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Abstract 
In bioinformatics as well as other compute heavy research fields, there is a need for workflows 
that can be relied upon to produce consistent output, independent of the software environment 
or configuration settings of the machine on which they are executed. Indeed, this is essential for 
making controlled comparisons between different observations or distributing software to be 
used by others. Providing this type of reproducibility, however, is often complicated by the need 
to accommodate the myriad dependencies included in a larger body of software, each of which 
often contain multiple versions. In many fields as wells as bioinformatics, these versions are 
subject to continual change due to rapidly evolving technologies, further complicating problems 
related to reproducibility. We are proposing a principled approach for building analysis pipelines 
and taking care of their dependencies. As a case study to demonstrate the utility of our 
approach, we present a set of highly reproducible pipelines for the analysis of RNA-seq, 
ChIP-seq, Bisulfite-seq, and single-cell RNA-seq. All pipelines process raw experimental data 
generating reports containing publication-ready plots and figures, with interactive report 
elements and standard observables. Users may install these highly reproducible packages and 
apply them to their own datasets without any special computational expertise apart from using 
the command line.  We hope such a toolkit will provide immediate benefit to laboratory workers 
wishing to process their own data sets or bioinformaticians who would want to automate parts or 
all of their analysis. Our approach to reproducibility may also serve as a blueprint for 
reproducible workflows in other areas. Our pipelines, their documentation and sample reports 
from the pipelines are available at ​http://bioinformatics.mdc-berlin.de/pigx  
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Introduction 
Reproducibility of scientific workflows is a ubiquitous problem in science, and is particularly 
problematic in areas that depend heavily on computation and data analysis (see ​(Peng 2011)​). 
For such work it is desirable to ensure that installed software is identical to versions used in 
publication, in order to facilitate reproduction of published data and controlled manipulation or 
augmentation of these software system. Unfortunately, this goal is often unattainable for a 
variety of related reasons: Research-oriented software may be hard to build and install due to 
unsatisfiable dependency constraints; non-trivial software may yield different results when built 
or used with different versions or variants of declared dependencies; on workstations and 
shared High Performance Computing (HPC) systems alike, it may be undesirable or even 
impossible to comply with version and variant requirements due to software deployment 
limitations.  Moreover, It is unrealistic to expect users to manually recreate environments that 
match the system and binary substrate on which the software was developed. In the field of 
bioinformatics this problem is exacerbated by the fact that data production technology moves 
extremely fast; existing software and data analysis workflows require frequent updates. Thus, it 
is paramount that multiple versions and variants of the same software can be automatically built, 
in order to ensure reproducibility of projects that are either in-progress, or already published. 
 
Another important issue is the reproducibility of workflows and pipelines across different 
machines. In addition to bioinformatics, many scientific fields require the researcher to prototype 
their code on local workstations with a custom software stack, and then later run it on shared 
HPC clusters for large data sets.  The researcher must then be able to recreate their local 
environment on the cluster to ensure identical behavior. All these concerns add to the burden on 
scientists, and valuable time that could be spent on research is wasted accommodating the 
limitations of system administration practices to ensure reproducibility. Even worse, 
reproducibility failures can be overlooked amid this complication, and publications could be 
accompanied with irreproducible analysis workflows or software. For these reasons, the 
scientific community in general -and fast evolving fields like bioinformatics in particular- need 
reliable and reproducible software package management systems. 
 
In recent years, several tools have gained popularity among software developers and system 
administrators for wrapping Linux kernel features to accomplish process isolation, bind mounts, 
and user namespaces or to deploy services in isolated environments (also called “containers”). 
Examples of such tools include: Docker, Singularity, and lxc.  These tools are sometimes also 
proposed as solutions to the reproducibility problem ​(Peng 2011; Boettiger 2015)​, because they 
provide a way to ship an application alongside all of its runtime dependencies. This necessitates 
the use of file system images that are modified using imperative statements, e.g. to run a 
package manager inside a namespace, with the goal of embedding all dependencies in an 
opaque binary image.  Containers and binary disk images alone do not make traditional tooling 
any more suitable for the purposes of reproducible science.  Software deployment inside of the 
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container is still subject to the well-known limitations of traditional package managers, such as 
intractable stateful behavior, time-dependent installation results, the inability to install and 
control more than a handful application or library variants of packages on the same system, to 
name a few.  Container systems like Docker only shift the problem of reproducibility from the 
package level to the level of binary disk images, which is a much less useful level of abstraction. 
As such they bring little more to the table than traditional virtual machine images, albeit with 
different trade-offs.  We claim that reproducibility takes a more rigorous, declarative approach to 
software environment management and packaging itself. Other package and environment 
managers (such as Conda, EasyBuild, Spack) fail to take the complete dependency graph into 
account; instead, they make tacit assumptions about the deployment environment.  As a result, 
it is much harder to understand and exactly reproduce an environment as neither the full 
complexity of the graph of transitive dependencies nor the configuration space is captured. 
 
For all the above reasons, we propose functional package management -as implemented in 
GNU Guix- as a way to mitigate or obviate these problems by allowing us to ​declare​ the 
complete dependency graph of software packages (and all of their dependencies recursively). 
One important feature of this approach is that it allows for bit-by-bit reproducibility. To illustrate 
this, we created a set of analysis tools (or 'pipelines') for common genomics analysis data sets: 
RNA-seq, ChIP-seq, BS-seq and scRNA-seq (for the sequencing of RNA, Chromatin 
Immunoprecipitation, Bisulfite-treated DNA, and single-cell resolution RNA, respectively). Each 
pipeline has a complex and large graph of dependencies, and each graph is comprehensively 
declared as a GNU Guix package definition; the graph is then built reproducibly by relying on 
Guix package manager features. Note that these pipelines also represent production-level 
pipeline tools, rather than simply model examples -they come with a full set of features including 
alignment, quality check, quantification, assay specific analysis and HTML reports.  
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Results 

