference). MEDIAN-NORMALIZE(X)
returns a new matrix of the same dimension as X , in which the values in each column have been
scaled by a constant so that the column sum equals the median column sum of X . FREEMAN-TUKEY-
TRANSFORM(X) returns a new matrix of the same shape as X , in which all values have been Freeman-
Tukey transformed (f(x) =

√
x+
√
x+ 1). PAIRWISE-DISTANCE(X) computes the pair-wise distance

matrix D from X , so that Dij is the Euclidean distance between the i’th column and the j′th column of
X . For a matrix D with n columns, ARGSORT-ROWS(D) returns a matrix of indices A that sort D in a
row-wise manner, i.e., DjAj1 ≤ DjAj2 ≤ ... ≤ DjAjn for all j.

that the hierarchical clustering of the smoothed expression profiles accurately grouped cells by their cell205

type (see Figure 4d, top panel). Moreover, compared to the unsmoothed data, the expression patterns of206

these marker genes appeared significantly less noisy (see Figure 4d, bottom panel). Finally, we repeated207

the entire analysis on the unsmoothed data, and found that it was considerably more difficult to discern208

clusters of genes and cells (see Figure S1a), and that judging by the expression patterns of the marker209

genes, not all cell types were clustered together appropriately (see Figure S1b). In summary, our analyses210

showed that kNN-smoothing with k=15 significantly improved the results obtained with PCA as well as211

hierarchical clustering, and that it recovered stable and cell type-specific expression patterns for all of the212

marker genes examined.213
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Application of kNN-smoothing to scRNA-Seq data of human peripheral blood mononu-214

clear cells recovers robust expression profiles for diverse immune cell populations215

As a second test of our algorithm, we applied kNN-smoothing to a dataset containing scRNA-Seq data216

for 4,340 peripheral blood mononuclear cells (PBMCs), obtained using the 10x Genomics ”Chromium”217

protocol (the PMBC dataset; see Methods). PBMCs can easily be obtained from peripheral blood, have218

been studied extensively, and contain a diverse set of immune cell types (Kleiveland 2015), thus enjoying219

popularity as a point of reference for scRNA-Seq studies (e.g., Zheng et al. 2017; Gierahn et al. 2017).220

The identification and characterization of immune cell types in peripheral blood using scRNA-Seq221

is also an activate area of investigation (e.g., Villani et al. 2017). Since the PMBC dataset contained222

significantly more cells than the PANCREAS dataset, and the expression profiles exhibited significantly223

higher complexity (i.e., expression levels were less concentrated on a few highly expressed genes; data224

not shown), we chose to apply more aggressive smoothing using k=127. We compared the results of225

PCA applied before and after smoothing, and found that, again, smoothing significantly improved the226

compactness of cell type clusters in principal component space, and strongly increased the fraction of227

variance explained by the first two PCs — this time, from 16.6% to 70.4%. Moreover, using expression228

thresholds for individual marker genes (see below), we were able to assign one of four major cell type229

identities (T cells, CD14 monocytes, B cells, and dendritic cells) to 93% of all cells in the smoothed data.230

The unidentified cells likely included NK cells as well as technical outliers.231

Next, we performed hierarchical clustering after filtering for the 1,000 most variable genes, visualized232

the results as a heatmap, and obtained several easily distinguishable clusters of cells and genes, providing233

an overview of the heterogeneity in the data (see Figure 5b). Repeating the same clustering procedure on234

the unsmoothed data produced much less coherent clusters (see Figure S2). We compared the smoothed235

and smoothed data within a small region of the heatmap in a side-by-side comparison and observed that236

smoothing dramatically reduced the apparent noise levels, while largely preserving differences between237

similar sets of cells (see Figure 5c). Finally, we compiled a list of marker genes for the major cell types238

found in PBMC samples, including T cells, monocytes, B cells, NK cells, and dendritic cells (see Methods).239

In comparing the expression patterns of these genes across cells ordered according to the hierarchical240

clustering results, we found that smoothed resulted in vastly more stable expression patterns, while the241

expression of each marker gene remained confined to a specific subset of cells. A comparison with the242

full heatmap suggested that within most cell types, there existed significant population substructure. For243

example, several distinct clusters of cells were apparent among the set of T cells expressing CD3D and244

CD3E, which likely distinguish specific subsets such as CD4 and CD8 T cells, or naive and memory T245

cells. In summary, the application of aggressive smoothing (with k=127) to PBMC data led to significant246

improvements in the ability to cluster cells by their cell type, and produced stable and cell type-specific247

specific expression patterns for marker genes, thus demonstrating the applicability of kNN-smoothing to248

data generated using 10x Genomics’ high-throughput scRNA-Seq solution.249

Comparison with other smoothing methods on simulated datasets shows superior per-250

formance of kNN-smoothing251

To quantitatively compare the accuracy of kNN-smoothing with that of other smoothing methods, we252

devised an approach for simulating scRNA-Seq datasets containing a mixture of cell types. Our idea was253

to base each simulation on a real scRNA-Seq dataset, in order to make the simulated data as similar to real254

scRNA-Seq expression data as possible, both biologically and technically. To ensure biological similarity,255

we simulated clusters with expression profiles obtained from the real data, based on hierarchical clustering256

results. To ensure technical fidelity, we simulated Poisson-distributed sampling noise, modeled on top257

of efficiency noise, the distribution of which was again obtained from the real data (see Methods for258

details). We generated two datasets, SIM-PANCREAS (based on the PANCREAS dataset) and SIM-PBMC259

(based on the PMBC dataset). A visual comparison based on clustered heatmaps illustrated the similarity260

between real and simulated scRNA-Seq data (see Figures S3 and S4). We then applied kNN-smoothing,261

MAGIC (Dijk et al. 2017), and scImpute (W. V. Li and J. J. Li 2017) to the two datasets, and quantified the262

similarity of the results to the true cluster profiles from which the cell expression profiles were generated.263

We tested different parameter settings for each method, and observed that as expected, the choice of k264

had a large effect on the accuracy of the results obtained with kNN-smoothing (see Figure 6). However,265

for all values of k ≥ 15 that we tested (up to k=511), kNN-smoothing outperformed MAGIC and scImpute266

on both datasets by a large margin, independently of the way in which we quantified accuracy. We first267
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quantified the relative accuracy of each cell’s expression profile by calculating its Pearson correlation268

coefficient (PCC) with the true cluster expression profile, on log2-transformed data. For kNN-smoothing269

with k=15, the median PCC across all cells in the SIM-PANCREAS dataset was approx. 0.93. For k=63,270

it was approx. 0.98. In contrast, the best values obtained by MAGIC and scImpute across all parameter271

settings were approx. 0.85 and 0.87, respectively (see Figure 6a). These differences were even more272

pronounced for the SIM-PBMC dataset (see Figure 6c), and when we quantified absolute accuracies273

by root-mean squared error (RMSE) on log-transformed data (see Figure 6b,d). We then quantified274

accuracies, using both PCC and RMSE, on square root-transformed data instead of log2-transformed data.275

This resulted in slightly smaller absolute differences, but we again observed that kNN-smoothing clearly276

outperformed the other methods for k ≥ 15 (see Figure S5).277

Our evaluation of kNN-smoothing on simulated data also showed that up to a certain point, choosing278

larger values of k produced increasingly accurate expression profiles. In fact, the median PCC for k=511279

was very close to 1 in the SIM-PBMC dataset (see Figure 6c). However, the best median PCC for the280

SIM-PANCREAS dataset was obtained for k=255, and a significant fraction of cells exhibited much lower281

accuracies for k=255 and k=511 compared to k=127 (see Figure 6a). This apparent “over-smoothing” was282

not surprising, since a significant fraction of cells in the SIM-PANCREAS dataset belonged to clusters283

that were represented by less than 256 cells. Therefore, some of the 255 neighbors selected for these284

cells had to belong to other clusters, and using their expression values for smoothing resulted in less285

accurate expression profiles. To confirm that cluster size determined whether or not cells benefitted from286

smoothing with very large k, we examined the average accuracies of cells from the three largest and287

smallest clusters for different k. In both datasets, we observed that as predicted, accuracies started to drop288

off whenever k was chosen larger than the cluster size (see Figure 6e,f).289

To obtain a more detailed view of the results of kNN-smoothing, MAGIC, and scImpute, we selected290

a representative cell from the largest cluster in the PANCREAS dataset (n=662), and examined the291

correlation of the smoothed profiles with the true cluster profile using scatter plots. For kNN-smoothing,292

we examined the results for k=15 and k=511, whereas for MAGIC and scImpute, we picked the parameter293

settings that achieved the best median PCC across all cells. The correlations for this particular cell294

mirrored the overall results (see Figure 6g-j), which showed that kNN-smoothing with either setting of k295

produced more highly correlated profiles than either of the two other methods. However, whereas the296

PCC for both MAGIC and scImpute was 0.88, the values reported by MAGIC were merely noisy and297

non-linear, while the scImpute results also exhibited some obvious smoothing artifacts (see Figure 6j).298

Finally, we observed that for k=3, the median PCC of kNN-smoothing was sometimes lower than299

that for k=1. We believe this surprising result is related to size biases by the algorithm in the selection300

of neighbors (cells) to be used for smoothing (further discussed below). In conclusion, our evaluation301

of different smoothing methods on two simulated datasets showed that kNN-smoothing outperformed302

the other methods by a large margin for most choices of k, and in some cases recovered cell expression303

profiles with near-perfect accuracy.304

Other variants of kNN-smoothing are less accurate and exhibit stronger size selection305

bias in simulated datasets306

In the design of our smoothing algorithm, we made several decisions based on theoretical considerations,307

as well as our intuitions. We therefore aimed to examine whether the performance of the resulting308

algorithm retrospectively validated these decisions. Specifically, we aimed to compare the kNN-smoothing309

algorithm to a variant in which neighbors are identified in a single step, as opposed to a step-wise approach.310

