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Abstract 36 

Current approaches do not eliminate all HIV-1 maternal-to-infant transmissions (MTIT); 37 

new prevention paradigms might help avert new infections. We administered Maraviroc 38 

(MVC) to rhesus macaques (RMs) to block CCR5-mediated entry, followed by repeated 39 

oral exposure of a CCR5-dependent clone of simian immunodeficiency virus 40 

(SIV)mac251 (SIVmac766). MVC significantly blocked the CCR5 coreceptor in 41 

peripheral blood mononuclear cells and tissue cells. All control animals and 60% of 42 

MVC-treated infant RMs became infected by the 6th challenge, with no significant 43 

difference between the number of exposures (p=0.15). At the time of viral exposures, 44 

MVC plasma and tissue (including tonsil) concentrations were within the range seen in 45 

humans receiving MVC as a therapeutic. Both treated and control RMs were infected 46 

with only a single transmitted/founder variant, consistent with the dose of virus typical of 47 

HIV-1 infection. The uninfected RMs expressed the lowest levels of CCR5 on the CD4+ 48 

T cells. Ramp-up viremia was significantly delayed (p=0.05) in the MVC-treated RMs, 49 

yet peak and postpeak viral loads were similar in treated and control RMs. In 50 

conclusion, in spite of apparent effective CCR5 blockade in infant RMs, MVC had 51 

marginal impact on acquisition and only a minimal impact on post infection delay of 52 

viremia following oral SIV infection. Newly developed, more effective CCR5 blockers 53 

may have a more dramatic impact on oral SIV transmission than MVC.  54 
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Importance 55 

We have previously suggested that the very low levels of simian 56 

immunodeficiency virus (SIV) maternal-to-infant transmissions (MTIT) in African 57 

nonhuman primates that are natural hosts of SIVs are due to a low availability of target 58 

cells (CCR5+ CD4+ T cells) in the oral mucosa of the infants, rather than maternal and 59 

milk factors. To confirm this new MTIT paradigm, we performed a proof of concept 60 

study, in which we therapeutically blocked CCR5 with maraviroc (MVC) and orally 61 

exposed MVC treated and naïve infant rhesus macaques to SIV. MVC had only a 62 

marginal effect on oral SIV transmission. However, the observation that the infant RMs 63 

that remained uninfected at the completion of the study, after 6 repeated viral 64 

challenges, had the lowest CCR5 expression on the CD4+ T cells prior to the MVC 65 

treatment, appear to confirm our hypothesis, also suggesting that the partial effect of 66 

MVC is due to a limited efficacy of the drug. Newly, more effective CCR5 inhibitors may 67 

have a better effect in preventing SIV and HIV transmission.  68 
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Introduction 69 

Despite enormous success in preventing mother-to-infant-transmission (MTIT), 70 

recently, the World Health Organization (WHO) has intensified international efforts to 71 

significantly reduce or eliminate infection of infants. In 2013, UNAIDS reported that 72 

approximately 210,000 infants worldwide become HIV-infected annually (1). More than 73 

90% of these HIV-1 infections occur in sub-Saharan Africa. MTIT can occur in utero, 74 

directly by hematogenous transplacental spread or by infection of the amniotic 75 

membranes and fluid (2); during the delivery, by contact of the infant with maternal 76 

blood and cervicovaginal secretions (3, 4); or postnatally, through breastfeeding (5, 6). 77 

This later mode of transmission accounts for most MTIT cases and is difficult to prevent, 78 

because its mechanisms are not completely understood. Differently from HIV vaginal or 79 

rectal transmission, in which the virus-host interactions are intensively studied at the 80 

portal of entry (7), little emphasis has been placed on the role of infant mucosa in HIV 81 

breastfeeding transmission. This paucity of information is mainly due to the inherent 82 

limitations of sampling human infants. Further challenges to studying infant oral 83 

transmission include the long duration of exposure from breast milk and dramatic age-84 

related changes in the infant mucosa during that time. In addition, most HIV-infected 85 

women are receiving some form of antiretroviral therapy (ART) or peripartum 86 

prophylaxis (8), which reduces MTIT but makes it more difficult to study break-through 87 

infections. As such, MTIT studies have focused almost exclusively on maternal 88 

virological and immunologic factors (9-11) and on immune effectors present in breast 89 

milk (12-16). High HIV-1 maternal plasma viral load (VLs) and low CD4+ T cell counts in 90 

women that breastfeed are correlated with increased HIV breastfeeding transmission 91 
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(17, 18), but these correlations are not always substantiated, as mothers with low VLs 92 

can also transmit HIV by milk (17, 18). Conversely, 63% of the infants breastfed by 93 

mothers with <200 CD4+ T cells/µL and >105 vRNA copies/ml remain uninfected (19). 94 

Furthermore, the correlation between milk viral shedding and plasma VL is weak and 95 

substantial discrepancies exist, with some women having low VLs in milk but high VLs 96 

in plasma, and vice versa (19). The rates of breastfeeding transmission are also 97 

correlated with the duration of lactation rather than the absolute CD4+ T cell count (20). 98 

These data highlight the complex and dynamic process of infant oral transmission. 99 

Breastfeeding transmission studies in macaques have also only focused on 100 

maternal and milk factors (13, 16, 21, 22). Neither maternal plasma VLs nor CD4+ T 101 

cells clearly predict breastfeeding transmission in macaques, with only 20% of acutely-102 

infected dams successfully transmitting infection. Importantly, over 50% of SIV 103 

breastfeeding transmissions occurred 9 months postdam infection, when the offspring 104 

are older, highlighting an age-related susceptibility to SIV infection, with higher doses of 105 

virus needed to infect younger RMs (23). Finally, it has been reported that occult 106 

peripartum/postpartum SHIV infection that may occur early may go undetected until 107 

later, suggesting that maturation of the immune system and generation of target cells in 108 

the infant are needed to support virus replication (21). 109 

Our previous work in African nonhuman primates (NHPs) that are natural hosts 110 

of SIVs demonstrated that in these species MTIT of SIV is virtually nonexistent (<5%) 111 

(24-26) and below the level targeted by the WHO for “virtual elimination” of HIV-1 MTIT 112 

in humans (27). The low levels of MTIT in natural hosts contrast with massive offspring 113 

exposure to SIV both in utero and through breastfeeding (25) due to the high SIV 114 
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prevalence in the wild (>80%) and high levels of acute and chronic viral replication in 115 

dams (25, 26). In African green monkeys (AGMs) and mandrills, resistance to SIV 116 

breastfeeding transmission is strongly associated with low levels of SIV target cells at 117 

the mucosal sites of the offspring (24). Furthermore, AGM-susceptibility to experimental 118 

SIV mucosal transmission is proportional to the availability of CD4+ T cells expressing 119 

the SIV coreceptor CCR5+ at the mucosal sites (28, 29). 120 

Based on these observations, we hypothesized that the levels of target cells 121 

(CCR5+ CD4+ T cells) at the oral mucosa of breastfed infants may drive the efficacy of 122 