Pipeline design and implementation philosophy 
The pipelines provided here were designed with special focus on several key features: namely, 
that they be 1) easy to use, 2) easy to install, 3) easy to distribute, and, most importantly, 4) 
reproducible; all of which are inter-related constraints. Care was taken to ensure that all of the 
pipelines have a similar interface, so that familiarity with one pipeline would make for a gentler 
learning curve in learning to use the others. For the end-user, each pipeline has the same input 
types: a sample sheet and a settings file. The sample sheet contains information about samples 
such as names, locations of raw files, covariates etc. The settings file contains extra arguments 
related to the execution of the pipelines.  The users can generally run pipelines as follows:  
$ pigx [pipeline_name] [sample_sheet] -s [settings_file] 

where [pipeline_name] can refer to any of the four pipelines: “rnaseq”, “chipseq”, “bsseq”, or 
“scrnaseq”. The resulting output provided to the users includes high quality reports and figures 
containing a standard set of results from basic analyses and data quality checks. Where 
appropriate, reports also contain certain interactive elements.  
 
In implementing this toolset, one of our first design choices was to use a conventional build 
system, the GNU Autotools collection, to configure and build the pipelines as if they were 
first-class software packages in their own right rather than a mere collection of tools and glue 
code.  Instead of assuming that a user will provision a suitable environment ​at​ ​runtime​, the use 
of a build system allows us to capture the software environment ​at​ ​configuration time. ​This is 
achieved by explicitly checking for the presence of required tools in the build environment and 
recording their exact location in the pipeline's configuration file.  At runtime, the pipeline refers 
only to tools through the configuration file and does not assume the availability of dependent 
software in the global environment.  Moreover, using a well-established build system makes it 
easy to package the pipelines for any package manager.  We chose GNU Autotools over other 
build systems for two reasons: it does not require users to have a copy of the build system 
software as it compiles to shell code (which is highly portable), and it has been established long 
enough to implement a conventional and flexible build interface with well-known behavior even 
in somewhat unusual circumstances, such as the installation of files into unique prefixes as 
done when building with GNU Guix. 
 
Capturing the build-time environment alone is not enough to ensure reproducibility, nor is the 
use of a build system sufficient to make installation easy.  Thus, our second design choice was 
to package the pipelines for the GNU Guix package manager.  Like other package managers, 
GNU Guix allows users to install, upgrade and remove software without having to know the 
details of dependencies or the build procedure.  Unlike traditional package managers, however, 
GNU Guix takes a rigorous, declarative approach to software environment management and 
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packaging called functional package management. This approach takes into account the 
complete graph of dependencies and build-time configurations, and maximizes build 
reproducibility by building binaries in fully declared isolated environments. Packages are 
installed into paths with unique prefixes that are computed from the complete dependency 
graph, allowing for the simultaneous installation of different versions or variants of applications 
and libraries.  With functional package management, a given software build will generally yield 
bit-identical files when the build is performed on different machines or on the same machine at 
different points in time, independent of the current state of the system (caveats to this 
generalization are discussed below). 
 
We consider software reproducibility an important asset in controlled experimentation. 
Reproducing a software environment bit for bit is not a goal in itself, but it provides us with a 
foundation upon which we can perform precise changes to the environment and assess the 
impact of these changes.  Without bit-for-bit reproducibility we cannot be certain of the nature 
and impact of differences in the software environment.  While virtual machines or binary 
application bundles such as Docker images would be sufficient to freeze the state of our 
software environment, relying on these tools would lose the ability to recreate that same 
environment from scratch and would no longer be able to reason about the environment at the 
level of software packages.  The approach of functional package management as implemented 
in GNU Guix preserves the relationships between software packages and ensures that 
differences to the environment can be accounted for. 
 
A further design choice remained, regarding the workflow management system, which would 
execute a series of tasks mostly in the form of scripts from different programming languages. 
For this purpose, we used SnakeMake ​(Köster and Rahmann 2012)​, which provides 
target-driven execution infrastructure similar to GNU Make but with Python syntax, along with 
useful features such as parallel execution on HPC scheduling systems.  However, we would like 
to emphasize that the choice of workflow management system is not the most critical step for 
reproducibility, but rather the management of dependencies. The different pipeline stages are 
implemented with a workflow management system stitching together various bioinformatics 
tools; they are made configurable with the GNU Autotools and packaged with GNU Guix. This 
means they will be build-reproducible and can be installed via the one-liner: 
guix package --install pigx ​. 
 
 

RNA-seq pipeline 

General Description of PiGx-RNA-seq Pipeline 
PiGx RNA-seq provides an end-to-end preprocessing and analysis pipeline for RNA-seq 
experiments. The pipeline takes a set of raw fastq read files and the experimental design as 
described by the user, and produces differential expression reports with figures and tables of 
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differentially expressed genes, as well as GO term analysis thereof. Furthermore, it provides 
quality control reports about the experiment. To use the pipeline, the user must provide two 
files: the sample sheet describing the samples and corresponding fastq files, and a settings file 
with configuration parameters related to the pipeline’s execution. The settings file lists, among 
other things, the location of a reference genome for alignment, a GTF file with genome 
annotations, and a transcriptome reference, as well as a list of desired differential expression 
analyses to be performed, specifying which samples to use as cases and controls --see 
package documentation here http://bioinformatics.mdc-berlin.de/pigx_docs/pigx-rna-seq.html for 
more details. 
 
The pipeline can then be run with the command  
$ pigx rnaseq [sample_sheet] -s [settings_file] ​, to generate  the output -- 
which comes in several sequential steps (see ​ figure 1 ​). 
 