Second, we aimed to test whether the choice of calculating cell-cell distances on median-normalized311

and FT-transformed data performed better than using the more commonly employed TPM normalization,312

followed by a log-transformation. We refer two these two variants as the “single-step” variant and the313

“log-TPM” variant, respectively.314

To test the accuracy of the different variants of the smoothing algorithm, we again relied on our315

simulated datasets (see above), and determined, for a range of different k, the fraction of cells with316

incorrect neighbors for each variant. We found that the log-TPM variant performed very poorly in both317

datasets, resulting in approximately 80% and 20%, respectively, of cells having an incorrect neighbor318

even for k = 1 in SIM-PANCREAS and SIM-PBMC (see Figure 7a,b). The “one-step” variant performed319

generally worse than the step-wise variant, with the exception of k = 15 and k = 31 in the SIM-PBMC320

dataset.321
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Over the course of our simulation experiments, we noticed that the average “sizes” (total UMI counts)322

of the smoothed “cells” (expression profiles) sometimes deviated significantly from the true UMI count of323

each cluster, which could only be explained by a size bias in the way in which neighbors were selected for324

each cell (the sizes of cells belonging to the same cluster varied due to our simulation of efficiency noise;325

see Methods). To examine whether kNN-smoothing and the two variants exhibited different size biases,326

we compared the distribution of smoothed profile sizes for a range of different k, focusing only on cells327

from the largest cluster in each dataset (see Figure 7c,d). We found that the algorithms exhibited strikingly328

different behaviors. Most notably, the one-step variant exhibited a strong systematic bias towards selecting329

“large” cells as neighbors (i.e., cells with a large total UMI count), resulting in smoothed cells that on330

average contained a much larger UMI count than the cluster profile that was used as the basis for the331

simulation of these cells. Since the first step of kNN-smoothing is identical to that of one-step smoothing332

with k=1, it shared this bias for large cells in its first step. Astonishingly, the opposite was true for333

neighbors selected in its second step (k = 3), when smoothed cells exhibited smaller-than-average sizes.334

However, by the fourth step (k = 15), the average sizes were very close to the true cluster values in both335

datasets. The log-TPM variant exhibited similar behavior, but the distribution of sizes was generally much336

more spread out. Based on theoretical considerations, we think that it is undesirable for an algorithm337

to exhibit an overly strong size bias, as it will make very uneven use of the information available (see338

Discussion). We therefore believe that the near-convergence of the average cell size to the true cluster339

UMI count, as achieved by the kNN-smoothing algorithm for k ≥15, represents a desirable property that340

again makes kNN-smoothing preferable to the algorithm variants examined. In summary, our evaluation341

of the effects of our initial design decisions validated those decisions, as they resulted in an algorithm that342

provides more accurate results, and makes more even use of information from cells that differ in their343

total UMI counts (e.g., due to efficiency noise).344

The kNN-smoothing algorithm fails to accurately identify neighbors in scRNA-Seq data345

containing distinct T cell subsets346

In the results presented above, the kNN-smoothing algorithm was applied to datasets comprising cell347

populations with very different expression profiles. For example, PBMCs consist mostly of monocytes, T348

cells, and B cells, and each of these cell types exhibits an expression profile that is very distinct from those349

of all the others. To obtain scRNA-Seq data for cells with known identities and very similar expression350

profiles, we downloaded data from various subsets of T cells, bead-enriched from human PBMCs (Zheng351

et al., 2017). On average, each T cell expression profile had approx. 1,500 transcripts, 50% of which352

belonged to genes encoding ribosomal proteins (see Figure S6a). When we combined all T cell datasets353

(see Methods) and performed PCA, we noticed that the first two PCs appeared to represent differences in354

ribosomal gene expression levels (see Figure S6b). To guard against the possibility that these differences355

represented batch effects rather than genuine biological differences, we decided to remove ribosomal356

genes from the data. A PCA on the remaining data no longer displayed obvious batch effects. However,357

the first PC still appeared correlated with the ribosomal gene content in the original data (see Figure S6c),358

suggesting that perhaps different T cell subsets exhibit differences in ribosome content.359

To test the ability of kNN-smoothing to accurately identify neighbors in datasets containing cells from360

populations with very similar expression profiles, we combined expression profiles from the downloaded361

datasets to create three artificial datasets (see Methods). Each artificial dataset consisted of 1,000 profiles362

from naive CD4 T cells and 1,000 profiles from a different population, namely naive CD8 T cells (the first363

dataset), memory CD4 T cells (the second dataset), and B cells (the third dataset, serving as a control). In364

terms of their transcriptome, naive CD4 T cells were more similar to naive CD8 T cells than to memory365

CD4 T cells, however all three T cell subsets were much more similar to each other than to B cells (see366

Figure S7a). We first performed PCA on the unsmoothed data, which showed that the first PC perfectly367

separated the two cell populations for the B cell dataset (see Figure S7f, left), but not for the other368

two datasets(see Figure 8a, left, and Figure S7c, left), again highlighting that B cells were much more369

easily distinguishable from naive CD4 T cells than either naive CD8 T cells or memory CD4 T cells. In370

particular, the first two PCs captured only 2.7% and 1.4% of the total variance in the data, respectively, for371

the naive CD8 and memory CD4 T cell datasets, suggesting that technical noise, rather than the difference372

between the two cell populations, was the dominant source of variance. We then applied kNN-smoothing373

to each dataset, expecting that the smoothed expression profiles from the two populations were more374

clearly separated in principal component space than the unsmoothed profiles. However, for the naive CD8375
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and memory CD4 T cell datasets, smoothing led to a blurring, rather than a separation, of profiles from the376

different T cell subsets (see Figure 8a, center, and Figure S7c, center), demonstrating that the algorithm377

failed to consistently select neighbors from the same population when smoothing each expression profile.378

In contrast, the algorithm had no difficulties smoothing the expression profiles for the B cell dataset (see379

Figure S7f, center), suggesting that the problem originated from the fact that the various T cell subsets380

exhibited very similar expression profiles.381

An improved smoothing algorithm accurately identifies neighbors in scRNA-Seq data382

containing distinct T cell subsets383

For closely related cell types, such as naive CD4 and CD8 T cells, it is reasonable to assume that most384

expressed genes are expressed at identical or near-identical levels in both cell types. Therefore, when385

datasets are composed of cells from either type, most expressed genes contain little or no information386

to help establish an accurate set of nearest neighbors for each cell. At the same time, those genes still387

contribute technical noise, which can drown out the expression differences of the small set of genes that388

are truly differentially expressed. According to this logic, it was not surprising that kNN-smoothing failed389

to correctly identify neighbors for datasets containing different subsets of T cells (see above). Since we390

had observed that PCA was nevertheless able to partially separate the cell populations, we reasoned that391

it would be possible to more accurately identify neighbors in such scenarios by calculating distances in392

principal component space. We therefore modified the kNN-smoothing algorithm so that in each step, the393

partially smoothed expression data are projected onto the first d principal components before Euclidean394

distances are calculated. The resulting algorithm, which we refer to as “kNN-smoothing 2”, is formalized395

in Algorithm 2.396

We applied kNN-smoothing 2 to the combined T cell datasets (with k=127 and d=5), as before, and397

found that it resulted in very well-separated populations of cells (see Figure 8a, right, and Figure S7c,398

right). For both the naive CD8 T cell and the memory CD4 T cell dataset, cells were perfectly separated399

by type along the first principal component, with the exception of a few outlier cells that appeared400

to belong to the wrong cluster. As these cells did not exhibit an intermediate expression profile after401

smoothing, it appeared likely that these cells represented genuine contaminants in the bead-enriched402

samples, rather than smoothing artifacts. More importantly, the first PC now captured a substantial403

fraction of total variance in both datasets (19.5% and 30.9%, respectively), indicating that smoothing404

significantly improved the signal-to-noise ratio of the data. For the CD8 T cell dataset, we next examined405

the expression patterns of CD8B and and CD4, and found that their smoothed expression levels perfectly406

matched the expected patterns (see Figure 8b, top row). We also noticed that cells from both populations407

exhibited heterogeneity with respect to the second PC, which captured 8.8% of total variance. Among408

the genes with the strongest contribution to PC 2 were ACTB (beta-actin) and IL7R (CD127), exhibiting409

anti-correlated expression patterns (see Figure 8b, bottom row). As the actin cytoskeleton and IL7R410

are known to play important roles in TCR signaling and T cell homeostasis, respectively (Kumari et al.411

2014; Carrette and Surh 2012), the observed expression heterogeneity could reflect different activation412

states of naive T cells in peripheral blood. We also observed heterogeneity in a number of immediate413

early genes (e.g., IEG2 and JUN; see Figure S7b), which was recently reported as a common expression414

artifact associated with single-cell sample preparation (Brink et al. 2017). The biological importance415

of the observed expression heterogeneity was therefore unclear, and warrants further investigation. The416

smoothing results for the B cell dataset were not substantially different from those obtained with the417

earlier version of the kNN-smoothing algorithm (see Figure S7f, right).418

As the kNN-smoothing 2 algorithm introduces an additional parameter, d, we next aimed to examine419

how different choices of d affected the smoothing results. We tested settings of d ranging from 1 to 50 on420

all three datasets, and compared results by ranking genes by their differential expression scores, which421

we defined to quantify the difference in expression of a gene in the two cell populations, relative to the422

technical noise (see Methods). We found that for the naive CD8 T cell dataset, kNN-smoothing 2 gave423

similar performance for settings of d ranging from 2 to 10 (see Figure 8c), whereas for the memory CD4 T424

cell dataset, results were stable across the entire range of values tested (see Figure 8d), perhaps reflecting425

the fact that distinguishing between naive and memory T cells was less challenging than distinguishing426

between naive CD4 and CD8 T cells. For both datasets, kNN-smoothing 2 clearly outperformed the first427

version of the kNN-smoothing algorithm for all settings of d. However, for the third dataset, containing428

naive CD4 T cells and B cells, the performance differences appeared negligible (see Figure S7e), again429
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Algorithm 2: K-nearest neighbor smoothing 2 for UMI-filtered scRNA-Seq data

Input:
p, the number of genes.
n, the number of cells.
X , a p× n matrix containing the UMI counts for all genes and cells.
k, the number of neighbors to use for smoothing.
d, the number of principal components to use for determining neighbors.