HIV/SIV transmission through breastfeeding and that the CCR5 blockade could 123 

represent a new potential therapeutic strategy to prevent HIV/SIV breastfeeding 124 

transmission. We tested this hypothesis in an infant RM model of HIV breastfeeding 125 

transmission (16), in which we administered Maraviroc (MVC) to block oral SIVmac 126 

transmission. MVC was shown to effectively block CCR5 expression in mucosal CD4+ T 127 

cells, and prevent SIV transmission upon topic administration (30), but systemic CCR5 128 

blockade to prevent oral HIV/SIV transmission has never been performed. MVC has low 129 

toxicity (31) and high penetrability to the mucosal sites and is available for oral 130 

administration, thus being suitable for the use in infants. As such, we reasoned that 131 

demonstrating MVC efficacy in blocking oral HIV transmission may lead to an efficient 132 

way to prevent HIV breastfeeding transmission. We report here that, while systemic 133 

MVC administration to infant RMs was well tolerated and efficiently blocked CCR5 in 134 

peripheral blood and at mucosal sites, it had a minimal impact on viral acquisition and 135 

only marginally impacted post infection delay of viremia. The infant RMs that remained 136 

uninfected at the completion of the study had the lowest CCR5 expression on the CD4+ 137 
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T cells prior to the MVC treatment, confirming our hypothesis that the availability of 138 

target cells may drive the efficacy of SIV/HIV breastfeeding transmission, also 139 

suggesting that the partial effect of MVC is due to a limited efficacy. Newly, more 140 

effective CCR5 inhibitors may have a better effect in preventing SIV and HIV 141 

transmission. 142 

 143 

Results 144 

Study design. To investigate whether or not blockade of the mucosal target cells 145 

can prevent/reduce HIV/SIV oral transmission, five infant RMs were administered MVC 146 

at a total daily dose of 300 mg/kg bid (150 mg/kg given twice daily), by mouth with food, 147 

for up to 4 months. One month after MVC initiation, the treated infants, together with 148 

four uninfected controls, received 10,000 IU of SIVmac766XII (a synthetic swarm of the 149 

transmitted/founder SIVmac766 clone) (Figure 1) (32) via oral, atraumatic 150 

administration. Viral challenges were repeated every two weeks until all the controls 151 

became SIV-infected (after the 6th challenge). 152 

At the time of viral challenges, MVC was dosed in circulation in all the MVC-153 

treated infant RMs. Due to the nature of the study, which involved repeated oral 154 

challenges, we did not collect oral or tonsil biopsies to dose the MCV at the site of virus 155 

exposure, to avoid increasing the risk of SIV transmission. However, we assessed the 156 

MVC concentration in tissues (including tonsils) in two additional MVC-treated SIV-157 

unchallenged infant RMs, which were followed in the same conditions as the infants in 158 

the study group. 159 
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Blood (1.5 ml) was collected into EDTA-Cell Preparation Tubes (CPTs) from all 160 

the infant RMs receiving MVC at the time of challenge, to monitor coreceptor occupancy 161 

(33) and measure the plasma concentrations of MVC. Blood was then collected every 162 

three days to detect the SIV infection. Once an animal was diagnosed as SIV-infected, 163 

frequent blood samples were collected to monitor the acute and early chronic infection 164 

(10, 17, 24, 31, 38, 45, 59 day postinfection, dpi). Superficial lymph nodes (LNs), tonsils 165 

and gut biopsies were collected only from the RMs in the MVC-treated control group. 166 

 167 

Orally administered MVC is well tolerated by infant RMs. Throughout the 168 

MVC treatment (up to 101 days), all infant RMs receiving MVC were closely monitored 169 

for clinical or biological signs suggestive of side or adverse effects of the MVC. No such 170 

signs being observed, we concluded that oral administration of MVC was safe and well 171 

tolerated by infant RMs. 172 

 173 

Pharmacokinetics (PK) of MVC in plasma and tissues. The PK profile of MCV 174 

was evaluated in all the infant RMs from the study group by measuring the MVC plasma 175 

concentrations 4 hours after the morning administration, when we expected drug levels 176 

to be maximal and when viral challenges were performed. Additional testing of the MVC 177 

plasma concentrations was performed at 2, 3 and 7 days postviral challenge, just before 178 

the morning administration of the MVC, when we expected the plasma concentrations to 179 

be minimal (Figure 2). The medians and ranges plasma MVC concentrations at the time 180 

of each of the 6 virus challenges were respectively of 410 (77-1040), 886 (29-1910), 181 
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115 (23-267), 1960 (815-3720), 1435 (5-5340) and 64 (27-1520) ng/ml, respectively 182 

(Figure 2). In the unchallenged MVC-treated controls, plasma MVC concentrations were 183 

in the same range: 248 and 261 ng/ml (Figure 3A). These levels are similar to the range 184 

seen in humans receiving a single 300 mg dose of MVC (618-888 ng/ml) (34, 35). The 185 

medians and ranges of the MVC concentrations in plasma just prior to the morning dose 186 

(the minimal coverage concentration) were of 59 (25-271), 46 (15-214), 28 (13-144),11 187 

(5-21), 33 (21-62) and 25 (19-44) ng/ml at 3 days post-challenges, demonstrating a 188 

steady and measurable MVC trough levels. In the MVC-treated controls, the minimal 189 

concentrations of MVC were of 207 and 33 ng/mL (Figure 3A). Overrall, these levels 190 

were slightly lower than those measured at the same interval post-MVC administration 191 

in humans receiving a single 300 mg dose (34-43 ng/mL) (34, 35). 192 

At 4 hours after the drug administration, the MVC concentrations in the tissues 193 

collected from the MVC-treated controls were 689 and 1597 ng/g in the LNs, 597 and 194 

759 ng/g in the tonsils, and 998 and 17,869 ng/g in the gut (Figure 3B). The MVC 195 

concentrations in tissues immediately prior to the morning dose were 136 and 958 ng/g 196 

in the LNs, 5 and 122 ng/g in tonsils, and 1,046 and 2,322 ng/mL in the gut (Figure 3B). 197 

In only two of the collected samples (plasma from RM28 2 days postchallenge 4 and 198 

tonsil from RM1) MVC concentrations were below the 5 ng/ml limit of quantification 199 

(BLQ) of the method used (Figures 2 and 3). We imputed a numerical value for these 200 

samples (5 ng/ml) because it was within 20% of the low limit of quantification (LLOQ) 201 

(36). Interestingly, in RM28, the MRV concentration below the limit of quantification was 202 

followed by SIV infection (Figure 2). 203 
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Taken together, these data demonstrate that an oral MVC dose of 150 mg/kg bid 204 

given to infant RMs 4 hours prior to the viral challenge, approximated plasma MVC 205 

concentration in humans; that the tissue concentrations of MVC were similar to those 206 

observed in humans (37) and high enough to block CCR5, and that the minimal 207 

concentrations of MVC were generally sufficient to compete with the virus for CCR5 208 

coreceptor occupancy, albeit the concentrations of MVC decreased dramatically prior to 209 

the daily administration, in some instances, below 5 ng/ml. 210 

 211 

Orally administered MVC effectively blocks CCR5 expression on the 212 

surface of CD4+ T cells. To investigate whether or not CCR5 blockade with MVC 213 

impacts oral SIV transmission to infant RMs, we first determined the therapeutic impact 214 

of MVC by measuring the CCR5 receptor occupancy in blood, LNs, tonsil and gut. This 215 

test monitors the levels of internalization of CCR5 receptors on the surface of CD4+ T 216 

cells following ex vivo MIP-1β exposure, which are indicative of the level of receptor 217 

occupancy. Complete prevention of CCR5 internalization indicates complete coreceptor 218 

occupancy. 219 

Close monitoring of CCR5 occupancy on the surface of circulating CD4+ and 220 

CD8+ T cells (Figure 4) identified significant differences between MVC-treated and 221 

untreated groups before the first viral challenge (CD4+ T cell CCR5 occupancy 222 

p=0.0159; CD8+ T cell CCR5 occupancy p=0.0317), before the second viral challenge 223 