PiGx RNA-seq uses the reference genome and transcriptome provided by the user to produce 
indices using ​STAR ​(Dobin et al. 2013)​ ​and ​Salmon ​(Patro et al. 2017)​ respectively. It then uses 
Trim Galore!​ ​(Babraham 2018b)​ to trim low quality reads and remove adapter sequences before 
aligning the reads to the reference using ​STAR​. At this point, PiGx RNA-seq uses ​fastqc 
(Babraham 2018a)​ ​and ​MultiQC ​(Ewels et al. 2016)​ to generate comprehensive quality control 
reports of the sequencing, trimming, and alignment steps. PiGx RNA-seq also uses ​BEDTools 
(Quinlan and Hall 2010)​ ​to compute the depth of coverage in the experiment and outputs 
convenient bedgraph files. Gene level expression quantification is obtained from ​STAR​, and 
transcript level quantification using ​Salmon​. The gene expression count matrix is then used to 
run differential expression analyses as specified by the user, using ​DESeq2 ​(Love, Huber, and 
Anders 2014)​ for statistical analysis and ​g:ProfileR​ ​(Reimand et al. 2007)​ for GO-term analysis. 
Each differential expression analysis produces a self-containing HTML report. 
 
The differential expression reports produced are comprehensive, including sortable tables for 
differentially expressed genes for a detailed view, principal component analysis plots for a 
birds-eye view of the experiment, as well as MA and volcano plots. In addition, the reports 
include a section with GO term enrichment analysis. 
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Figure 1 
Workflow diagram of the PiGx-RNA-seq pipeline. 
 
 

RNA-seq Use Case 
The study by ​(Hon et al. 2014)​ is motivated by several observations: DNA methyl-transferases 
(DNMTs) are the major mediators of cytosine methylation (producing 5-methyl-cytosine). 5hmC 
(5-hydroxy-methyl-cytosine) is a product of oxydation of 5mC's, and the TET family of proteins 
mediate 5mC oxydation. It has been established that DNA demethylation consists of the 
sequence of chemical reactions that convert 5mC into 5hmC, which is subsequently converted 
into 5fC (5-formyl-cytosine) and 5caC (5-carboxyl-cytosine). Active enhancers are depleted for 
5mC but are enriched for 5hmC marks ​(Rampal et al. 2014)​, suggesting that an interplay 
between DNMTs and TET proteins could determine the activity level of enhancers. Mutating 
DNMTs or TET proteins in mouse embryonic stem cells (mESCs) perturbs the global DNA 
methylation status however the cells do not lose the ability to regenerate. Moreover, mutating 
TET proteins and perturbing the oxidation levels have previously been shown to skew the 
differentiation of mESCs. Based on these facts, the authors address the following question: Can 
the skewed differentiation in mESCs be explained by deregulated balance of 5mC / 5hmC levels 
at active enhancers following the loss of activity of TET proteins?  
 
The authors of the above study use TAB-Seq, Bisulfite-Seq, ChIP-seq and RNA-seq methods to 
profile genome-wide methylation, demethylation, histone modifications and gene expression 
levels to address these questions. They find that ​Tet2​ has the biggest role in enhancer 
demethylation in mESCs. Deletion of ​Tet2​ leads to enhancer hypermethylation, which in turn 
reduces enhancer activity. The reduced enhancer activity leads to a disruption in the activation 
of more than 300 genes in the early stages of differentiation, however the activity levels of these 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/298653doi: bioRxiv preprint 

https://paperpile.com/c/gIJdYe/srXh
https://paperpile.com/c/gIJdYe/7ONW
https://doi.org/10.1101/298653
http://creativecommons.org/licenses/by-nd/4.0/


 

genes are restored to wild-type levels at the later stages of differentiation. Reduced enhancer 
activity followed by delayed gene activation explains the skew observed in mESC differentiation. 
 
The authors of the aforementioned study profile the transcriptomes of mESCs as they 
differentiate into neural progenitor cells (NPCs) within a six day period. They quantify gene 
expression levels of wild-type, ​Tet1​ -/- and ​Tet2 ​ -/- cells on day zero, day three, and day six and 
sequenced two biological replicates per sample. Thus, they obtained 18 samples in total (3 
genotypes x 2 replicates x 3 days). In figure 5 of the original manuscript, the authors summarise 
the results of the RNA-seq analysis. Here, we use the PiGx-RNA-seq pipeline to pre-process 
the raw fastq files downloaded from the GEO archive (GEO accession: GSE48519), map the 
reads to the ​Mus musculus​ genome (GRCM38 (mm10) build), and finally quantify the 
expression levels of genes using both Salmon ​(Patro et al. 2017)​ and STAR ​(Dobin et al. 2013)​. 
We then use DESeq2 ​(Love, Huber, and Anders 2014)​ to perform multiple differential 
expression analyses as described in the original publication. Based on the processed and 
normalized count tables and differential expression analysis results produced by the PiGx 
pipeline, we have written a small custom script to reproduce the panels in figure 5 of Hon et al. 
In order to reproduce this figure, we needed to perform seven differential expression analyses 
as described in Table 1. HTML reports for each differential expression analysis (based on read 
counts computing using STAR) can be found here: 
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html ​.  
 
 
 
 
 
 
 
 
 

Analysis Case Sample Control Sample Description 

tet2_diff_day3 day3_tet2_KO day0_tet2_KO 
Tet2 ​ -/- cells on day 3 are 
compared to ​Tet2​ -/- cells on day 
0. 

tet2_diff_day6 day6_tet2_KO day0_tet2_KO 
Tet2 ​ -/- cells on day 6 are 
compared to ​Tet2​ -/- cells on day 
0. 

WT_diff_day3 day3_WT day0_WT 
Wild-type cells on day 3 are 
compared to wild-type cells on 
day 0.  

WT_diff_day6 day6_WT day0_WT Wild-type cells on day 6 are 
compared to wild-type cells on 
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day 0.  

tet2_vs_WT_day0 day0_tet2_KO day0_WT 
Tet2 ​ -/- cells on day 0 are 
compared to wild-type cells on 
day 0.  

tet2_vs_WT_day3 day3_tet2_KO day3_WT 
Tet2 ​ -/- cells on day 3 are 
compared to wild-type cells on 
day 3.  

tet2_vs_WT_day6 day6_tet2_KO day6_WT 
Tet2 ​ -/- cells on day 6 are 
compared to wild-type cells on 
day 6.  

 

Table 1 
Differential expression analyses performed by PiGx-RNA-seq. 
 