Output:
S, a p× n matrix containing the smoothed (aggregated) UMI counts.

1: procedure KNN-SMOOTH(p, n, X , k)
2: S = COPY(X)
3: steps = dlog2 (k + 1)e
4: for t = 1 to steps do
5: M = MEDIAN-NORMALIZE(S) // a new p× n matrix
6: F = FREEMAN-TUKEY-TRANSFORM(M) // a new p× n matrix
7: Y = LEADING-PC-SCORES(F, d) // a new d× n matrix
8: D = PAIRWISE-DISTANCE (Y ) // a new n× n matrix
9: A = ARGSORT-ROWS(D) // a new n× n matrix

10: k step = MIN({2t − 1, k})
11: for j = 1 to n do // empty matrix S
12: for i = 1 to p do
13: Sij = 0
14: end for
15: end for
16: for j = 1 to n do // go over all cells
17: for v = 1 to k step+ 1 do // go over all nearest neighbors (including self)
18: u = Ajv
19: for i = 1 to p do // aggregate original UMI counts for each gene
20: Sij = Sij +Xiu

21: end for
22: end for
23: end for
24: end for
25: return S
26: end procedure

Notes: Differences to the first version of kNN-smoothing (Algorithm 1) are highlighted in pink. LEADING-
PC-SCORES(X, d) returns the principal component scores of the observations in X (contained in the
columns) for the first d principal components. For additional notes, see Algorithm 1.

highlighting that kNN-smoothing 2 specifically improved smoothing accuracy for datasets containing430

highly similar cell types.431

kNN-smoothing 2 facilitates the identification of T cell subsets in peripheral blood432

As different subsets of T cells generally exhibit very similar transcriptomes and contain relatively little433

mRNA (see above), their precise identification in scRNA-Seq data is a challenging task. In previous434

reports, authors have struggled to delineate different T cell subsets in peripheral blood using clustering435

(see Figure 3j in Zheng et al. (2017)), and to distinguish regulatory T cells from other T cells found in436

mouse spleens (Zemmour et al. 2018). To test whether kNN-smoothing 2 would facilitate the identification437

of T cell subsets found in peripheral blood, we downloaded a 10x Genomics pan-T cell dataset containing438

4,583 expression profiles, applied kNN-smoothing 2, and generated expression heatmaps showing the439

expression patterns of the most highly variable genes following hierarchical clustering (see Figure 9a,440

top). We next aimed to determine, for each expression profile in the data, whether it represented a naive441
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or a memory T cell. To do so, we first determined a set of marker genes for naive and memory T cells, by442

identifying genes with differential expression between experimentally isolated naive and memory T cell443

subsets (see Figure S8a and Methods). We examined the expression patterns of these marker genes in444

the smoothed and clustered pan-T cell data, and found that naive and memory marker genes exhibited445

mutually exclusive expression patterns, and that there was a very clear clustering of cells expressing either446

set of marker genes (see Figure 9a, middle). Finally, we also aimed to compare the smoothed expression447

profiles to subset-specific expression profiles, again obtained from experimentally isolated T cell subsets448

(see Methods). We found that the cells expressing naive and memory marker genes also had expression449

profiles that were specifically correlated with those of naive and memory T cell subsets, respectively (see450

Methods). A small cluster of cells had profiles that partly resembled naive T cells, but also expressed451

a set of genes not generally observed in those cells. This signature partially overlapped with the set of452

genes associated with heterogeneity among naive T cells observed earlier (see Figure S7b), including453

CD7, CD3D, and GZMM. The possibility that this cluster of cells represents a specific activation state of454

naive T cells requires further investigation. In summary, these results demonstrate that kNN-smoothing 2455

enabled the identification of naive and memory T cells in pan T-cell scRNA-Seq data.456

To further test the ability of kNN-smoothing 2 to distinguish T cell subsets in heterogeneous data, we457

repeated the analysis (smoothing, hierarchical clustering, examination of marker genes, and correlation458

with expression profiles from experimentally isolated subsets) on the group of 1,656 cells that were459

identified as naive T cells in the previous step, hoping that we would be able to distinguish naive CD4460

from naive CD8 T cells (see Figure 9b and Figure S8b). We found that based on the expression of marker461

genes and the correlation analysis, we were indeed able to distinguish these subsets, with CD8 T cells462

exhibiting stable expression of CD8A and CD8B after smoothing. Moreover, smoothing was able to463

recover the expression of CD4 in CD4 T cells, even though this gene appeared to expressed at much lower464

levels compared to CD8A and CD8B. A small set of of cells again exhibited an “activation” expression465

signature which we found to be very similar to the that of the previously discussed “activated naive T cells”466

(data not shown). In summary, these results demonstrate that kNN-smoothing 2 enabled the identification467

of naive CD4 and naive CD8 T cells in pan T-cell scRNA-Seq data.468

Python implementations of kNN-smoothing and kNN-smoothing 2 process datasets con-469

taining thousands of cells within a few minutes470

For a smoothing method to be of practical use, it not only needs to provide accurate results, but it must also471

finish in a reasonable amount of time. We therefore measured runtimes of our Python implementations of472

kNN-smoothing and kNN-smoothing 2 on Chromium PBMC data containing 21,425 expressed genes,473

using subsampling to generate datasets with sizes ranging from n=2,000 to n=8,000 cells, on a laptop474

with an Intel® Core™ i7-6600U processor and 20 GiB of memory (see Methods). We found that the475

runtimes ranged from a few seconds to just over 14 minutes (for k=511 and n=8,000), and that runtime476

increased linearly with k (see Figure 10a). For n=2,000 and n=4,000, both algorithms had very similar477

runtimes. However, for n=8,000, kNN-smoothing 2 was slightly faster than kNN-smoothing, because the478

calculation of pairwise distances was significantly faster when the data had been reduced to d dimensions479

(corresponding to the first d PCs), and because our implementation relied on an efficient algorithm for480

calculating the first d PCs (Halko, Martinsson, and Tropp 2009).481

We also calculated the memory footprint of our Python implementation of kNN-smoothing, which482

requires three copies of the expression matrix (original, smoothed, smoothed and transformed) and two483

n-by-n arrays (the distance matrix and a sorted indexing array) to be held in memory. We assumed that484

each expression measurement would be represented in memory by an 8-byte floating point value. From485

the results Figure 10b, it appears that for datasets containing approx. 20,000 protein-coding genes, the486

largest datasets that can be analyzed (without memory swapping) contain approx. 5k, 10k, and 20k cells,487

for computers with 4 GiB, 8 GiB, and 16 GiB of memory, respectively. Overall, these results demonstrate488

that kNN-smoothing can be run on most laptops and PCs for datasets containing several thousand cells,489

in a time-span of minutes or even seconds. The memory requirements for kNN-smoothing 2 are not490

substantially different from that of kNN-smoothing, as the storage of the first d principal component491

scores requires relatively little additional memory.492
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DISCUSSION493

Design and applicability of kNN-smoothing and kNN-smoothing 2494

In this work, we have proposed k-nearest neighbor smoothing (kNN-smoothing), and kNN-smoothing 2,495

two novel algorithms for smoothing high-throughput scRNA-Seq data, aimed at significantly improving496

the signal-to-noise ratios of the gene expression values for each cell by aggregating information from497

similar cells (“neighbors”). The first innovation of kNN-smoothing is the step-wise approach to identifying498

the nearest neighbors, which we have shown to result in more accurate results compared to a one-step499

appraoch. The second innovation is the use of the Freeman-Tukey transform, designed to ensure that the500

expression levels of all genes contribute approximately equally in the distance calculation, independent of501

their general expression level. kNN-smoothing 2 combines these innovations with principal component502

analysis, which helps to filter out noise and focus on the most salient expression differences among cells.503

kNN-smoothing 2 is more efficient, powerful, and flexible relative to the first version of kNN-smoothing,504

and should therefore be the preferred choice for practically all applications.505

It might appear that by smoothing single-cell data, one is compromising on important information506

pertaining to the individuality of each cell. We note that while cell-to-cell variation within a given507

cell type is of clear importance, in most applications one is querying for cell populations that are each508

represented by an appreciable number of cells. Thus, given the routine profiling of thousands or even tens509

of thousands of cells, and the inherent noisiness of the data under study, our smoothing algorithm offers a510

clear advantage in terms of the identification of those populations.511

We designed the kNN-smoothing algorithm based on the observation that data from multiple high-512

throughput scRNA-Seq protocols (including inDrop, Drop-seq, and 10x Genomics’ Chromium) share513

common technical noise characteristics. Specifically, after the application of “median-normalization”514

to account for efficiency noise, the gene expression values in technical replicates are approximately515

Poisson-distributed. We believe that this is a direct consequence of the fact that all of these protocols516

only capture a small fraction of transcripts of each cell, employ 3’- or 5’-end counting (“tagging”), and517

avoid overcounting of amplified transcripts by UMI-filtering. Therefore, we predict that the Poisson noise518

characteristic applies to all such scRNA-Seq protocols that use UMI filtering, but not to other scRNA-Seq519

protocols. This idea clearly warrants a more detailed investigation, which is beyond the scope of this paper.520