(CD4+ T cell CCR5 occupancy p=0.0317; CD8+ T cell CCR5 occupancy p=0.0159), and 224 

before the third viral challenge (CD4+ T cell CCR5 occupancy p=0.0286; CD8+ T cell 225 
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CCR5 occupancy p=0.0159) (Figure 4A and B). For the remaining 3 challenges, 226 

statistical analyses could not be performed because the number of uninfected RMs 227 

were too low. 228 

In the MVC-treated controls, MVC blocked efficiently CCR5 on CD4+ T cells in all 229 

tissue samples analyzed (Figure 4C and D). In the gut, CCR5 blockade was not 230 

complete, even though blocking efficiency was high with average levels of 96% when 231 

the MVC concentration was expected to be high (Figure 4C) and 88% when the MVC 232 

concentration was expected to be low (Figure 4D). Similarly, MVC partially blocked the 233 

CCR5 expression on the CD8+ T cells (Figure 4E and F), with an average CCR5 234 

occupancy of 91% (when the MVC concentration was expected to be high) and 63% 235 

(when the MVC’s concentration was expected to be low) in whole blood; blockade was 236 

of 102% and 95% in the LNs; 95% and 91% in the tonsil and 95% and 91%, 237 

respectively in the gut (Figure 4). 238 

 239 

Systemic MVC administration only marginally impacted oral SIVmac 240 

transmission to infant RMs. The main goal of this study was to investigate whether or 241 

not CCR5 blockade with MVC impacts oral SIV transmission to infant RMs. MVC-242 

treated and control infant RMs were repeatedly challenged with 10,000 IU of 243 

SIVmac766XII, orally, in an atraumatic fashion, until all 4 RM controls became infected 244 

(6 challenges). At the end of the challenge experiments, 3/5 (60%) of the MVC-treated 245 

infant RMs were also SIV-infected, while 2/5 infant RMs remained uninfected, in spite of 246 

being challenged 6 times under the same conditions (Figure 2). However, the levels of 247 
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protection in the MVC-treated RMs were not significant (p=0.15). We conclude that 248 

systemic MVC administration does confer a significant protection of the infant RMs 249 

against oral SIVmac challenge. This conclusion is also supported by the observation 250 

that the number of exposures necessary to infect the infant RMs in the two groups were 251 

similar, control infant RMs becoming infected after 1, 3, 5 and 6 SIVmac766XI oral 252 

challenges, respectively, and the MVC-treated infant RMs becoming infected after 2, 3 253 

and 4 inoculations. 254 

We next sought to correlate the efficacy of the SIVmac766XII transmission 255 

(estimated based on the number of virus challenges) with the availability of CCR5+ 256 

CD4+ T target cells. This analysis was prompted by our previous correlative studies in 257 

natural hosts of SIVs that found strong correlations between the target cell availability at 258 

mucosal sites and the efficacy of mucosal (intrarectal, intravaginal and oral) 259 

transmission (24, 28). We assessed CCR5 expression on circulating CD4+ T cells of the 260 

infant RMs prior to the MVC treatment and correlated it to the number of viral exposures 261 

prior to infection. In a conservative approach, we listed the uninfected RMs as infected 262 

at the seventh challenge. These two variables were very strongly correlated (p=0.0036) 263 

(Figure 5), confirming our hypothesis and strongly supporting the paradigm that target 264 

cell availability determines susceptibility to infection in natural hosts of SIVs. 265 

 266 

The SIVmac766XII stock consists of a swarm of 12 viral variants equally 267 

represented and phenotypically matched allowing for variant enumeration (Figure 1) 268 

(38), therefore the number of transmitted viral variants in the MVC-treated group and 269 
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the untreated controls were determined. The number of transmitted/founder lineages, 270 

did not identify any difference in the number of transmitted variants between the two 271 

groups, with each animal being infected with only one of the 12 possible variants. This 272 

result suggests that the infant RMs were not overexposed to virus, which could have 273 

offset the protective effect of MVC. 274 

 275 

SIVmac766XII uses CCR5 and GPR15 to enter transfected target cells. To 276 

understand why the MVC administration only marginally impacted oral SIV transmission 277 

in infant RMs, we first investigated the coreceptor usage of SIVmac766XII. Several 278 

SIVsmm strains from sooty mangabeys were reported to use CXCR6 (39, 40), which, if 279 

true for SIVmac, could have resulted in a more promiscuous coreceptor use and the 280 

inefficacy of the CCR5 blockade. First, we assessed SIVmac766XII coreceptor usage in 281 

a CF2th-Luc reporter cells system, and documented robust viral entry through both RM 282 

CCR5 and RM GPR15 (Figure 6), but only minimal entry through RM CXCR6, and no 283 

virus entry through RM CXCR4, in agreement with previous studies of coreceptor usage 284 

of the SIVmac strains (39). As controls, other SIVsmm strains showed a robust entry 285 

through sooty mangabey CXCR6 (SM CXCR6, black bar, Figure 6) as previously reported 286 

(40). 287 

 288 

CCR5 is the main coreceptor used by SIVmac766XII to infect primary RM 289 

PBMCs. We further assessed the SIVmac766XII coreceptor usage during infection of RM 290 

primary lymphocytes. PBMC from two different RMs were infected with SIVmac766XII in 291 
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the presence or absence of MVC, and virus replication was monitored by measuring p27 292 

Gag antigen in the supernatant. As shown in Figure 6B, MVC blocking of CCR5 virtually 293 

abolished infection of primary lymphocytes, with 94-99% reduction of replication at 7 dpi 294 

(Figure 6C). We therefore concluded that CCR5 is the main coreceptor for SIVmac766XII 295 

in primary PBMC, despite in vitro use of both RM CCR5 and RM GPR15 in transfected 296 

cells. This finding is concordant with previous results that SIVmac is dependent on CCR5 297 

for primary lymphocyte infection (40, 41). As such, our results showed that SIVmac766XII 298 

is an appropriate viral strain to model oral transmission of HIV-1. 299 

 300 

Postinfection effects of the MVR treatment. We further analyzed the impact of 301 

the MVC treatments on the natural history of SIV infection in infant RMs. In these 302 

studies we included the three MVC-treated the four untreated infant RMs that became 303 

infected with SIVmac766XII. 304 

 305 

MVC treatment delayed ramp-up viremia. A significant delay of the ramp-up 306 

VLs was observed in the MVC-treated infants (p=0.05) (Figure 7). In addition to the 307 

delay in ramp-up dynamics, the peak VL for MVC-treated animals was reached at 21 308 

days postinfection (dpi) compared to 18 dpi peaks of the control RMs. However, the 309 

MVC effects on timing and magnitude of pVL postpeak resolution and later in infection 310 

were not significantly different between the two groups (Figure 7). 311 

 312 
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MVC treatment did not alter the dynamics of the peripheral CD4+ and CD8+ 313 