Having performed the above analysis, we first took a global look at how all sequenced samples 
cluster. Using a table of TPM (transcripts per million reads) counts generated by Salmon at the 
gene level, we selected the top 100 most variable genes and plotted a heatmap of all the 
samples using pheatmap package ​(Kolde 2018)​. We observed that the samples mainly cluster 
by the differentiation stage rather than genotype, which confirms the authors' findings (figure 
2A). Next, again using the same TPM counts table, we plotted the expression levels of a select 
list of genes (​Nes6, Pax6, Sox1, Tet1, Tet2, Tet3, Slit3, Lmo4, Irx3 ​) on day 0, day 3, and day 6 
(figure 2B). The changes in the expression levels of these genes perfectly match the patterns as 
described by Hon et al. At this point the authors recognise that some neural marker genes such 
as ​slit3​ and ​lmo4​ show discordant expression patterns between WT and ​Tet2​ -/- samples 
particularly on day 3, which are restored back to WT levels on day 6. The authors then 
investigated whether such a delayed induction mechanism can be observed globally. It was 
shown that the percentage of genes that are differentially expressed in both ​Tet2​ -/- and WT 
cells (compared to the undifferentiated samples of the corresponding genotypes on day 0), is 
significantly higher on day 6 than on day 3. We also observe a similar pattern, however the 
difference we observe is somewhat reduced. Our findings are reproduced based on gene 
counts quantified by both STAR and Salmon (figure 2C).  
In figure 5F of the original publication, the authors take a closer look into the list of discordantly 
induced genes on day 3 in ​Tet2​ -/- samples. There it is shown that the majority of the genes that 
get induced in WT samples by day 3, don't get induced in the ​Tet2​ -/- samples as highly as they 
do in the WT samples. On the other hand, these numbers are comparable on day 6. We also 
observe the same difference and reproduce the findings using both Salmon and STAR-based 
gene counts (figure 2D). This suggests that there must be a list of genes that get activated in 
WT, but lag behind in ​Tet2​ -/- samples at the early stage of differentiation, however they catch 
up later with the WT levels. The authors call these genes ‘ ​delayed induction genes’​ and find 333 
genes that fit such a description. In figure 5G, the authors show the relative expression of these 
genes in ​Tet2​ -/- samples compared to WT samples throughout differentiation and compare it to 
the remaining list of genes in the genome. We have successfully reproduced the same patterns 
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based on 357 delayed induction genes detected by Salmon-based gene counts (282 genes 
detected by STAR-based gene counts) (Figure 2E). In figure 5H, the authors show the most 
significant GO terms enriched for the delayed induction genes. Although we don't observe the 
same set of terms as reported by the authors, we found seven development-related GO terms 
including 'tissue development' and 'nervous system development' as enriched terms (figure 2F). 
 

 
Figure 2 
Reproduction of figure 5 from ​(Hon et al. 2014)​ using datasets processed by PiGx-RNA-seq 
pipeline. ​A)​ Hierarchically clustered heatmap of the top 100 most variable genes across all 
samples (transcripts per million (TPM) aggregated on the gene level, produced with Salmon). 
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Each row represents a gene and each column represents a sequenced sample (See Table 1 for 
descriptions of the samples). The expression values are scaled by 'row'. ​B)​ Changes in the 
expression levels of a selected list of genes throughout differentiation period on day 0, day 3, 
and day 6. The y-axis shows the normalised expression levels (TPM at gene-level). The 
expression patterns of samples with ​Tet2​ -/- background are depicted in black and wild type 
background in orange. ​C)​ Abundance of differentially expressed genes (adjusted p-value < 0.1) 
(on y-axis) when comparing samples on day 3 or day 6 with the samples on day 0 with 
corresponding genotypes (​Tet2​ -/- or wildtype). The bar labeled 'overlap' represents the number 
of differentially expressed genes in both genotypes. The percentage is calculated by dividing the 
value of 'overlap' with the value of ​Tet2​ . The results are reproduced by both Salmon-based 
gene-level read counts (top row) and STAR-based gene-level read counts (bottom row). ​D) 
Genes that are up-regulated (induced) in wild-type samples on day 3 (or day 6) compared to 
wild-type samples on day 0, are intersected with genes that are differentially expressed between 
wild-type samples and ​Tet2​ -/- samples at the same stage of differentiation, and classified as 
'Tet2 ​ > wt' (the gene is up-regulated in the ​Tet2​ -/- sample moreso than in the wild-type sample) 
or ​'Tet2 ​ < wt' (the gene is upregulated in ​Tet2​ -/- sample less than in the wild-type sample). The 
plot is reproduced using both Salmon-based gene counts and STAR-based gene counts. ​E) 
Heatmaps for delayed induction genes (on the left) and 500 genes randomly selected from the 
remainder (on the right). The colors of the heatmap represent the log ​2​ scale ratio of normalised 
expression value (gene-level TPM counts obtained using Salmon) of each delayed induction 
gene between ​Tet2​ -/- sample and the wild-type sample of the corresponding replicates (r1: 
replicate-1, r2: replicate-2) on the corresponding stages of differentiation (day 0, day 3, and day 
6). The rows of the heatmap are ordered in increasing order based on the average values of the 
two replicates on day 3. The color scales range between -1 and 1 before reaching saturation. ​F) 
Top GO terms for biological processes (on the y-axis) enriched among the delayed induction 
genes. The GO terms are detected using g:ProfileR tool (Reimand 2016). The resulting terms 
are filtered for p-value<0.05 and further filtered for the keyword 'development'. On the x-axis, the 
p-values are depicted at log ​10​ scale.  
 
 

ChIP-seq pipeline 

General Description of PiGx-ChIP-seq Pipeline 
 
PiGx ChIP-seq is an end-to-end processing and analysis pipeline for ChIP-seq experiments. 
From the input fastq files, the pipeline produces sequencing quality control, ChIP quality control, 
peak calling, IDR​ ​(Q. Li et al. 2011)​ estimation and prepares the data for visualization in a 
genome browser. The pipeline execution is highly customizable - the user can specify which 
parts of the pipeline to execute, and which parameter settings to use. As in the other pipelines, 
to use PiGx ChIP-seq, the user must provide two files: a sample sheet containing the names of 
the fastq files with a descriptive label, and a settings file. The settings file contains the locations 
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of the reference genome, and the GTF file with genome annotations, as well as a list of 
configurations for each executable step. Upon completion, the user is provided with quality 
reports, and all of the pre-processed data, which substantially facilitates downstream analysis 
and visualization. 
 