Whatever the origins of the noise characteristics described here, the fact that they are shared between the521

aforementioned protocols implies that our proposed algorithms are in principle applicable to any dataset522

generated using those protocols.523

Comparison with previously reported methods524

Our algorithm combines a previously proposed normalization method (Grün, Kester, and Oudenaarden525

2014) with a standard variance-stabilizing transformation (VST) for Poisson-distributed data (Freeman526

and Tukey 1950). We are not aware of prior work suggesting the use of a VST in the context of smoothing527

scRNA-Seq data. Instead, most work has focused on parametric modeling (see Introduction). While528

these approaches can certainly be effective, our work suggests that they are not strictly necessary to529

effectively to address the issue of noise in scRNA-Seq data. Moreover, sophisticated models often require530

complex inference procedures, which can be difficult to implement correctly and efficiently. In contrast,531

our method requires only a few lines of code, while still being based on statistical theory, and our Python532

implementation runs in a matter of seconds or minutes on datasets containing a few thousand cells.533

Simple aggregation or averaging of scRNA-Seq expression profiles has been previously employed in534

specific contexts, for example for library size normalization (Lun, Bach, and Marioni 2016). Recently,535

La Manno et al. (2017) employed a simple version of k-nearest neighbor smoothing (“pooling”) as part536

of a method designed to estimate the time derivative of mRNA abundance based on unspliced RNA537

sequences. The authors defined the most similar cells based on log-transformed data (for read counts538

from the SMART-Seq2 protocol), or PCA-transformed data (for UMI counts from inDrop and 10x539

Genomics protocols). However, they did not provide any justification for their choices of similarity540

metrics, a discussion of the statistical properties of the data before and after smoothing, or a quantification541

of the gain in expression accuracies achieved. Moreover, neither of these studies aimed to develop a542

general-purpose method to improve the signal-to-noise ratio of scRNA-Seq data, or employed a step-wise543

approach for defining the nearest neighbors, as we have done here. Our work can be compared to other544

recently proposed methods that aim to specifically address the issue of technical noise in scRNA-Seq545

data: Dijk et al. (2017) aimed to apply the idea of manifold learning using diffusion maps to scRNA-Seq546
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data (see Supplementary Text for a demonstration of kNN-smoothing on one of the datasets analyzed in547

their study), and W. V. Li and J. J. Li (2017) developed an algorithm that borrows information among548

similar cells in order to “impute” the expression values of genes that in many cells exhibit UMI counts549

of exactly zero (“missing values”). Aside from the clear methodological differences between these two550

methods and kNN-smoothing, it is noteworthy that the respective study authors also made completely551

different assumptions about the noise characteristics of scRNA-Seq data. For their simulation studies,552

neither Dijk et al. (2017) and W. V. Li and J. J. Li (2017) generated Poisson-distributed expression data.553

Dijk et al. (2017) started from bulk microarray expression data, which was then “downsampled using an554

exponential distribution” to obtain specific proportions of zero values, while W. V. Li and J. J. Li (2017)555

defined gene-specific “dropout rate[s]”, and set individual expression values to zero using Bernoulli trials556

with those rates. Based on the results presented in this work, we believe that neither of these approaches557

faithfully reproduces the noise characteristics of UMI-filtered scRNA-Seq data.558

Use of simulation studies to quantify the accuracy of scRNA-Seq smoothing methods559

As scRNA-Seq is currently the only technology that can be used to interrogate complete transcriptomes560

of single cells in a highly parallelized fashion, there exist no “gold standard” datasets to benchmark561

scRNA-Seq smoothing algorithms (i.e., datasets that contain a heterogeneous mixture of cells whose true562

single-cell expression profiles have been determined using an orthogonal method). Therefore, one most563

resort to simulation studies in order to quantitatively assess the accuracies of smoothing methods. Here,564

we established a new method for using real scRNA-Seq datasets to simulate UMI-filtered scRNA-Seq data565

that consist of a mixture of cell types (clusters). The simulated data exhibit Poisson-distributed sampling566

noise, modeled on top of efficiency noise, for which we used the observed distribution of total UMI counts567

per cell in the real data. (This might result in an overestimate of efficiency noise, as some differences568

in total UMI counts could also reflect biological differences in total mRNA abundance and/or cell size.)569

Our methodology is based on the understanding of the sources and characteristics of technical noise in570

UMI-filtered scRNA-Seq data as described in this work, and a visual comparison between the real and the571

synthetic datasets led us to conclude that it can also reproduce the majority of the biological heterogeneity572

observed in the real dataset. For the analyses reported here, we decided to limit the simulations to K =10573

clusters, but the procedure is compatible with any integer choice of K for 1 ≤ K ≤ n (where n is the574

number of cells in the real data), and the use of hierarchical clustering ensures consistency between575

datasets generated using similar choices of K (e.g., for K = 11, one of the clusters present in the K = 10576

dataset would be split into two distinct clusters, while all other clusters remain identical).577

Based on the simulated data, we were able to show that with k ≥ 7, kNN-smoothing produced much578

more accurate results for both simulated datasets, when compared to MAGIC (Dijk et al. 2017) and579

scImpute (W. V. Li and J. J. Li 2017). This was true for all MAGIC and scImpute parameter settings580

tested, independently of whether we quantified accuracy using both relative (PCC) or absolute (RMSE)581

measures, and independently of whether we used log2-transformed or square root-transformed expression582

values in these calculations. In some cases, kNN-smoothing was able to recover the true expression profile583

with near-perfect accuracy, which we never observed for either of the two other methods. Our results584

therefore suggest that kNN-smoothing generally outperforms MAGIC and scImpute on UMI-filtered585

scRNA-Seq data containing highly heterogeneous cell populations.586

A limitation of our approach to simulating scRNA-Seq data is that it ignores certain biological sources587

of heterogeneity: For example, cells from the same cell type might be in different cell cycle phases, and588

these differences would be lost (averaged out) as part of the simulation procedure. More generally, our589

current approach is unable to simulate datasets that contain a mixture of cells from different stages of a590

continuous dynamic process (such as cell differentiation), and procedures that can simulate UMI-filtered591

scRNA-Seq data for those types of experiments need to be established in order to quantitatively evaluate592

the performance of smoothing methods in such scenarios.593

How to choose k and d?594

kNN-smoothing depends on one parameter (k), whereas kNN-smoothing 2 depends on two parameters (k595

and d). In addressing the question of how to choose these parameters, we would like to emphasize that596

kNN-smoothing was primarily designed as a tool to facilitate exploratory data analysis (EDA). In EDA,597

the primary goal is to learn about the relevant aspects of the data (e.g., the set of cell populations present,598

the ), using whatever means conducive to this goal. In this context, there exist no objectively “correct” or599

“incorrect” parameter settings. Rather, we are interested in establishing guidelines for choosing settings600
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that provide the greatest insight into the data at hand. In practice, we generally encourage the testing of601

different parameter settings and a comparison of the different results obtained.602

The results obtained when applying kNN-smoothing or kNN-smoothing 2 to a particular dataset603

strongly depend on the choice of k. Choosing k very small might not adequately reduce noise. On604

the other hand, choosing k too large incurs the risk of smoothing over biologically relevant expression605

heterogeneity, and can also lead to artifactual expression profiles that consist of averages of profiles606

belonging to different cell populations. As a result, our method provides no guarantee that smoothed607

expression profiles represent existing cell populations.608

In exploring data from heterogeneous tissues, it seems clear that the choice of k should be guided609

by the estimated number of cells present from each population. However, different populations can be610

present at very different abundances: As an extreme example, imagine that in a dataset containing 1000611

cells, 900 cells belong to population A, 90 cells belong to population B, and 10 cells belong to population612

C. A conservative approach would then be to apply kNN-smoothing with k=9, thereby avoiding any “over-613

smoothing”. However, it is possible that this degree of smoothing is insufficient to reliably distinguish614

between cells from populations A and B, when in fact one could choose k=89 without over-smoothing615

cells from either population. To avoid underutilizing the data available, we therefore find it advisable616

to smooth more aggressively first and to identify the main clusters apparent in the data. Then, for each617

cluster separately, smoothing with smaller k can be re-applied to the original, unsmoothed data, in order to618

identify any subpopulations that had perhaps been over-smoothed in the previous step. We think that such619

a hierarchical strategy to identifying cell populations is broadly applicable and significantly accelerates620

the analysis of heterogeneous data with highly variable population abundances.621

An appropriate choice of k also depends on the particular application: When analyzing cells under-622

going a highly dynamic process (e.g., differentiation), large values of k might result in an overly coarse623

picture of the transcriptomic changes. In contrast, when aiming to distinguish distinct cell types, larger624

choices of k can help identify robust expression profiles for each type.625

Finally, our analyses suggest that the choice of d is generally less critical than that of k, as different626

choices often gave very similar results. However, overly small or large values of d can lead to inaccurate627

smoothing results. For highly heterogeneous datasets, setting d too small can lead to a loss of resolution,628

as biological differences captured by the higher PCs are ignored. For less heterogeneous data, setting d629

very large can lead to poor results, as many PCs only capture technical noise and drown out the biological630

differences captured by the first PCs. We propose a default setting of d=10 for applications to scRNA-Seq631

data from heterogeneous tissues. One strategy is to identify a suitable setting of k using d=10, and to632

then test if changing d can improve the results. We think that as in other applications involving PCA, the633

percentage of total variance explained by the first d components (in the smoothed data, after FT-transform)634

can serve as a guide to selecting d. However, we hesitate to recommend a specific percentage (e.g., 80%),635

as the fraction of variance that represents biological differences depends on the degree of smoothing as636

well as the heterogeneity in the data. Generally speaking, we recommend to err on the side of including637

too many PCs, in order to avoid the loss of biological signals.638

Importance of smoothing for the analysis of scRNA-Seq data639

We have demonstrated the application of kNN-smoothing to data generated using the inDrop (Klein et al.640