T cell populations or subsets in SIV-infected infant RMs. In humans, MVC treatment 314 

does not significantly impact CD4+ and CD8+ T cell populations (42). The peripheral 315 

CD4+ (Figure 8A) and CD8+ (Figure 8B) T cell counts were compared throughout the 316 

follow-up between MVC-treated and untreated RMs, and no significant difference was 317 

observed between the two groups (Figure 8). Peripheral CD4+ T cell depletion was 318 

transient, the CD4+ T cell counts being partially restored by 24 dpi in both groups and 319 

declining slowly during the follow-up (Figure 8A).  320 

We next monitored the impact of MVC treatment on the memory subsets of CD4+ 321 

and CD8+ T cells prompted by a recent report that CCR5 blockade in vivo might affect 322 

the trafficking of memory T cells expressing CCR5 to the site of the cognate antigen, 323 

preventing their proper stimulation, acquirement of effector functions and antiviral 324 

activity (43). However, comparison between MVC treated and untreated infant RMs 325 

throughout the follow-up did not reveal any significant difference in the peripheral naïve 326 

(CD28+ CD95neg), central memory (CD28+ CD95+) and effector memory (CD28neg 327 

CD95+) subsets of CD4+ or CD8+ T cells (data not shown). Our data indicate that MVC 328 

treatment had no discernible impact on the major T cell populations and subsets in the 329 

SIV-infected infant RMs. 330 

 331 

MVC administration did not impact the levels of circulating CD4+ and CD8+ 332 

expressing CCR5 in SIV-infected infant RMs. CCR5 expression on the surface of 333 

CD4+ T cells is highly variable, depending on CCR5 polymorphisms and expression of 334 
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its chemokine ligand (44, 45), leading to variations in HIV target cell availability, that 335 

impact virus entry, susceptibility to infection (46), and the therapeutic efficacy of CCR5 336 

inhibitors (47). We therefore monitored CCR5 expression on both CD4+ and CD8+ T 337 

cells throughout the follow-up (Figure 9) and report that they were similar between the 338 

two groups, being increased during the first weeks of treatment (Figure 9) and returning 339 

to preinfection levels by 28 dpi. The CD4+ T cells expressing CCR5 gradually declined 340 

during the follow-up (Figure 9A and B) likely as a result of the direct virus targeting of 341 

the CD4+ T cells expressing CCR5. 342 

 343 

MVC treatment had no discernable impact on the levels of T cell activation 344 

and proliferation in SIV-infected infant RMs. These analyses were prompted by 345 

studies reporting either that MVC treatment results in a resolution of chronic immune 346 

activation that goes beyond the levels of viral control (48) or, conversely, that MVC 347 

administration increases the levels of T-cell activation (49). While SIV infection was 348 

associated in both MVC treated and untreated RMs with increased levels of CD4+ and 349 

CD8+ T cell proliferation (Figure 10A and B) and immune activation (Figure 10C and D), 350 

no significant difference was observed throughout the follow-up between the two 351 

groups. We conclude that MVC administration did not significantly influence the levels of 352 

CD4+ and CD8+ T cell immune activation and proliferation in SIV-infected infant RMs. 353 

 354 

 355 

 356 
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Discussion 357 

While breastfeeding is the healthiest practice for feeding infants, breast milk can 358 

also transmit SIV/HIV infection when mothers are infected (50). Without prevention, 13-359 

48% of babies born to HIV-1-infected mothers become HIV infected (4). Perinatal 360 

administration of short-term ART to HIV-infected mothers dramatically decreases the 361 

rates of HIV-1 MTIT (51). Yet, even with ART prophylaxis, breastfeeding transmission 362 

accounts for half of the MTIT cases (52), with overall HIV breastfeeding transmission 363 

rates being of approximately 13%, higher in the mothers that seroconvert postpartum 364 

(29%) (52) or are in the AIDS stage (37%) (53). Administration of ART to breastfeeding 365 

mothers and prolonged ART prophylaxis to infants significantly impacted HIV 366 

breastfeeding transmission (54), but this strategy has yet to assess the rates of residual 367 

transmission; the degree of drug toxicity on the infant; and the risk for 368 

transmission/selection of drug-resistant viruses. Also, to be effective, this strategy has 369 

still to circumvent multiple barriers related to implementation (27). 370 

HIV breastfeeding transmission is devastating in developing countries, where 371 

95% of babies are breastfed for up to 2 years (55) and where the benefits of 372 

breastfeeding outweigh the risks of breastfeeding transmission (55), as the use of 373 

replacement feeding is hindered by access to clean water, cost, availability of formula 374 

and cultural background (51). Strategies allowing HIV-infected mothers to breastfeed, 375 

while completely controlling breastfeeding transmission, are badly needed. 376 

The rates of SIV MTIT are negligible in African NHP species (AGMs, mandrills or 377 

sooty mangabeys) that are natural hosts of SIVs (24-26, 56), in spite of the fact that milk 378 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/299206doi: bioRxiv preprint 

https://doi.org/10.1101/299206


18 
 

VLs are comparable to those observed in pathogenic infections (57). In experimental 379 

studies, we failed to document any SIV breastfeeding transmission in mandrills, even 380 

during the acute infection of lactating dams (24). Meanwhile, these low rates of SIV 381 

breastfeeding transmission are associated with low levels of mucosal target cells (24, 382 

26), and we documented that, in experimental conditions, susceptibility to mucosal SIV 383 

infection of natural hosts is age-related and correlates with the availability of target cells 384 

at the mucosal sites (28). These features led us to hypothesize that the mucosal milieu 385 

of breastfed infant represent an effective barrier to HIV breastfeeding transmission and 386 

that the experimental blockade of mucosal target cell availability may represent an 387 

effective new strategy to prevent HIV breastfeeding transmission. 388 

There are multiple rationales for blocking CCR5 to prevent HIV transmission, the 389 

most important of which being that CCR5 is the main coreceptor for HIV-1 (58, 59), 390 

being thus relevant for the first steps of infection; furthermore, transmitted/founder 391 

viruses always use CCR5 for virus entry (60). CCR5 antagonists inhibit replication of 392 

R5-tropic HIV variants by blocking viral entry into the target cells (61). MVC is the only 393 

FDA-approved CCR5 antagonist (62) and blocks HIV-1 entry by binding CCR5 and 394 

suppressing viral infection (63). In addition to modulating CCR5 expression and function 395 

(64), MVC may have immunomodulatory effects by blocking binding of the natural 396 

ligands of CCR5 (MIP-1α, MIP-1β and RANTES) (65). As a result, CCR5 blockade in 397 

HIV-infected subjects reduces immune activation and improve CD4+ T cell restoration 398 

(66, 67). For the CCR5 blockade, we used MVC, which is FDA-approved, reasoning 399 

that, if proven effective, our strategy could be readily implemented to prevent HIV 400 

breastfeeding transmission. 401 
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Similar to previous studies on MVC safety and tolerance (68, 69), orally 402 

administered MVC was safe and well tolerated in all infant RMs, without any obvious side 403 

effects, adverse reactions or an impact on the development of the immune system of the 404 

infants due to the blockade of a chemokine that may decisively contribute to the immune 405 

system maturation (70). As such, we concluded that prolonged CCR5 blockade did not 406 

have any deleterious effects on the immune effectors. 407 

Surprisingly, systemic MVC administration only marginally impacted oral SIVmac 408 

transmission to infant RMs. At the end of the SIV challenge experiments, when all the 409 