PiGx ChIP-seq pipeline aligns the reads to the genome using Bowtie2 ​ ​(Langmead and Salzberg 
2012)​, does peak calling using MACS2 ​(Zhang et al. 2008)​, calculates the irreproducibility rate 
and outputs a series of quality statistics, such as: GC content, strand cross correlation, 
distribution of reads and peaks over annotated genomic features, and clustering of samples 
based on their similarity​ ​(Landt et al. 2012)​. The pipeline also produces UCSC Track hub for 
exploration of the dataset. The purpose of the pipeline is to improve the routine processing 
steps for ChIP-seq experiments and enable the user to focus on data quality control and 
biologically relevant data exploration. The pipeline heavily depends on Bioconductor ​(Huber et 
al. 2015)​ packages such as GenomicRanges ​(Lawrence et al. 2013)​ and Genomation ​(Akalin et 
al. 2015)​ for annotating peaks and summarizing ChIP-seq scores over regions of interest. 
 

 

Figure 3 
Workflow diagram for ChIP-seq pipeline 
 

ChIP-seq Use Case  
 
For consistency, we applied the ChIP-seq pipeline to data from the same study as in the section 
“RNA-seq Use Case” above (Hon et al. 2014); for the biological underpinnings of this 
experiment, please see the description provided there. Figure 4 shows part of the ChIP-seq 
quality control output performed on untreated, wild type ChIP samples, of various activating and 
repressing histone marks, and the corresponding input samples. One standard procedure is to 
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validate the consistency of results with known biological priors, in order to quickly find samples 
with outlying properties, and to discover batch effects. For example, figure 4A shows the 
expected clustering of repressive (H3k27me3, H3k9me3) and activating (H3k4me3, H3k4me1, 
H3k27ac, and H4k36ac ) histone marks. Upon closer inspection, however, it becomes clear that 
the activating histone marks cluster by their corresponding ​batches​, and not by their biological 
functionality. Figure 4B shows the cross-correlation between the signal on the plus and minus 
genomic strands, shifted within a defined range (usually 1 - 400 nucleotides). The maximum 
intensity in each row indicates the average DNA  fragment size in each corresponding ChIP 
experiment. Large discrepancies in the cross correlation profile, between experiments, can 
indicate problems with fragmentation, fixation, or chromatin immunoprecipitation. The figure 
shows that most of the samples have an average fragment size between 100 - 150 bp. One of 
the H3k27me3 replicates, however, shows aberrant fragment size profile (second sample in the 
plot). Upon visual inspection, the sample had extremely low signal to noise ratio and and the 
peak calling resulted in zero enriched regions. . Such samples should be repeated, or omitted 
from the downstream analysis. Figure 4C represents the relationship between the GC content of 
one kilobase genomic bins and the ChIP signal. The plot is used as a diagnostics tool for 
enrichment of fragments with extreme nucleotide content (enrichment of fragments with GC 
content strongly deviating from the genomic mean), which can indicate problems with 
PCR-based fragment amplification, and chromatin immunoprecipitation. Figure 4D represents 
the distribution of reads over functional genomic features. It is used to observe whether the 
experimental results conform to known expectations, based on previous experiments - i.e. 
H3k4me3 should show strong enrichment over transcription start sites, while the H3k36me3 
should show an enrichment over exonic and intronic regions. Non-conforming experiments can 
indicate a weak ChIP, or antibody cross reactivity with unexpected epitopes. Figure 4 
represents just a subset of quality control metrics implemented as a standard output from the 
PiGx- ChIP-seq pipeline. The full set can be found here: 
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html  
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Figure 4 
Example ChIP-seq quality control output.​ A)​ Clustering of samples based on correlation of 
normalized ChIP reads in one kilobase bins. ​B)​ Cross correlation between coverage profiles on 
Watson and Crick strands, shifted by the amount specified on the x axis. ​C)​ Relationship 
between read count and GC content in 1 kb bins. ​D)​ Distribution of reads in functional genomic 
features. 
 

BS-seq pipeline 

General description of the PiGx BS-seq pipeline 
 
PiGx BS-seq is a bisulfite sequencing processing pipeline used to detect genome-wide 
methylation patterns and to perform differential methylation calling for case-control settings. It 
produces individual reports for each sample provided by the user, in addition to 
differential-methylation reports for arbitrarily many pairs of treatment conditions provided by the 
user. PiGx BS-seq uses ​Trim Galore! ​(Babraham 2018b)​ ​to trim reads for adapter sequences 
and quality, and ​fastqc ​(Babraham 2018a)​ for quality control (both before and after trimming). 
PiGx BS-seq produces ​GA​- and ​CT​- converted versions of the reference genome, if necessary, 
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using bismark_genome_preparation ​(Krueger and Andrews 2011)​. Reads are then mapped to 
the reference using Bowtie2 ​ ​(Langmead and Salzberg 2012)​, before being sorted by location in 
the genome and filtered for uniqueness using samtools ​(Krueger and Andrews 2011; H. Li et al. 
2009)​. The corresponding reports and .bam files for each of these steps are saved to their 
respective directories.  
 