2015) and Chromium (Zheng et al. 2017) protocols, and shown that in both cases, the algorithm was able641

to recover cell type-specific expression patterns for previously described marker genes. Moreover, the642

achieved noise reduction made it straightforward to apply hierarchical clustering (Eisen et al. 1998), a643

powerful method for exploratory analysis of gene expression data that performs poorly on unsmoothed644

scRNA-seq data. We obtained similar results when we applied kNN-smoothing 2 to peripheral blood645

pan-T cell data, where we were able to demonstrate that smoothing made it possible to discriminate646

between naive and memory T cells, and also between naive CD4 and naive CD8 T cells, using purely647

unsupervised methods.648

kNN-smoothing, specifically kNN-smoothing 2, has the potential to improve the performance of many649

advanced analysis methods that rely on PCA or other dimensionality reduction techniques, including650

methods for trajectory inference (e.g., Cao et al. 2017). Importantly, kNN-smoothing works by aggregating651

information across cells, rather than across genes. Therefore, it avoids the introduction of artificial gene-652

gene dependencies, which are highly problematic when downstream analyses involve methods whose653

null models assume independence between genes, such as GO enrichment analysis (Subramanian et al.654
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2005; Eden et al. 2009). At the same time, kNN-smoothing clearly introduces dependencies between655

cells. Naturally, the extent to which this is the case depends on the magnitude of k.656

Recently, researchers and funding bodies have proposed the generation of “cell atlases”, systematic657

efforts aimed at providing exhaustive molecular descriptions of all cell types and states present in human658

tissues under healthy as well as disease conditions such as cancer (Regev et al. 2017; National Cancer659

Institute 2017; The Chan Zuckerberg Initiative 2018). As scRNA-Seq is generally seen as an important660

experimental tool for the realization of these projects, kNN-smoothing 2 could represent a valuable661

analysis tool for the identification of novel cell types and states, as well as for the characterization of their662

expression profiles.663

Implications for study design664

We have shown that there exists a quadratic relationship between “cell coverage” (the number of profiles665

obtained for a given population of cells) and the potential accuracy with which the average expression666

levels of individual genes in cells from that population can be quantified. To improve the signal-to-noise667

ratio by a factor of two, the cell coverage needs to be quadrupled. In studying heterogeneous tissues,668

researchers should therefore consider the estimated frequencies of the different populations of interest,669

and adjust the number of cells profiled accordingly. For example, if a population comprising only 1%670

of cells is to be “covered” by 20 profiles (on average), this implies that 2,000 cells need to be profiled.671

Using simple binomial statistics, approx. 2,800 cells would then have to be profiled for a 95% chance of672

obtaining at least 20 profiles from that population.673

In addition, the relationship between cell coverage and quantification accuracy brings into focus674

the question of what constitutes an optimal number of sequencing reads per cell. While a quantitative675

treatment of this issue is beyond the scope of this work, it is clear that in many situations, it would be676

more beneficial to sequence additional cells, rather than increase the read coverage per cell. The precise677

optimum likely depends on numerous factors, and is difficult to determine without an examination of all678

the experimental, statistical, and computational factors involved in scRNA-Seq studies. However, since679

sequencing can represent the single most expensive part of the experiment, this issue clearly warrants680

further investigation.681

Based on the work described here, it is tempting to speculate that in theory, there is no limit as to682

how accurately the average expression profile of individual cell populations and sub-populations can be683

determined using scRNA-Seq. Our analysis suggests that the signal-to-noise ratio can always be improved684

by aggregating more profiles from “biologically identical” cells. In practice, however, the number of685

cells that can be analyzed is limited by the protocol used, the cost of the experiment, the number of686

cells available, and/or the rarity of the population of interest. Furthermore, the accuracy with which687

“biologically identical” cells can be identified based on their noisy profiles depends on several factors,688

including the level of granularity required and the number of transcripts present in the cell. It is therefore689

not clear whether all biologically relevant cell types and states can be accurately identified with current690

scRNA-Seq protocols.691

Conclusions692

In this work, we have used multiple datasets to demonstrate that PCA and hierarchical clustering, two693

basic techniques for analyzing gene expression data benefit strongly from kNN-smoothing. In future694

work, it would be interesting to explore the effect of smoothing for additional types of analyses, including695

differential expression analysis, gene set enrichment analysis, and trajectory inference. We anticipate696

that our kNN-smoothing 2 algorithm will benefit all of these approaches, and generally enable the more697

effective analysis of scRNA-Seq data in wide variety of settings. It should again be noted, however, that698

smoothed expression profiles of cells are no longer statistically independent, so smoothing should not be699

used naively in combination with statistical tests for differential expression.700

Given the rapidly increasing number of cells that can be profiled in a single experiment (Svensson,701

Vento-Tormo, and Teichmann 2018), an important direction for future research is how to make the702

kNN-smoothing 2 algorithm scalable to datasets containing tens or hundreds of thousands of cells. In703

these instances, calculating a matrix containing all pairwise distances can exceed memory limitations,704

and smoothing can become prohibitively slow. A strategy to dealing with these situations could involve705

downsampling of cells, combined with a hierarchical approach to smoothing as outlined above.706

High-throughput scRNA-Seq technologies are widely believed to hold enormous potential for studying707

heterogeneous tissues and dynamic cellular processes in health and disease. However, the inherent708
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noisiness of the data require that in parallel to advances in experimental technologies, innovations in709

the areas of algorithm development and machine learning are necessary in order to realize this potential.710

Fortunately, data from different protocols exhibit very similar statistical properties, presumably due to711

their shared reliance on 3’-end counting and UMI filtering. These properties should directly inform the712

design of effective algorithms for the smoothing and analysis of scRNA-Seq data. We have described713

two closely related algorithms for smoothing scRNA-Seq data that are generally applicable, efficient, and714

easy-to-implement. The large improvements in the signal-to-noise ratio that can be achieved with these715

algorithms helps to expand the realm of possibilities for downstream analyses, and to better leverage716

scRNA-Seq for the understanding of complex biological systems.717

METHODS718

Download and processing of inDrop pure RNA replicate data719

Raw sequencing data were downloaded from SRA (experiment accession SRX863258). In this experi-720

ment by Klein et al. (2015), droplets containing pure RNA extracted from K562 cells were processed721

using the inDrop protocol. The downloaded data were processed using a custom pipeline. Briefly, SRA722

data were converted to the FASTQ format using fastq-dump. Next, the “W1” adapter sequence of the723

inDrop RT primer were located in the barcode mate sequence (the first mate of the paired-end sequencing),724

by comparing the 22-mer sequences starting at positions 9-12 in the read with the known W1 sequence,725

allowing at most two mismatches. Reads for which the W1 sequence could not be located in this way726

were discarded. The start position of the W1 sequence was then used to infer the length of the first part727

of the inDrop cell barcode in each read, which can range from 8-11 bp, as well as the start position of728

the second part of the inDrop cell barcode, which always consists of 8 bp. Cell barcode sequences were729

mapped to the known list of 384 barcode sequences for each read, allowing at most one mismatch. The730

resulting barcode combination was used to identify the cell from which the read originated. Finally, the731

UMI sequence was extracted, and only with low-confidence base calls for the six bases comprising the732

UMI sequence (minimum PHRED score less than 20) were discarded. The mRNA mate sequences (the733

second mate of the paired-end-sequencing) were mapped to the human genome, release GRCh38, using734

STAR 2.5.3a with parameter ”–outSAMmultNmax 1” and default parameters otherwise. Testing the735

overlap of mapped reads with exons of protein-coding genes and UMI-filtering was performed using736

custom Python scripts. Droplets (barcodes) were filtered for having a total UMI count of at least 10,000,737

resulting in a dataset containing UMI counts for 19,865 protein-coding genes across 935 droplets.738

Download of 10x Genomics ERCC spike-in expression data739

UMI counts for ERCC spike-in RNA processed using the 10x Genomics scRNA-Seq protocol (Zheng740

et al. 2017) were downloaded from the 10x Genomic website. The dataset consisted of UMI counts for 92741

spike-ins across 1,015 droplets.742

Download of Drop-Seq ERCC spike-in expression data743

UMI counts for ERCC spike-in RNA processed using the 10x Genomics scRNA-Seq protocol (Macosko744

et al. 2015) were downloaded from GEO accession number GSM1629193. The dataset consisted of UMI745

counts for 80 spike-ins across 84 droplets.746

Prediction of scRNA-Seq noise characteristics based on Poisson statistics747

In this paper, we initially focus on the technical variation observed in scRNA-Seq data for droplets748

containing identical pools of pure mRNA. Let u′ij be the observed UMI count for the i’th gene (or ERCC749

spike-in) in the j’th droplet, for i = 1, ..., p and j = 1, ..., n. Similarly, let U ′ij be a random variable750

representing the UMI count for the i’th gene in the j’th cell. We assume that U ′ij is Poisson-distributed751

with mean λ′ij = miej , where mi is the number of mRNA molecules present for the i’th gene, and ej752

corresponding to the capture efficiency of the scRNA-Seq protocol for the j’th droplet (both mi and ej753

are unknown). We further assume that U ′i1, ..., U
′
in are independent, for all i. For the sake of simplicity,754

we assume that the read coverage (the number of reads sequenced per cell) is infinite, so that there are no755

cases in which a transcript is not observed due to limited read coverage. In practice, limited read coverage756

will not invalidate the Poisson assumption, but result in lower “effective” capture efficiencies.757