RMs in the untreated control group were infected with SIVmac, 60% (3 out of 5 RMs) of 410 

the MVC-treated infant RMs were also infected. Furthermore, MVC treatment had no 411 

effect on the number of viral challenges needed to transmit SIV or the outcome of SIV 412 

infection in infant RM. The only discernible difference observed between the SIV-infected 413 

MVC-treated and untreated infant RMs was a significant delay of ramp-up viremia in the 414 

MVC-treated infants. 415 

This lack of efficacy of MVC in preventing oral SIV transmission to infant RMs and 416 

its limited impact on the key parameters of SIV infection in SIV-infected infant RMs might 417 

be due to multiple causes, such as: (i) underdosing of MVC which could limit its 418 

therapeutic efficacy; (ii) overexposure to the virus during the challenge experiments, 419 

which might have offset the effects of MVC; and (iii) biological promiscuity of SIVs, that 420 

may use other coreceptors than CCR5 to infect its target cells (71-73). To examine our 421 

MVC dosing strategy, we performed two sets of experiments: first, as the MVC 422 

interactions with CCR5 might be different in macaques compared to humans, we sought 423 

to demonstrate that MVC successfully blocks CCR5 in infant RMs and to this end we 424 
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performed an occupancy test (69). In this test, the binding of MVC to CCR5 coreceptors 425 

prevents internalization of CCR5 by MIP-1β and thus, the degree of CCR5 internalization 426 

by MIP-1β provides an indirect measurement of MVC binding to CCR5. The occupancy 427 

test demonstrated that, at the time of viral challenge, 4 hours after oral administration of 428 

MVC, CCR5 internalization was robustly blocked. Similarly, testing of the samples 429 

collected just prior to drug administration showed that the minimal levels of MVC were 430 

generally sufficient to compete with the virus for CCR5 coreceptor occupancy. Note, 431 

however, that the lowest coreceptor occupancy was observed in tonsils, a potential site 432 

of virus entry upon oral transmission (74). 433 

Next, we measured the MVC plasma concentrations at the time of virus challenge 434 

and we documented that steady-state exposure of MVC was similar to therapeutic 435 

concentrations in HIV-infected patients. In a different group of infant RMs, we performed 436 

MVC dosage in tissues and showed that the drug reaches steady levels in both tonsils 437 

and at the mucosal sites, suggesting that the dose of MVC employed here was sufficient 438 

to realize a clinical effect. We noted, however, that the minimal levels of MVC, measured 439 

just prior to the morning administration of the drug were low and, at least in two instances, 440 

below the limits of detection of the assay. Interestingly, the infant RMs which remained 441 

uninfected at the completion of the study also had very low minimal levels of MVC, 442 

suggesting that the clinical dose used here is probably sufficient for prevention. 443 

Nevertheless, drug monitoring revealing a relatively abrupt decline in the MVC levels in 444 

infant RMs may also point to a different metabolism of the drug in RMs compared to 445 

humans, thus calling for a more detailed evaluation. This aspect is particularly important, 446 
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as the MVC effect observed here was marginal and, in one case (RM28), a documented 447 

undetectable plasma level of MVC was followed by SIV infection. 448 

To rule out virus overdosing, we performed single genome amplification of the 449 

molecular tag (32, 75) and showed that none of the MVC-treated or control infant RMs 450 

were infected with more than one viral variant, thus discarding the eventuality of an 451 

SIVmac overexposure that could have offset the protective effect of MVC. 452 

Finally, to discard the hypothesis of a more promiscuous receptor usage of SIVmac 453 

compared to HIV-1, we assessed the coreceptor usage of SIVmac766XII. Differently from 454 

HIV-1, which uses CCR5 as the main coreceptor and may expand to use CXCR4 in 455 

advanced stages of infection, the majority of SIV strains are more promiscuous, being 456 

able to use, in addition to CCR5, BOB/GPR15, (76, 77) and Bonzo/STRL33 (78, 79) for 457 

efficient entry into the target cells. More recently, multiple SIV strains were reported to 458 

use alternative coreceptors for viral entry, most notably CXCR6 (71-73, 80). This 459 

coreceptor usage pathway was reported for the SIVs isolated from both AGMs and sooty 460 

mangabeys (71, 73, 80). However, testing of our viral stock for coreceptor usage, clearly 461 

demonstrated that CCR5 is the only coreceptor used by SIVmac766XII in vivo, similar to 462 

the transmitted/founder HIV-1 strains, and validating our choice of challenge strain. While 463 

SHIV env strains might have been preferable to SIVmac in this study, fully functional 464 

transmitted/founder SHIVs only became available after the completion of this study (81, 465 

82) 466 

As such, our study indicates that MVC was relatively efficient in blocking CCR5 467 

and well tolerated in infant RMs, but exerted only a marginal effect on SIV oral 468 

transmission. Failure to block infection was not due to underdosing of MVC, overexposure 469 
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to the virus during the challenge phase, or alternative coreceptor usage. While a more 470 

rapid MVC metabolism in RMs might have impacted MVC efficacy to prevent infection, 471 

additional studies would be needed to explore the prophylactic efficacy of target cell 472 

blockade for preventing oral HIV transmission through breastfeeding. 473 

Finally, note that systemic administration of MVC did not prevent intrarectal 474 

transmission of SHIV (37). Furthermore, CCR5 blockade with MVC was reported to be 475 

ineffective in preventing rectal HIV transmission in humans (83). As such, it is possible 476 

that CCR5 blockade by MVC is not sufficiently effective in preventing HIV transmission 477 

and ineffective in blocking the CCR5 and the use of newly, more potent CCR5 inhibitors 478 

will have a better effect in preventing oral SIV transmission, as recently suggested (84). 479 

 480 

Material and Methods 481 

Ethics statement. Eleven RMs aged six month old were included in this study. 482 

They were all housed and maintained at the Plum Borough animal facility of the University 483 

of Pittsburgh in agreement with the standards of the Association for Assessment and 484 

Accreditation of Laboratory Animal Care (AAALAC). The RMs were fed and housed 485 

according to regulations set forth by the Animal Welfare Act and the Guide for the Care 486 

and Use of Laboratory Animals (85). The RM infants were socially housed indoors in 487 

stainless steel cages, had 12/12 light cycle, were fed twice daily, water was provided ad 488 

libitum. They were also given various toys and feeding enrichments. The animals were 489 

observed twice daily and any signs of disease or discomfort were reported to the 490 

veterinary staff for evaluation. For sample collection, animals were anesthetized with 10 491 
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mg/kg ketamine hydrochloride (Park-Davis, Morris Plains, NJ, USA) or 0.7 mg/kg 492 

tiletamine hydrochloride and zolazepan (Telazol, Fort Dodge Animal Health, Fort Dodge, 493 

IA) injected intramuscularly. After viral challenge, all the infant RMs that became infected 494 

were followed for 120 days and sacrificed by intravenous administration of barbiturates 495 

prior to the onset of any clinical signs of disease. The animal studies were approved by 496 

the University of Pittsburgh Institutional Animal Care and Use Committee (IACUC) 497 