As in the other pipelines, to use PiGx BS-seq, the user must provide two input files: a sample 
sheet containing the paths to the fastq files with a descriptive label, and a settings file. The 
pipeline is robust to paired-end or single-end input data, and processing of each case is initiated 
automatically, based on whether the user supplies only a single input file, or a pair of files, for 
each sample. The settings file contains the locations of the reference genome, among other 
directories, as well as a list of configuration steps for each executable step. The pipeline can 
then be run with the command:  
$ pigx bsseq [sample_sheet] -s [settings_file] ​,  
 
Post-mapping analysis steps performed by PiGx BS-seq include tabulation of the fractional 
methylation of CpG sites, the segmentation of genomic methylation patterns across the 
genome, and the selection of differentially methylated sites between pairs of treatments 
provided in the settings file above. In addition, the final reports include genomic annotation of 
differentially methylated regions and methylome segments. A single execution of the pipeline 
can perform differential methylation analysis between a sample and arbitrarily many references; 
each comparison will have its own dedicated report, in addition to the final report for the sample 
itself. For traceability, direct links to input files, and various execution tools are saved directly 
within the output folder. Finally, a copy of the full methylome for each sample is also saved in 
BigWig (.bw) format, compatible with visualization in an online genome browser. 

 

Figure 5 
Workflow diagram for PiGX BS-seq pipeline 
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BS-seq Use Case 
We applied the BS-seq pipeline to data from embryonic stem cells in mice, comparing wild type 
and ​Tet2​ deletion experiments (accessions SRX317879, and SRX317884 respectively). These 
data sets derive from the same study as was used for controlled comparison in the section 
“RNA-seq Use Case” above (Hon ​et al​. 2014); for a biological description of this experiment, 
please refer to that section. HTML reports for each of the performed analyses can be found 
here: ​http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html 
 
Figure 6 shows a standard set of data analysis metrics generated automatically by the pipeline. 
For example, methylation levels near the promoter region of a list of annotated genes for each 
sample are shown in figures (A) and (B). For generality, figure 6 averages over all known genes; 
the user may freely probe for more specific results by supplying any arbitrary set of genes under 
investigation (in the absence of such an annotation file, this figure is simply omitted from the 
final report). A coarse map of the genome is provided in (C) , which, for some datasets, may 
serve to highlight differential methylation localized to particular regions or chromosomes. In this 
particular use-case it is more useful as a null control showing that these regions are uniformly 
distributed throughout the genome. In addition, a histogram for differential methylation status of 
CpGs throughout the genome is provided in (D) using the same colour-code as in (C). The 
methylation differences of hyper-methylated, hypo-methylated and non-differentially methylated 
CpGs are shown as histogram with the color-code as in Figure 6C. This is shown as a 
distribution of methylation differences deemed to be not statistically significant (in black); since 
the latter are generally far more numerous than the former, these curves are normalized 
independently. Note also that since these curves represent ​relative​ distributions the vertical axis 
is of arbitrary units and tick marks are omitted. Finally, a screenshot of data-visualization from 
the genome browser ​(Robinson et al. 2011; Thorvaldsdóttir, Robinson, and Mesirov 2013)​ is 
provided in (E), here, regions of interest can be inspected manually at arbitrary precision. 
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Figure 6 
Output from the PiGx BS-seq pipeline. ​(A,B)​: average CpG methylation throughout the promoter 
regions of the mm10 genome for ​Tet2​ -/- and WT respectively. ​C)​ Whole-genome map of 
differentially methylated CpGs, with colour-code to indicate hyper- and hypo- methylation of the 
treatment (​Tet2 ​ -/-) relative to the control (Wild-type). ​D)​ Histogram of the difference in average 
CpG methylation between ​Tet2​ -/- and wild-type. For differentially-methylated cytosines, colors 
are consistent with (C), while CpGs with statistically insignificant difference in methylation are 
provided in black. Normalization of these two curves is performed independently (since the latter 
are generally far more numerous than the former), and the graph conveys only relative 
proportions (thus, as the absolute y-axis is of arbitrary scale, units and tick marks are omitted). 
E)​ Screenshot of the genome browser using bigwig data from PiGx; here the data can be 
examined in much finer detail than in C). 

scRNA-seq pipeline 
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General description of the PiGx scRNA-seq pipeline 
Single cell RNA-seq is an extremely powerful technology, that is becoming increasingly 
prevalent in biological studies. The rapid development of UMI based methods, along with 
droplet based cell separation ​(Macosko et al. 2015; Klein et al. 2015)​, has enabled even simple 
experiments to quantify expression in several tens of thousand of cells.  ​PiGx scRNA-seq​ is a 
pipeline for pre-processing of UMI based single-cell experiments. The purpose of the pipeline is 
to enable seamless integration and quality control of multiple single cell data sets. The pipeline 
works with minimal user input. As in the other pipelines, the user has to provide a sample sheet 
with basic experimental description, and a settings file which defines, among other parameters, 
the location of the input data and reference sequence and annotation. The pipeline can then be 
run with the command:  
 
$ pigx scrnaseq [sample_sheet] -s [settings_file]  
 
The pipeline does preliminary read processing, maps the reads with the STAR ​(Dobin et al. 
2013)​ aligner, and assigns reads to gene models. It also separates cells from background 
barcodes ​(Alles et al. 2017)​, and constructs digital expression matrices for each sample (each 
saved in loom format); loom files from all samples are then merged into one large loom file using 
the loompy package ​(Linnarsson 2018)​. The expression data are subsequently processed into a 
SingleCellExperiment ​(Aaron Lun and Risso 2018)​ object. SingleCellExperiment is a 
Bioconductor class for storing expression values, along with the cell, and gene data, and 
experimental meta data in a single container. It is constructed on top of hdf5 file based arrays 
(Pagès 2018)​, which enables exploration even on systems with limited RAM (random access 
memory).  
During the object construction, the pipeline performs expression normalization, dimensionality 
reduction, and identification of significantly variable genes. Then, it classifies cells by cell cycle 
phase and calculates the quality statistics. The SingleCellExperiment object contains all of the 
necessary data needed for further exploration. The object connects the PiGx pipeline with the 
Bioconductor single cell computing environment, and enables integration with state of the art 
statistical, and machine learning methods (scran ​(A. T. L. Lun, McCarthy, and Marioni 2016)​, 
zinbwave ​(Risso et al. 2018)​, netSmooth ​(Ronen and Akalin 2018)​, iSEE​ ​(Aaran Lun et al. 
2018)​, etc.). 
The pipeline produces an HTML report containing quality controls, labeled by input covariates, 
which can be used for detecting batch effects. 
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Figure 7  
Workflow diagram for PiGx-scRNA-seq pipeline. 
 