If all ej were identical (say, equal to eglobal), then U ′i1, ..., U
′
in

i.i.d∼ Poisson(λ′i), with λ′i = mie
global.758

Grün, Kester, and Oudenaarden (2014) have proposed to normalize the expression profile of each cell to759
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the median total UMI count across cells (Model I in Grün et al.), in order to counteract the differences in760

capture efficiency (“efficiency noise”). Median-normalization consists of calculating the total UMI count761

per profile (cell or droplet), tj =
∑
i u
′
ij , calculating the median tmed = median{t1, ..., tn}, and then762

multiplying each u′ij by the factor tmed/tj .763

Based on the results by Grün et al., we hypothesized that median-normalized data would be ap-764

proximately Poisson-distributed, as long as the differences in capture efficiency were not too extreme.765

Therefore, we let N ′i1, ..., N
′
in represent the UMI counts for the i’th gene after median-normalization, and766

assume them to be i.i.d. Poisson(λ′i).767

For Poisson-distributed variables, the variance is always equal to the expectation (defined by λ). Let
Ni ∼ Poisson(λ′i). For the coefficient of variation (CV) of Ni, we have:

CV (Ni) =

√
var(Ni)

E(Ni)
=

√
E(Ni)

E(Ni)
=

1√
E(Ni)

= E(Ni)
−0.5

Taking the logarithm on both sides gives:

logCV (Ni) = −0.5 ∗ logE(Ni)

Therefore, the relationship between logE(Ni) and logCV (Ni) is linear with a slope of -0.5. This is768

indicated by the gray lines in Figure 1a-f.769

The probability of observing a count of zero for Ni is given by the Poisson PMF:

f(x) =
λxi e
−λi

x!

Therefore, P (Ni = 0) = e−λi values are shown as the orange lines in Figure 1g-i.770

If a computational pipeline used to determine UMI counts reports systematically inflated values,
then the median-normalized UMI counts for the i’th gene can be approximately represented by a scaled
Poisson variable N inf

i = cN ′i , where c is the inflation factor. N inf
i then has mean cλ′i and variance c2λ′i,

so for CV (N inf
i ), we have:

CV (N inf
i ) =

√
var(N inf

i )

E(N inf
i )

=

√
cE(N inf

i )

E(N inf
i )

=
√
c

1√
E(N inf

i )
=
√
cE(N inf

i )−0.5

Taking the log on both sides gives:

logCV (N inf
i ) = −0.5 logE(N inf

i ) + 0.5 log c

Therefore, the relationship between logE(N inf
i ) and logCV (N inf

i ) will still be linear, but with an y-axis771

intercept of 0.5 log c instead of 0, which is consistent with Figure 3b,e.772

Prediction of the effect of aggregating scRNA-Seq expression profiles from technical773

replicates774

We again assume that for droplets containing identical pools of pure mRNA, the median-normalized
UMI counts N ′i1, ..., N

′
in

i.i.d∼ Poisson(λi). Let S′i =
∑
j N
′
ij , and Ni ∼ Poisson(λ′i). It is clear that

CV (S′i) = CV (N ′i)/
√
n:

CV (S′i) =

√
var(S′i)

E(S′i)
=

√
n ∗ var(Ni)
nE(Ni)

=
1√
n
CV (Ni)

Similarly, for averaged UMI counts A′i =
∑
j Nij/n:

CV (A′i) =

√
var(A′i)

E(A′i)
=

√
(1/n2) ∗ var(Ni)

E(Ni)
=

1√
n
CV (Ni)

This effect is demonstrated in Figure 2.775
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Smoothing of scRNA-Seq expression profiles from biological samples based on Poisson776

statistics777

In real data, genes can exhibit differential expression across cells. Therefore, we define λij = mijej ,778

wheremij is the number of mRNA molecules present for the i’th gene in the j’th cell, and ej is the capture779

efficiency of the scRNA-Seq protocol for the j’th cell. Let Uij be a random variable representing the UMI780

count for the i’th gene in the j’th cell. We again assume that Uij is Poisson-distributed with mean λij , and781

that Ui1, ..., Uin are independent, for all i. Let Zj = {zj1, ..., zjk} be the set of k nearest neighbors of the782

j’th cell, as determined in Algorithm 1. Let λsmooth
ij = λij +

∑
z∈Zj

λij . We then define the aggregated783

expression levelAij = Uij+
∑
z∈Z|

Uiz , and note thatAij ∼ Poisson(λsmooth
ij ). From the aforementioned784

discussion, it follows that if the k neighbors have transcriptomes that are sufficiently similar to that of785

the j’th cell, and if the efficiency noise is not too strong, then CV (Aij) ≈ CV (Uij)/
√
k + 1. Similarly,786

we can calculate the averaged expression level Sij = Aij/(k + 1). Then Sij is a Poisson variable with787

mean λsmooth
ij , scaled by a factor of 1/(k + 1), and therefore has the same CV as Aij . The point here is788

that even if the Uij are not identically distributed (due to expression differences and/or efficiency noise),789

simple aggregation or averaging will always result in Poisson-distributed smoothed values. The same is790

not true for weighted sums or averages. Let {wj0, wj1, ..., wjk} represent weights (all positive), and let791

Wij = wj0Uij +
∑
z∈Z|

wj1Ujz . Then the weighted sum Wij is neither a Poisson nor a scaled Poisson792

variable, unless all weights are identical.793

Download and processing of inDrop pancreatic islet data794

Raw sequencing data were downloaded from SRA (experiment accession SRX1935938). In this795

experiment by Baron et al. (2016), inDrop was applied to pancreatic islet tissue from a human donor. Data796

was processed using the same pipeline used for the inDrop pure RNA data, and only profiles with a total797

UMI count of at least 1,000, resulting in a dataset containing UMI counts for 19,865 protein-coding genes798

across 2,109 cells. We refer to this dataset as the PANCREAS dataset.799

Download and processing of 10x Genomics Chromium (v2) peripheral blood mononu-800

clear cell (PBMC) data801

We downloaded the UMI-filtered expression matrix of the dataset titled “4k PBMCs from a Healthy802

Donor” from the 10x Genomics website (www.10xgenomics.com). The data was processed by 10x803

Genomics using the “Cell Ranger” software, version 2.1.0. A QC report of the dataset is available on804

the 10x Genomics website. The downloaded expression matrix contained 33,694 genes and 4,340 cells.805

We removed 13,921 genes that had no expression in the entire dataset, and then another 8 genes with806

duplicate gene names (keeping only the first instance of each gene). The final dataset contained 19,765807

genes. We refer to this dataset as the PMBC dataset.808

Download and processing of mouse myeloid progenitor data809

UMI counts were downloaded from GEO, accession number GSE72857. The 19 clusters for cells are810

available at MAGIC’s (Dijk et al. 2017) code repository: https://github.com/pkathail/magic/issues/34.811

27,297 cells with cluster labels were used for performing k-nearest neighbor smoothing (see Algorithm 1),812

and smoothed values were normalized to TPM (UMI-filtered transcripts per million). For visualization813

as a heatmap in Figure S9a-b, the z-score of every gene across cells was calculated. For scatter plots in814

Figure S9c-e, the expression of each gene was log2 (TPM + 1).815

Analysis of scRNA-Seq data using principal component analysis (PCA) and hierarchical816

clustering817

Both PCA and hierarchical clustering were performed on median-normalized and Freeman-Tukey trans-818

formed (FT-transformed) data. The procedure that we refer to as “median-normalization” is equivalent819

to “Model I” in Grün, Kester, and Oudenaarden (2014). It involves first calculating the median total820

UMI count across all cells in the dataset, and then scaling the expression profile of each cell so that821

its total UMI count equals this median value. More formally, for a dataset containing p genes and822

n cells, let uj = (u1j , ..., upj)
T represent the expression profile (gene UMI counts) of the j’th cell823

(either unsmoothed, or after kNN-smoothing without dividing by k+1). Let tj =
∑
i uij represent the824

total UMI count of the j’th cell. Then let tmed = median {t1, ..., tn} be the median total UMI count.825

Median-normalization then consists of calculating scaled expression profiles unorm
j = (tmed/tj) ∗ uj .826
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The Freeman-Tukey transform is a variance-stabilization transformation for Poisson-distributed827

data proposed by Freeman and Tukey (1950). It is defined as f(x) =
√
x +
√
x+ 1. We apply this828

transformation to the normalized UMI counts to ensure that independently of gene expression level, the829

absolute level of technical noise is comparable between genes. Specifically, we calculate the transformed830

UMI counts as utrans
ij =

√
unorm
ij +

√
unorm
ij + 1.831

PCA was performed on median-normalized and FT-transformed data, retaining all genes in the832

PANCREAS and PMBC datasets, respectively, using the sklearn.decomposition.PCA class833

from scikit-learn v0.19.1. Hierarchical clustering was also performed on median-normalized834

and FT-transformed data, but after filtering for the 1,000 most variable genes, using the835

scipy.cluster.hierarchy.linkage function from scipy v1.0.0. More specifically, we836

calculated the variance for each gene in median-normalized and FT-transformed data, and retained the837

1,000 genes with the largest variance. For clustering cells, we used Euclidean distance, and for clustering838

genes, we used correlation distance. In both cases, we used average linkage. To visualize the clustered839

data as a heatmap, we re-ordered the genes and cells according to the results of the hierarchical clustering,840

and standardized the expression values of each gene by substracting the mean and dividing by its sample841

standard deviation.842

Selection of cell type-specific marker genes843

For cell types in the PANCREAS dataset, we selected the same genes used by Baron et al. (2016). For the844