(Protocol #13112685). 498 

 499 

Virus stock. The SIVmac766XII stock (Figure 1) is composed of parental 500 

SIVmac766, previously identified as a transmitted/founder virus and infectious molecular 501 

clone (38) and eleven other viral variants differing from the parental clone by 3 502 

synonymous mutations in integrase similar to the SIVmac239X swarm previously 503 

described (32). The virus stock was generated by transfecting 293T cells with equal 504 

amounts of each of the 12 molecularly modified plasmids for 24 h using the TransIT HEK-505 

293 transfection reagent (Mirus Bio) according to the manufacturer’s instructions. Culture 506 

medium was changed at 24 h post-transfection and again at 48 h posttransfection. At 72 507 

h posttransfection, virus-containing supernatant was clarified by centrifugation, sterile-508 

filtered through a 0.45 µM filter, aliquoted, and stored at -80°C. A series of small scale 509 

cotransfections with subsequent sequencing analyses to determine the relative 510 

proportion of each tagged variant in the virus pool was used to identify the relative input 511 

proportion of each plasmid in the DNA cotransfection pool that would yield roughly equal 512 

proportions of tagged viruses in the SIVmac766XII stock. Virus titers were determined 513 

using TZM-bl reporter cells (NIH AIDS Research and Reference Reagent Program), 514 
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which contain a Tat-inducible luciferase and a β-galactosidase gene expression cassette. 515 

Infectious titers were measured by counting individual β-galactosidase-expressing cells 516 

per well in cultures infected with serial 3-fold dilutions of virus. Wells containing dilution-517 

corrected blue cell counts within the linear range of the virus dilution series were averaged 518 

to generate an infectious titer in infectious units (IU) per milliliter. The SIVmac766XII stock 519 

contained 2.75x105 IU/ml. 520 

 521 

MVC treatment and animal infection. Five RMs received a total daily dose of 300 522 

mg/kg administered as two divided doses (150 mg/kg) per os with food. The MVC dose 523 

was allometrically scaled to twice the dose of humans (300 mg/kg). One month after MVC 524 

initiation, all the MVC-treated infants, together with 4 untreated infant RMs were orally 525 

administered 10,000 IU of SIVmac766XII. Virus challenge occurred 4 hours after the 526 

morning MVC administration, when the concentrations of MVC were demonstrated to be 527 

maximal. Viral challenge was repeated every two weeks, for up to 6 times. At the time of 528 

viral challenges, CCR5 coreceptor occupancy (33) was also closely monitored. To 529 

evaluate the concentration and pharmacokinetics of the MVC in the tissues, we enclose 530 

in our experimental design two RMs treated with MVC similarly to the infants in the study 531 

group, but not challenged. 532 

 533 

Sampling. At the time of virus challenge, blood (1.5 ml) was collected into EDTA-534 

CPTs, to monitor coreceptor occupancy and MVC plasma levels, and then every three 535 

days, to monitor SIV infection. Once an animal was demonstrated to be SIV infected, 536 
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sampling was scheduled to monitor the acute and early chronic infection (10, 17, 24, 31, 537 

38, 45, 59 dpi). Superficial LNs, tonsils and intestine were collected just from the two 538 

MVC-treated SIV-unexposed infant RM controls. To prevent changes in CCR5 expression 539 

due to storage and shipping of unprocessed peripheral blood mononuclear cells, all blood 540 

and tissue samples were processed within 60 min from collection. 541 

 542 

Analysis of plasma MVC concentration. MVC concentrations were measured in 543 

plasma samples collected 4 hours after administration of one oral dose of 150 mg/kg by 544 

a validated liquid chromatography–tandem mass spectrometry (LC-MS/MS) method 545 

using a Shimadzu high-performance liquid chromatography system for separation, and 546 

an AB SCIEX API 5000 mass spectrometer (AB SCIEX, Foster City, CA, USA) equipped 547 

with a turbo spray interface for detection. The calibrated linear range was 5-5000 ng/ml 548 

in plasma. All samples were extracted by protein precipitation with a stable, isotopically-549 

labeled internal standard (MVC-d6) added for quantification. All calibration standards and 550 

quality controls (QCs) were prepared in drug-free NHP plasma. Calibration standards and 551 

QC samples met 15% acceptance criteria for precision and accuracy. Plasma MVC 552 

concentrations were expressed as ng of MVC per ml. 553 

 554 

Analysis of tissue MVC concentration. MVC concentrations in LNs, tonsils and 555 

intestine were measured on samples collected either 4 hours after administration of an 556 

oral dose of 150 mg/kg MVC, or immediately before MVC administration. Tissue MVC 557 
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concentrations were measured with the same methodology used to measure plasma 558 

MVC concentrations and were expressed as ng of MVC per gr of tissue (ng/gr of tissue). 559 

 560 

MIP-1 internalization assay. The coreceptor occupancy test was performed to 561 

assess MVC binding to CCR5 in blood and in LNs, tonsils and intestine (33, 69, 86). The 562 

principle of this test is that the binding of MVC prevents internalization of CCR5 by MIP-563 

1β and thus, the degree of CCR5 internalization by MIP-1β provides an indirect 564 

measurement of MVC binding to CCR5. 565 

PBMC-rich plasma samples were isolated by centrifugation of CTP tube at 2,200 566 

rpm x 25 minute. The cell pellets were resuspended in the plasma at 5 x 106 cell/ml 567 

obtaining cell-enriched plasma samples. For the assay in blood, 5 x 105 cell-enriched 568 

plasma sample (100 µl) was aliquoted into three separately labeled 5 ml Facs tubes 569 

containing the isotype control (Tube 1), the MVC-stabilized CCR5 (Tube 2) and the test 570 

sample (Tube 3). Cells from LNs, tonsils and intestinal biopsies were collected as 571 

described (87) and 5 x 106 cells were resuspended in the plasma and aliquoted (100 µl) 572 

in three tubes as described above for blood. Fifty µl of MVC 1µM (CCR5 stabilizing 573 

solution) were added to Tube 2; the same volumes of 50 µl of 1% PBS/BSA (w/v) were 574 

added to Tube 1 and 3. Tubes 1-3 were briefly vortexed and incubated at 37ºC for 30 575 

min, followed by centrifugation at 1500 rpm for 5 min. The supernatant was discarded, 576 

and 15 µl of MIP-1β (100 nM) was added to all tubes. The mixture was then vortexed and 577 

incubated uncapped for 45 min at 37ºC to enable CCR5 internalization. Then, one ml of 578 

0.5% paraformaldehyde in PBS was added to each tube, which were then vortexed and 579 
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incubated in the dark at room temperature (RT) for 10 min. Cells were then washed with 580 

PBS by centrifugation at 1500 rpm for 5 min, and stained with a combination of antibodies 581 

(Table 1) appropriate for the identification of CD4+ and CD8+ T cells expressing CCR5, 582 

and a combination of isotype and fluorescence-minus-one controls. Labeled cells were 583 

washed once with 1% FBS PBS, fixed in 2% formaldehyde PBS (Affimetrix, Santa Clara, 584 

CA) and then acquired the same day on a custom four-laser BD LSRII instrument (BD 585 

Bioscience). Only singlet events were gated and a minimum of 250,000 live CD3 cells 586 

were acquired. Populations were analyzed using FlowJo software version 7.6.5 (Tree Star 587 