scRNA-seq Use Case 
 
To showcase the capabilities of PiGx scRNA-seq, we ran the pipeline on isolated single nuclei 
from the mouse brain ​(Hu et al. 2017)​. In this study, the authors developed a gradient-based 
method for nucleus separation, and used it in combination with Drop-seq to profile the 
transcriptomes of more than 18,000 single nuclei. Figure 8 shows a part of the quality control 
output from the PiGx scRNA-seq pipeline. Figure 8A shows the per sample number of total and 
uniquely mapped reads. Figure 8B visualizes the cells on the first two principal components. 
The color gradient corresponds to the number of detected genes per cells. The figure shows 
that the total number of detected genes strongly correlates with the first two principal 
components. Figure 8C is analogous to figure 7B of the original publication, with the color 
scheme representing labeling each cell with its respective stage of the cell-cycle. Thus, figure 
8C shows that the first two principal components correlate with the stage of the cell cycle. The 
heatmap in figure 8D shows scaled normalized expression values for genes that contribute the 
most to the first principle component. High read-count variability in a small number of genes 
drives the variation around the first principle component.  The column-wise annotations show 
that the variation is driven mainly by cells in the G1 phase of the cell-cycle from the second 
biological replicate. The HTML report for this analysis can be accessed here: 
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html  
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Figure 8 
Sample output from the PiGx scRNA-seq pipeline. ​A)​ Abundance of total uniquely mapping 
UMIs per sample. ​B)​ Visualization of cells on the first and second principal component 
calculated from the normalized expression values. The gradient shows the total number of UMIs 
per cell. ​C)​ Same data representation as in B, but colored based on the cell cycle assignment. 
Cell cycle was assigned using the cyclone function from the scran Bioconductor package ​(A. T. 
L. Lun, McCarthy, and Marioni 2016)​. ​D)​ Expression heatmap of genes contributing most to the 
first principle component. Genes are ordered in rows, while cell are in columns. Color bars 
above the heatmap show relevant experimental variables. 
 

Reproducibility metrics of the pipelines in different 
systems 
We define the complete software environment needed for each of the pipelines using Guix 
package definitions. These package specifications not only outline the immediate dependencies 
of the pipelines, but extend to the full software stack recursively. The dependency graph is 
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rooted in a handful of bootstrap binaries. Apart from these binary roots, every application or 
library in the graph is built from source. Guix ensures that packages are built in an isolated 
environment in which nothing but the specified dependencies are available.  This is a 
precondition for bit-reproducible builds, i.e. repeatable package builds that yield the very same 
binary output for the same set of inputs. Under ideal circumstances, a Guix specification for the 
complete dependency graph and the set of all source code would be sufficient to exactly 
reproduce the very same binaries of the pipelines presented in this paper.  
 
Unfortunately, there are additional obstacles to bit-reproducibility that cannot be avoided purely 
by the functional package management model. Examples for sources of irreproducibility in build 
artefacts include embedded timestamps, non-deterministic sorting of strings, non-deterministic 
compiler output, and the like. While some of these obstacles can be removed by deliberate 
patching of compilers or applications, others are harder to diagnose and can thus cause a 
failure in the attempt to reproduce the same arrangement of bits in independent builds, be that 
on the same machine at different points in time or on different systems. 
 
To estimate the level of bit reproducibility in our pipelines, we checked out version 
v0.14.0-3597-g17967d1 of GNU Guix, repeatedly built the pipeline packages and their direct 
dependencies on three different systems (an office workstation, a virtual machine, and a build 
farm consisting of 20 heterogeneous build nodes), and recorded the hashes of the produced 
package trees.  Whenever the hashes of any two builds differed we looked at the exact 
differences with diffoscope (https://diffoscope.org/).  Upon closer inspection we identified a 
number of common issues in non-deterministic builds, such as timestamps embedded in 
compiled binaries and text files, or randomized file names in files generated by test suites. 
 
Python dependencies are of particular note here, because they are generally not reproducible 
due to the fact that the byte compiler records the timestamp of the source file in the compiled 
binary.  This means that all compiled Python files will differ when they are compiled at different 
points in time.  (This problem will be addressed in the upcoming Python 3.7, which will 
implement PEP 552 for deterministic compilation.)  To avoid this problem and increase the 
number of packages that could be made reproducible, we patched our variant of Python 3.6 
such that it resets the embedded timestamp in compiled files to the Unix epoch.  This allowed 
us to greatly increase the number of fully bit-reproducible packages.  As can be seen in Table 2, 
only a total of 8 out of 355 packages (or only about 2.2%) were not bit-reproducible for as yet 
unknown reasons. 
 
Figure 9 visualizes the degree of bit-reproducibility for the direct dependencies of each of the 
individual pipeline packages.  Dependent packages whose files differed compared to builds on 
other systems fell either in the category of “minor problems” or “not reproducible”, dependent on 
the source and magnitude of non-determinism.  The exact dependency counts for each 
category and pipeline package are listed in Table 2.  A comprehensive list of all dependent 
packages that were categorized as having “minor problems” is contained in Table 3.  This table 
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shows that the reproducibility problems of these packages are of negligible magnitude and 
could be corrected with minor patches to the package definitions in Guix. 
 

 

Figure 9 
Percentage of directly-dependent packages building in a bit-reproducible fashion across 
different systems for each of the pipelines. 
 
 

Package Not reproducible Minor problems Reproducible 

pigx-bsseq 2 2 167 

pigx-chipseq 7 9 236 

pigx-rnaseq 7 9 211 

pigx-scrnaseq 6 8 218 

All pipelines 8 9 338 
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Table 2 
Number of dependent packages and their reproducibility status.  See  Table 3 for more details 
about packages with minor problems. 
 