PMBC dataset, we manually selected genes based on well-known markers, a previously published analysis845

of scRNA-Seq PBMC data (Zheng et al. 2017), and literature searches. In particular, for moncoytes, we846

followed known protein surface markers and selected CD33, a myeloid lineage marker, CD14, specifically847

expressed in monocytes, and CD16, expressed on a subset of monocytes, as well as certain NK cells and848

T cells (Naeim et al. 2013). To mark dendritic cells, we selected FCER1A and CLEC9A, both previously849

shown to be specifically expressed in those cells (Villani et al. 2017). For T cells, we used CD3D and850

CD3E, the protein products of which form a dimer of the T cell receptor complex, and are pan T cell851

markers (Naeim et al. 2013). We also included CD8A and CD8B, encoding two isoforms of the CD8 T cell852

co-receptor present on cytotoxic T cells. For NK cells, we included NCAM1 (CD56), NCR1 (CD335), and853

KLRD1(CD94), all of which are expressed on NK cells at the protein level (Naeim et al. 2013). Finally,854

for B cell,s we included CD19, MS4A1 (CD20), and CD79A, all well-known B cell markers (Naeim et al.855

2013).856

Simulation of scRNA-Seq data857

The SIM-PANCREAS dataset was simulated based on the PANCREAS dataset using the following858

approach: First, we used smoothing and hierarchical clustering to group the cells in the PANCREAS859

dataset into ten clusters. To do so, we applied kNN-smomothing with k = 31. Then, the smoothed860

dataset was median-normalized, and the normalized values were Freeman-Tukey transformed. Then, the861

dataset was filtered for the top 2,000 most variable genes, and hierarchical (agglomerative) clustering862

was performed on the cells, using average linkage and the Euclidean distance metric. The resulting tree863

was cut at the appropriate height to produce ten clusters. We chose hierarchical clustering over other864

clustering methods because it simplifies the visualization of clustering results, and because it can ensure865

a certain degree of consistency between simulated datasets that only differ in terms of the number of866

clusters simulated.867

After assigning all cells to one of ten clusters, we calculated the cluster expression profiles by averaging868

the expression profiles of all cells assigned to that cluster, using the original (unsmoothed) UMI counts.869

For each cell in PANCREAS, we then simulated a corresponding expression profile for inclusion in the870

SIM-PANCREAS dataset, by looking up the cluster it was assigned to, scaling the cluster expression871

profile to match the observed number of transcripts for that cell, and then drawing the expression value872

for each gene from a Poisson distribution with the corresponding λ parameter.873

To formalize this procedure, let p be the number of genes in the PANCREAS dataset, and let uj =874

(u1j , ..., upj)
T represent the expression profile (gene UMI counts) of the j’th cell (before smoothing). Let875

zj ∈ {1, ..., 10} represent the cluster assignment of the j’th cell (obtained using hierarchical clustering,876

as described above). For the simulation, we then define a corresponding set of 10 clusters. Let ec =877

(e1c, ..., epc)
T represent the true expression profile of the j’th cluster, which we define using eic =878 ∑

j∈Zc
uij/|Zc|. Let tj =

∑
i uij represent the total UMI count of the j’th cell. Let ac =

∑
j∈Zc

tj/|Zc|879

represent the average total UMI count for cells in the c’th cluster. We use this information to simulate a880
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dataset with n cells. Let u′j = (u′1j , ..., u
′
pj)

T represent the expression profile (gene UMI counts) of the881

j’th cell in the simulated dataset. We obtain each u′ij by sampling from a Poisson distribution with mean882

parameter λij , where λij = (tj/azj ) ∗ eizj .883

The SIM-PBMC dataset was simulated based on the PMBC dataset using a completely analogous884

procedure.885

Comparison of the accuracies of kNN-smoothing, MAGIC, and scImpute on simulated886

data887

We downloaded MAGIC (commit 4d5efb4) from GitHub, and installed the Python package included.888

We also installed the scImpute R package (v0.0.4; commit dda0441) from GitHub, using the command889

install github("Vivianstats/scImpute"). We then applied both methods, as well as kNN-890

smoothing, to the SIM-PANCREAS dataset (testing different parameter choices; see below). For each891

cell in the dataset, we looked up the identity of the cluster that was used as the basis for the simulation892

of that cell’s expression profile. The expression profile of that cluster represented the ground truth that893

the smoothed expression profile should ideally be identical to. To quantify the similarity between the894

smoothed and the ground truth expression profile, we first applied a log2-transformation to both profiles,895

adding a pseudocount of 1: f(x) = log2(x+ 1). We then calculated the Pearson correlation coefficient896

(PCC) between the smoothed and ground truth expression profiles, as well as the root mean squared897

distance (RMSE) between those profiles. We visualized the results using boxplots in which each value898

represents the PCC or RMSE of a single profile (cell) after smoothing. We also calculated PCC and RMSE899

for values transformed using a square root transformation instead of a log-transformation: f(x) =
√
x,900

and visualized the results as a boxplot. Finally, we repeated the entire procedure for the SIM-PBMC901

dataset.902

For MAGIC, we varied the t parameter between 1 and 9, while setting the other parameters to the903

values recommended in the tutorial provided by the authors of this method: n pca components=20,904

k=30, ka=10. We reasoned that of all parameters, t has by far the strongest effect on the smoothing905

results, as it is the power to which the Markov affinity matrix is raised. t can also be interpreted as the906

length of a random walk, and larger values of t therefore lead to much stronger smoothing (Dijk et al.907

2017). For scImpute, we decided to vary both t and K. In this paper, we refer to t as d, in order to avoid908

confusion with MAGIC’s t parameter. d is the dropout probability threshold that determines the set of909

genes which will have their expression values imputed. K is the number of clusters that determines the910

sets of candidate neighbors, used to build statistical models to estimate dropout probabilities for each911

gene (W. V. Li and J. J. Li 2017).912

We applied MAGIC using its Python interface (function SCData.run magic), in accordance with913

the tutorial. We noticed that MAGIC dropped all genes that had no expression in any cell in the simulated914

datasets, and therefore took care to add these genes back (with zero values) to the smoothed matrix, in915

order to ensure an unbiased comparison with the other methods (additional or missing zero values change916

the value of the PCC). We applied scImpute using its R interface (function scimpute). It is noteworthy917

that while the runtime of MAGIC was comparable to kNN-smoothing (usually finishing within seconds or918

minutes), scImpute routinely took several hours to finish, even when using 4 CPU cores (ncores=4).919

Download and combination of 10x Genomics scRNA-Seq data for T cell subsets920

We downloaded the following datasets from the 10x Genomics website: “CD4+ Helper T Cells”,921

“CD4+/CD25+ Regulatory T Cells”, “CD4+/CD45RA+/CD25- Naive T Cells”, “CD4+/CD45RO+ Mem-922

ory T Cells”, “CD8+ Cytotoxic T Cells” and “CD8+/CD45RA+ Naive Cytotoxic T Cells”. All datasets923

were first reported by Zheng et al. (2017) and processed by 10x Genomics using the CellRanger software924

version 1.1.0. For each dataset, we downloaded the “Gene / cell matrix (filtered)”, containing UMI-filtered925

transcript counts per gene and cell. For each dataset, we then removed genes that were not expressed,926

removed duplicated genes, and randomly selected a subset of 1,000 cells. We then combined all six927

datasets into one large dataset containing the union of all the genes from each dataset and all cells. The928

combined dataset contained 19,208 genes and 6,000 cells.929

Analysis of differential expression between experimentally isolated T cell subsets to930

identify marker genes931

This analysis was performed on scRNA-Seq data form T cell subsets, bead-enriched from peripheral932

blood (Zheng et al. 2017), and downloaded from the 10x Genomics website (see above). For each T cell933
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subset analyzed (naive CD4 T cells, naive CD8 T cells, and memory CD4 T cells), we sampled a random934

set of 1,000 profiles from the corresponding dataset, and discarded genes encoding ribosomal proteins, as935

well as genes located on the mitochondrial genome. To determine a p-value for differential expression936

for each gene, we applied the Freeman-Tukey transform to all expression measurements, thus stabilizing937

the technical variance of all expression measurements, and then performed a standard two-sample t-test938

(assuming equal variance) for each gene. To determine a fold-change value for each gene, we used939

the untransformed data, averaged the UMI counts for each gene across all cells in each dataset, set all940

averaged values below 0.05 to 0.05, and calculated log2-transformed ratios for each gene.941

Correlation analysis between smoothed pan-T cell profiles and expression profiles from942

experimentally isolated T cell subsets943

As an external validation of the clustering results obtained for smoothed pan T-cell data, we compared944

each smoothed expression profile to expression profiles from experimentally isolated T cell subsets. We945

used the same data by Zhang et al. (2017) as described above (1,000 randomly selected profiles per T946

cell subset). To generate the subset-specific expression profiles from the scRNA-Seq data, we removed947

duplicate gene entries, and genes without expression in any of the cells. We then summed up the UMI948

counts for each gene across all cells, and combined all profiles into a single matrix. For distinguishing949

naive from memory T cells, this was a matrix containing 17,910 genes and three columns (the profiles950

for naive CD4 T cells, naive CD8 T cells, and memory CD4 T cells). For distinguishing CD8 and CD4951

naive T cells, this was a matrix containing 16,801 genes and two columns (the profiles for naive CD4 and952

naive CD8 T cells). For each analysis, we then determined the set of genes shared between the matrix953

with the subset-specific expression profiles and the heatmap containing only the most variable genes from954

the smoothed pan T-cell data. This was a set of 468 genes for the naive vs. memory T cell analysis, and955