Inc. Ashland, OR) and the graphs were generated with GraphPad Prism 6.04. The 588 

percentage of receptor occupancy was calculated using CCR5 expression data obtained 589 

for PBL aliquots incubated with chemokine in the presence of 1 µM MVC (Tube 2) and in 590 

the absence of additional MVC (Tube 3), as follows: % receptor occupancy = (% of CCR5 591 

expression in Tube 3)/(% of CCR5 expression in Tube 2)×100. 592 

 593 

Alternative coreceptor usage by SIVmac76XII in CF2th-Luc cells. CF2th-Luc 594 

cells, which contain a Tat-driven luciferase reporter, were transfected using Fugene 6 595 

(Promega) with two expression plasmids: one containing RM CD4 and one containing 596 

coreceptor (or pcDNA3.1 empty vector). Cells were infected 48 hours later with 597 

SIVmac766XII (using 2,750, 13,750 or 27,500 IU) by spinoculation for 2 hours at 1,200 x 598 

g. Cells were incubated for 48 hours at 37°C, then they were lysed and luciferase content 599 

quantified as relative light units (RLU), as previously described (71). 600 

 601 
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Alternative coreceptor usage by SIVmac76XII in PBMCs. Cryopreserved 602 

PBMC from two RMs (RM1 and RM2) were thawed in complete medium (RPMI 1640 with 603 

10% FBS, 1% L-glutamine and 1% penicillin/streptomycin) and stimulated for three days 604 

with 5 µg/ml Concanavalin A and 100 U/ml IL-2. Activated PBMCs were plated at 2x105 605 

per well in 96-well plates, pretreated for one hour with 15 µM MVC (NIH AIDS Reagent 606 

Program) or with vehicle alone (DMSO), and then infected with SIVmac766XII (550 IU) 607 

by spinoculation for 1.5 hours at 1,200 g. Cells were then washed, incubated at 37°C, 608 

and supernatants were collected and 50% media replaced every 3-4 days. Replication 609 

was measured by SIV p27 Gag antigen production in the supernatant by ELISA (Perkin-610 

Elmer). 611 

 612 

Assessment of the T/F virus variants. The number of T/F variants was 613 

determined using a real-time single genome amplification (RT-SGA) approach described 614 

previously (32). Briefly, a 300 bp portion of the integrase gene surrounding the mutated 615 

site was amplified and sequenced using a limiting dilution PCR where only a single 616 

genome is amplified (SGA) per reaction. Viral RNA was extracted using the QIAamp Viral 617 

RNA Mini Kit (Qiagen) and then reverse transcribed into cDNA using SuperScript III 618 

reverse transcription according to manufacturer’s recommendations (Invitrogen) and the 619 

antisense primer SIVmacIntR1 5’-AAG CAA GGG AAA TAA GTG CTA TGC AGT AA-3’. 620 

PCR was then performed with 1 × PCR buffer, 2 mM MgCl2, 0.2 mM of each 621 

deoxynucleoside triphosphate, 0.2 μM of each primer, and 0.025 U/μl Platinum Taq 622 

polymerase (Invitrogen) in a 10-μl reaction with sense primer SIVmacIntF1 5’-GAA GGG 623 

GAG GAA TAG GGG ATA TG-3’ and antisense primer SIVmacIntR3 5’-CAC CTC TCT 624 
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AGC CTC TCC GGT ATC C-3’ under the following conditions: 1 cycle of 94°C for 2 min, 625 

40 cycles at 94°C for 15 sec, 55°C for 30 sec, 60°C 1.5 min, and 72°C for 30 sec. 626 

Template positive reactions were determined by real-time PCR using as gene specific 627 

probe SIVIntP 5’-TCC CTA CCT TTA AGA TGA CTG CTC CTT CCC CT-3’ with FAM6 628 

and ZEN/Iowa Black Hole Quencher (Integrated DNA Technologies) and directly 629 

sequenced with SIVmacIntR3 using BigDye Terminator technology (Life Technologies). 630 

To confirm PCR amplification from a single template, chromatograms were manually 631 

examined for multiple peaks, indicative of the presence of amplicons resulting from PCR-632 

generated recombination events, Taq polymerase errors or multiple variant templates. 633 

 634 

Flow cytometry. Flow cytometry was used to assess changes in CD4+ and CD8+ 635 

T cell populations, the frequency of CD4+ and CD8+ cells expressing CCR5, as well as 636 

their proliferation and immune activation status, as described (88-90). Briefly, 2 x 106 cells 637 

were stained with viability dye (Blue dye, Life Technologies) and incubated for 15 min in 638 

the dark at RT. The cells were than washed with PBS and stained for 30 min at RT in the 639 

dark with combinations of antibodies and combinations of isotype and fluorescence-640 

minus-one controls (Table 1) appropriate for the identification of different T cell 641 

populations (Figure 111). Stained cells were washed in 1x PBS, fixed with 2% 642 

paraformaldheyde solution (PFA) and stored at 4º C prior to acquisition. For intracellular 643 

staining, viable cells stained as described above were washed with 1x PBS, 644 

permeabilized with a solution containing 0.1% of saponine and incubated for 30 min at 645 

room temperature in the dark. Cells were then stained with an anti-Ki-67 antibody (Table 646 

1). Cells were then washed with 1x PBS, fixed with 2% PFA and stored at 4º C prior to 647 
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the acquisition. A minimum of 250,000 CD3 live cells were acquired with FACSDiva 648 

software v.8.0. Acquired cells were analyzed using FlowJo 7.6.5 software. 649 

 650 

Statistical analyses. All statistical analyses were performed with GraphPad Prism 651 

Software v.6.02 (GraphPad Software Inc. San Diego CA, USA). Data were expressed as 652 

averages ± standard error of means (SEM). Unpaired nonparametric Mann-Whitney t test 653 

was used for significant differences between the experimental groups, with regards to the 654 

absolute cell counts and frequency of cells expressing CCR5, immune activation and cell 655 

proliferation markers. Wilcoxon paired non-parametric test was used, to determine 656 

significant differences between the baselines of mean cell frequencies and absolute 657 

counts and single time point of MVC treatment, for each experimental group. Chi-square 658 

test was used to establish significant differences between the animals that became 659 

infected in both groups. Differences were considered statistically significant at p ≤ 0.05.  660 
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Figure Legends 1051 

Figure 1. Alterations in the SIVmac766 clone that allow for discriminating the 1052 

number of unique T/F variants. SIVmac766XII is an infection stock is composed of 1053 

eleven distinct viral clones differing from wild-type virus by 3 synonymous mutations 1054 

within the integrase gene (A). The entire remaining genome is identical between clones. 1055 

The proportion of each variant in the viral stock was determined by RT-SGA with 334 1056 

sequences examined (B). All mutations and the pie chart are color coded for each of the 1057 

twelve clones within the synthetic swarm. 1058 

 1059 

Figure 2. Comparative assessment of MVC pharmacokinetics and plasma 1060 

VLs at the time of and after the SIVmac766XII challenge. MVC concentrations in 1061 

plasma at 4 hours (maximum concentration) and 16 h (minimum concentration) after 1062 

systemic administration of 150 mg/kg of MVC; Plasma VLs are shown at the 1063 

corresponding time points of treatment and viral challenge for infant RMs in the MVC-1064 

treated group and untreated controls. Closed symbols represent MVC concentration, 1065 

open symbols illustrate the viral loads. MCV is expressed as ng/mL of plasma, the viral 1066 

load is expressed as logarithms of the numbers of viral RNA copies per ml of plasma. 1067 