 

Package Magnitude Notes 

r-minimal 2 bytes non-deterministic line break 

python ~ 6% timestamp byte in header of 
bytecode files 

python-matplotlib ~ 1.7% single file difference 

python-pycparser ~ 3% single file with timestamp 

python-cffi ~ 1.8% recorded random test file names 

python-numpy < 0.5% six bytecode files differ 

python-simplejson 2 bytes two files have single byte 
differences 

gtk+ < 1% single file (icon cache) 

glib < 0.1% single file difference 

 

Table 3 
Table of packages with minor reproducibility problems and the magnitude of irreproducible files. 
 

Alternative ways to install the pipelines: 
We provide a generated application bundle containing all pipelines for use with Docker.  The 
Docker image was generated by exporting the "closure" (i.e. the package and all packages it 
references, recursively) of the pigx package from the declarative Guix package definition 
instead of iteratively modifying a base image containing a GNU+Linux operating system in a 
series of imperative steps.  The Docker image is merely a translation of a functional description 
of the desired environment; consequently, it is independent to global state, such as the contents 
of third-party package repositories or build time.  The Docker image can be obtained at 
https://hub.docker.com/r/bimsbbioinfo/pigx/ 
 
Since the pipelines use the well-known GNU build system as implemented by the Autotools 
suite, the pipelines can be configured and built in any environment providing the required 
dependencies.   The portable configure script detects and records references to needed 
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software in the environment and reuses them at runtime using their absolute file names.  Any 
package manager (such as Conda) can be used to fashion such a build-time environment.  With 
regards to reproducibility, however, we recommend that a package manager be used that can 
provide separate, immutable, and uniquely prefixed environments to ensure that references to 
tools that are recorded at configuration time are identical to the variants that are used at 
runtime. 

Discussion  
Computation is an essential part of the biological sciences as the field gets more data intensive. 
The diversity and amount of data requires multiple tools being used for analysis. Therefore, the 
published software or workflows often come with complex dependencies. Even if sensible 
guidelines ​(“Software with Impact” 2014)​, such as sharing code online and providing 
documentation, are employed, sometimes it is impossible to recreate the software used for 
analysis. Providing the code and documentation alone does not guarantee reproducibility or 
usability, nor Docker containers are the total remedy for this problem. We propose using GNU 
Guix and principled pipeline-as-software implementation will help resolve reproducibility 
problems in complex bioinformatics workflows. ​Here, we demonstrated the utility and the 
reproducibility of PiGx pipelines for genomics data analysis using GNU Guix.  
 
Our decision to treat pipelines as first-class software packages and to adopt a conventional 
build system with Autotools made it possible to reduce the installation of complex software 
environments to a simple one-line command. By recording the exact locations of runtime 
dependencies of the pipeline packages during the configuration stage, we were able to 
eliminate ambiguity at runtime.  When configuring the pipeline packages in an environment that 
ensures that different versions or variants of applications and libraries are stored in unique 
locations (such as an environment provided by GNU Guix), recording the exact location of 
dependencies at ​configuration time​ allows us to reproduce the detected environment at ​runtime​. 
 
We have shown that with a recursive definition of software dependencies using the framework 
provided by the functional package management paradigm as implemented in GNU Guix it is 
possible to fully and exhaustively describe complex real-world bioinformatics software 
environments.  The software environments were fully specified at the level of declarative, 
stateless package abstractions instead of using an imperative, stateful approach.  We have also 
shown that the principled declarative approach to the management of software environments 
lays a solid foundation for bit-reproducibility.  The higher-level definitions of software 
environments can be translated in an automated fashion to lower-level application bundles such 
as Docker images.  In contrast with container systems like Docker or Singularity, Guix encloses 
the complete software environment and enables users to transparently rebuild it reproducibly 
from source without having to trust a binary application bundle.  Due to referential transparency, 
binaries in Guix can only be the result of their corresponding sources.  
 
Functional package management as implemented by GNU Guix significantly reduces the 
complexity of and lowers the barrier to managing bit-reproducible software environments.  Users 
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are freed from menial bookkeeping tasks such as keeping track of the origin of package 
binaries, the time of installation, the order of installation instructions, the state of the operating 
system at the time of installation, or any other runtime state.  As far as users are concerned, it is 
enough to know the names of the packages that should be installed (in our case that’s just 
“pigx”) and the current version of Guix; everything else such as source code provenance 
tracking, dependency management, package configuration, and compilation in isolated 
environments is handled by Guix.  The guarantees provided by Guix enable users to 
contemplate obstacles to experimental reproducibility beyond the software environment, such 
as sources of non-determinism at ​runtime​. 
 
In our attempts to analyze the degree of repeatability of the HTML reports produced by PiGx, 
we identified a number of such sources of non-determinism.  The Salmon aligner, for example, 
has a random component and does not provide a way for users to specify a seed for the 
pseudo-random number generators.  This makes it impossible to exactly repeat an analysis and 
may require patching of the Salmon source code or virtualization of the random number 
generator facilities of the host system.  Other tools are sensitive to the user's locale settings and 
may generate output in non-deterministic order.  We were also surprised to find that an 
increasingly large number of tools rely on a connection to the Internet, either directly or indirectly 
through dependent packages. This can be a great source of non-determinism if the 
experimental setup does not take the volatile nature of networked resources into account. 
Another important obstacle to reproducibility is the big kernel binary at runtime.  Although the 
GNU C library provides a unified interface for all applications to use, the features that are 
actually implemented by the kernel at runtime may differ vastly. For example, the variant of 
Linux provided by Red Hat for their series 6 of operating systems reports its version as the 
obsolete and unsupported 2.6.32, but it contains many backported features from much newer 
kernel versions. Although this is usually not a problem, the kernel version and the implemented 
features should be taken into account.  Our use of version 2.26 of the GNU C library, for 
example, necessitates either the use of Linux version 3.10 or higher, or a patched C library. 
 
The use of a principled, declarative mechanism to managing software environments is a 
fundamental component in a holistic approach to reproducibility at all levels: repeatable builds, 
bit-reproducible binaries, software and data provenance, control over the configuration space, 
and deterministic runtime behavior. We argue that this approach can serve as a template for 
reproducible computational workflows.  
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