191 genes for the CD4 vs. CD8 T cell analysis. We then subsetted the matrix with the subset-specific956

expression profiles and the smoothed pan-T cell expression matrix using these genes, and transformed957

the expression values for each genes to z-scores (for both matrices separately). For each subset-specific958

expression profile, we then determined the Pearson correlation coefficient with all cells in the smoothed959

pan-T cell data. The results are shown as a heatmap at the bottom of Figure 9a and Figure 9b.960

Measuring the runtime of the kNN-smoothing Python implementations961

To measure the runtime of our kNN-smoothing and kNN-smoothing 2 Python implementations, we962

downloaded the UMI-filtered gene expression matrix of the dataset titled “8k PBMCs from a Healthy963

Donor” from the 10x Genomics website. After filtering for genes with expression and removing duplicated964

genes (analogous to our processing of the PMBC dataset), we obtained a dataset containing 21,425 genes965

and 8,381 cells. To test the runtime of kNN-smoothing we randomly sampled n=2,000, n=4,000 and966

n=8,000 cells (without replacement) and measured the runtime (wall time) of the algorithm for different967

settings of k. For each combination of n and k, we repeated this procedure three times, and determined968

average runtimes and standard deviations. The tests for kNN-smoothing were performed using Python969

v3.5.4, and the tests for kNN-smoothing 2 were performed using Python v3.6.4, both on Ubuntu® 17.10.970
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Figure 1. Noise profiles of three high-throughput single-cell RNA-Seq platforms. (a-c) Relationship
between mean UMI count and coefficient of variation (CV) in pure RNA replicates, analyzed using
inDrop (a) Drop-seq (b), and 10x Genomics (c). For inDrop, RNA was extracted from cultered
cells (Klein et al. 2015). For Drop-Seq and 10x Genomics, ERCC spike-in RNA was analyzed
(see Macosko et al. (2015) and Zheng et al. (2017)). (d-f) The same relationship after normalizing each
profile to the median total UMI count (see Methods). (g-i) Expected vs. observed fraction of zeros, as a
function of mean expression (after median-normalization). For inDrop data (a, d and g), a randomly
sampled subset of 1,000 genes is shown for better readability.

24/43

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/217737doi: bioRxiv preprint 

https://doi.org/10.1101/217737
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Simple averaging of scRNA-Seq expression profile replicates reduces the coefficient of
variation in a manner predicted by Poisson statistics. (a) Effect of averaging on the coefficient of
variation, for 1,000 randomly selected genes in the inDrop pure RNA dataset (Klein et al., 2015). Solid
lines represent the theoretical relationship based on the Poisson distribution. After averaging of 16
profiles at a time, the CV can be seen shifted downwards by about 0.6 units, which corresponds to a factor
of 4 on the log10-scale used. (b) Distribution of UMI counts for the GAPDH gene, before and after
averaging. Bars show the observed UMI distributions. The solid lines show the theoretical distributions
for a Poisson-distributed variable representing the original values (blue), and a scaled Poisson-distributed
variable representing the averaged values (orange). To eliminate efficiency noise, both original and
averaged profiles were normalized to the median total UMI count (Grün et al., 2014).
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Figure 3. Effect of scRNA-Seq data transformations on mean-variance relationships in technical
replicates from the inDrop protocol. All data are normalized to the median total UMI count. (a-c)
Gene mean-variance relationships in the pure RNA samples (Klein et al., 2015) without transformation,
with log10(TPM+1) transform, and with Freeman-Tukey transform (y =

√
x+
√
x+ 1), respectively.

(d-f) Mean-variance relationships after aggregating the expression profiles of randomly selected,
non-overlapping batches of 4 cells, for the same transformations. All plots show data for the same 1,000
randomly selected genes.
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Figure 4. Application of k-nearest neighbor smoothing to scRNA-Seq data from human
pancreatic islet tissue. All panels show data from the PANCREAS dataset, from a study by Baron et al.
(2016). Smoothing was performed using k = 15. a Principal component analysis (PCA) with (top) and
without (bottom) smoothing. Axis labels indicate the fraction of variance explained. Cell types were
identified based on the smoothed data, using ad-hoc expression thresholds for the marker genes listed in
Baron et al. (2016). Beta cells were defined as having expression of INS ≥ 40,000 TPM (UMI-filtered
transcripts per million); alpha cells, GCG ≥ 5,000 TPM; delta cells, SST ≥ 20,000 TPM; acinar cells,
CPA1 ≥ 1,000 TPM. Cells that exceeded none of the thresholds, or more than one, were labeled as “other
/ unclassified”. b Heatmap showing clustered and standardized expression data for the 1,000 most
variable genes, after smoothing. c Heatmap providing a zoomed-in view of the area marked in blue in (b),
with (left) and without (right) smoothing. d Expression of cell type-specific marker genes (Baron et al.
2016) with (top) and without (bottom) smoothing. Cells are ordered as in (b). See Methods for details on
how PCA and hierarchical clustering were performed.
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Figure 5. Application of k-nearest neighbor smoothing to scRNA-Seq data from human
peripheral blood mononuclear cells (PBMCs). All panels show data from the PMBC dataset, published
online by 10x Genomics. a-c Panels showing results of PCA and hierarchical clustering on smoothed and
unsmoothed data, as in Figure 4. Cell types in (a) were identified based on the smoothed data, using
ad-hoc expression thresholds for a list of marker genes compiled from the literature (see Methods). T
cells were defined as having expression of CD83D ≥ 500 TPM (UMI-filtered transcripts per million);
CD14+ monocytes, CD14 ≥ 250 TPM; B cells, CD79A ≥ 1,000 TPM; dendritic cells, FCER1A ≥ 500
TPM. Cells that exceeded none of the thresholds, or more than one, were labeled as “other / unclassified”.
Due to technical limitations of the visualization library used, only a random subset of 2,000 cells (out of
the 4,340 cells in the dataset) is shown in (b). d Expression of selected marker genes for the major cell
types present in the data, with (top) and without (bottom) smoothing.
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Figure 6. Accuracy of kNN-smoothing in comparison to other smoothing methods for simulated
scRNA-Seq data. a, b Accuracy on SIM-PANCREAS dataset. c, d. Accuracy on SIM-PBMC dataset.
(a) and (c) show relative accuracy of log2-transformed expression profiles, quantified using the Pearson
correlation coefficient (PCC). (b) and (d) show absolute accuracy of log2-transformed expression profiles,
quantified using root mean squared error (RMSE). Box plots summarize the distributions of values for all
cells in the data. The three methods were each run with various different parameter settings, indicated on
the x-axis (see Methods for details). e,f Average accuracy (PCC) of cells in the three largest and smallest
clusters of the SIM-PANCREAS dataset (e) and SIM-PBMC (f) dataset, respectively, for different
settings of k as indicated on the x-axis. g-j Correlation between true and smoothed expression profile for
a representative cell from the largest cluster in the SIM-PANCREAS dataset, for kNN-smoothing,
scImpute, and MAGIC, with parameter settings indicated above each panel.
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Figure 7. Accuracy and size bias of kNN-smoothing in comparison to two variants of the
algorithm, for simulated scRNA-Seq data. a, b Accuracy quantified as the fraction of cells with
“incorrect” neighbors selected by the smoothing algorithm when applied to the SIM-PANCREAS (a) and
SIM-PBMC (b) datasets, respectively, with different settings of k, as indicated on the x-axis. A cell has
an “incorrect neighbor” when at least one cell “neighbor” from a different cluster was included in the
calculation of its smoothed expression profile. c, d Size bias measured by the total UMI count per cell in
the SIM-PANCREAS (c) and SIM-PBMC (d) datasets, respectively, after smoothing with different
settings of k, as indicated on the x-axis.
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Figure 8. Accuracy of kNN-smoothing 2 for datasets containing subsets of T cells. a PCA plot for a
dataset consisting of 1,000 profiles each from naive CD4 and CD8 T cells, respectively. Left, before
smoothing; middle, after smoothing with kNN-smoothing; right, after smoothing with kNN-smoothing 2.
A random subset of 250 cells from each population are shown to improve the readability of the figure. b
Expression levels of four genes overlaid on a PCA plot of the cells after smoothing with kNN-smoothing
2. c Quantitative analysis of the smoothing accuracy for the CD4/CD8 T cell data using a differential
expression metric. Shown are the differential expression scores, ranked from high to low, after smoothing
with different parameters. d Same analysis as in (c), but for a dataset consisting of naive CD4 and
memory CD4 T cells.
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Figure 9. Identification of T cell subsets in a peripheral blood pan-T cell data using
kNN-smoothing 2. a Analysis of 4,583 pan-T cell expression profiles. Top, heatmap of hierarchically
clustered data after application of kNN-smoothing 2 with k=127 and d=5. Below, expression of naive and
memory T cell marker genes in the smoothed and unsmoothed data, using the same ordering of cells as in
the heatmap above. Bottom, correlation with expression profiles from isolated subsets of naive and
memory T cells, using the same ordering of cells as in the heatmap above (see Methods for details). b
Analysis of a subset of 1,656 profiles identified as naive T cells, using kNN-smoothing with k=127 and
d=4. Panels are organized as in a.
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Figure 10. Performance and memory footprint of kNN-smoothing and kNN-smoothing 2 for
datasets of different sizes. a, b Runtimes of Python implementations of the kNN-smoothing and
kNN-smoothing 2 algorithms, respectively, when applied to datasets obtained by subsampling different
numbers of cells (n) from a scRNA-Seq dataset of human peripheral blood mononuclear cells (PBMCs),
published online by 10x Genomics. Smoothing was performed on 21,415 genes with expression. Settings
of k are indicated on the x-axes. c Predicted memory footprint of the kNN-smoothing algorithms as a
function of the number of cells in the dataset (n). See Methods for details.
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