Gray dotted line show the lower limit of quantification (LLOQ, 5 ng/ml) of the bioanalytical 1068 

LC-MS/MS method; short dashed line shows the limit of viral load quantification (LOQ, 30 1069 

copies per ml). Violet arrows illustrate the virus challenge. 1070 

 1071 

Figure 3. Pharmacokinetic analysis of MVC concentration in plasma and 1072 

tissues in two infant RM from the MVC-treated control group. (a) MVC concentrations 1073 

in plasma at 4 hours (maximum concentration) and 16 h (minimum concentration) after 1074 

systemic administration of 150 mg/kg of MVC; MCV concentration is expressed as ng/mL 1075 
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of plasma. (b) MVC concentrations in LNs, tonsils and intestine at 4 hours and 16 h after 1076 

systemic administration; MCV concentration is expressed as ng/g tissue. Red circles 1077 

represent RM1, blue squares represent RM2. Black dotted line show the lower limit of 1078 

quantification (LLOQ, 5 ng/ml) of the bioanalytical LC-MS/MS method 1079 

Figure 4. CCR5 receptor occupancy on CD4+ and CD8+ T cells from blood, 1080 

lymph nodes, tonsils and intestine from two infant RMs. Percentage of CCR5 1081 

receptor occupancy on circulating CD4+ T cells (a) and CD8+ T cells (b) from infant RMs 1082 

included in the study group at the time of SIVmac challenge. White open squares 1083 

represent untreated infant RMs from the control group, red circles represents MVC-1084 

treated infant RMs and green triangle represent MVC-treated uninfected infant RMs. Data 1085 

are presented as individual values with the group means (long solid lines) and standard 1086 

errors of the means (short solid lines). Mann-Whitney test was used to calculate the exact 1087 

p value. (c-f) Coreceptor occupancy in blood and tissues of the infant RMs from the MVC-1088 

treated control group. Percentage of receptor occupancy on CD4+ and (e) CD8+ T cells 4 1089 

h after the MVC administration (maximum concentration). (d) Percentage of receptor 1090 

occupancy on CD4+ and (f) CD8+ T cells 16 h after MVC administration (maximum 1091 

concentration). Red circles represent infant RM1, blue squares represent infant RM2. 1092 

  1093 

Figure 5. Correlation between the levels of CCR5 expression on the 1094 

peripheral CD4+ T cells and the number of viral challenges required for infecting 1095 

MVC-treated and untreated RMs. The two MVC-treated, SIV uninfected RMs are 1096 

illustrated as open circles. 1097 

 1098 

Figure 6. SIVmac766XII use of RM coreceptors. (A) CF2th-Luc cells that contain 1099 

a Tat-driven luciferase reporter were transfected with expression plasmids containing RM 1100 
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CD4 and coreceptor. Cells were infected 48 hours later with SIVmac766XII (2750IU, 1101 

13750IU and 27500IU) and entry was quantified 72 hours later by measuring luciferase 1102 

production as relative light units (RLU). Infections were carried out in triplicate and bars 1103 

represent means and standard error of the mean (sme) values. Sooty mangabey CXCR6, 1104 

which is a functional coreceptor, was included at the highest inoculum for comparison 1105 

(SM CXCR6) black bar. (B) SIVmac766XII infectivity on PBMCs. PBMC from two RM 1106 

were stimulated for three days with ConA and IL-2, then pretreated for one hour with 1107 

maraviroc (MVC; 15 uM) or with vehicle alone (No Drug), and infected with SIVmac766XII 1108 

(550IU). (C) SIVmac766XII infectivity on PBMCs. Infections were carried out in duplicate, 1109 

and infection was measured by p27 production in the supernatant. Each line indicates 1110 

one infection condition per animal, and data represents the mean and standard error of 1111 

the mean values. 1112 

 1113 

Figure 7. Changes in the viral loads of the SIVmac-infected RMs treated with 1114 

MVC compared with untreated controls. Plasma vRNA loads (copies/ml, expressed in 1115 

logarithmic format) in MVC-treated and untreated group. Data are geometrical means, 1116 

with the bars representing standard error of the mean. MVC-treated infant RMs are 1117 

representing as red circles; infant RM controls are showed as open black squares. Mann-1118 

Whitney test was used to calculate the exact p value (p= 0.05). 1119 

 1120 

Figure 8. Longitudinal analysis of absolute CD4+ and CD8+ T cell counts in 1121 

blood from the SIV-infected infant RMs. (A) Changes in the CD4+ T cells; (B) Changes 1122 

in the CD8+ T cells; Left panels illustrate individual animals; right panels averages. Red 1123 

symbols illustrate MVC-treated animals. Open black symbols illustrated untreated 1124 

controls. Vertical bars in the right panels are the standard errors of the means.  1125 
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 1126 

Figure 9. Longitudinal analysis of absolute counts of CD4+ and CD8+ T cells 1127 

expressing CCR5 in blood from the SIV-infected infant RMs. (A,B) Changes in the 1128 

CCR5+ CD4+ T cells;
 
(C,D) Changes in the CCR5+ CD8+ T cells; Left panels illustrate 1129 

individual animals; right panels averages. Red symbols illustrate MVC-treated animals. 1130 

Open black symbols illustrated untreated controls. Vertical bars in the right panels are the 1131 

standard errors of the means. 1132 

 1133 

Figure 10. Changes in the frequency of CD4+ and CD8+ T cells expressing 1134 

proliferation and immune activation markers in blood from the SIV-infected infant 1135 

RMs. (A) frequency of the CD4+ T cells expressing proliferation marker Ki-67; (B) 1136 

frequency of the CD8+ T cells expressing proliferation marker Ki-67; (C) frequency of the 1137 

CD4+ T cells expressing immune activation markers CD38 and HLA-DR; (D) frequency of 1138 

the CD8+ T cells expressing immune activation markers CD38 and HLA-DR. Left panels 1139 

illustrate individual animals; right panels averages. Red symbols illustrate MVC-treated 1140 

animals. Open black symbols illustrated untreated controls. Vertical bars in the right 1141 

panels are the standard errors of the means. Mann-Whitney test was used to calculate 1142 

the exact p value. 1143 

 1144 

Figure 11. Gating strategy employed to characterize the CD4+ and CD8+ T 1145 

cells and their levels of expression for CCR5, as well as the frequency of activated 1146 

and proliferating T cells (Illustrative plots from RM34). (a-d) CD4+ and CD8+ T cells 1147 

were gated on singlets followed by lymphocytes and CD3+; (e) CD4+ and (i) CD8+ T cells 1148 

expressing CCR5; (f) CD4+ and (j) CD8+ T-cell naïve and memory subsets; (g) CD4+ and 1149 

(k) CD8+ T cells expressing Ki-67; (h) activated CD4+ and (l) CD8+ T cells expressing 1150 
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CD38 and HLA-DR. FSC-A: forward scatter area; FSC-H: forward scatter height; SSC-A: 1151 

side scatter area. 1152 

 1153 
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