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Abstract 

The robustness of the visual system lies in its ability to perceive degraded images. This 

is achieved through interacting bottom-up, recurrent, and top-down pathways that 

process the visual input in concordance with stored prior information. The interaction 

mechanism by which they integrate visual input and prior information is still enigmatic. 

We present a new approach using deep neural network (DNN) representation to reveal 

the effects of such integration on degraded visual inputs. We transformed measured 

human brain activity resulting from viewing blurred images to the hierarchical 

representation space derived from a feedforward DNN. Transformed representations 

were found to veer towards the original non-blurred image and away from the blurred 

stimulus image. This indicated deblurring or sharpening in the neural representation, 

and possibly in our perception. We anticipate these results will help unravel the 

interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to 

more comprehensive models of vision. 
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Significance statement 

One powerful characteristic of the visual system is its ability to complement visual 

information for incomplete visual images. It operates by projecting information from 

higher visual and semantic areas of the brain into the lower and mid-level 

representations of the visual stimulus. We investigate the mechanism by which the 

human brain represents blurred visual stimuli. By decoding fMRI activity into a 

feedforward-only deep neural network reference space, we found that neural 

representations of blurred images are biased towards their corresponding deblurred 

images. This indicates a sharpening mechanism occurring in the visual cortex.  
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Introduction 

Perception is the process by which humans and other animals make sense of the 

environment around them. It involves integrating different sensory cues with prior 

knowledge to arrive at a meaningful interpretation of the surroundings. This integration 

is achieved by means of two neuronal pathways: a bottom-up stimulus driven pathway, 

which processes sensory information hierarchically, and an intrinsic pathway, which 

performs both recurrent processing through lateral pathways and projection of prior 

information down the hierarchy (we call it top-down pathway for abbreviation; Friston, 

2005; Arnal and Giraud, 2012; Clark, 2013; Summerfield and de Lange, 2014; Heeger, 

2017). The interplay mechanism between these two pathways is still an open question.  

 

Previous studies have given rise to two main hypotheses to explain the top-down 

modulation process. The sharpening hypothesis states that top-down signals enhance 

the neural representation in the lower visual areas, thus improving the quality of the 

degraded sensory signal (Lee and Mumford, 2003; Hsieh et al., 2010; Kok et al., 2012; 

Gayet et al., 2017). Conversely, the prediction error hypothesis (which originates from 

computer science ideas; Shi et al. (2008) states that top-down signals provide expected 

signal information that would be redundant if represented again in lower visual areas, 

and therefore gets subtracted (Mumford, 1992; Rao and Ballard, 1999). This results in 

an error signal that is repeatedly processed to update the prediction signal until the 

error signal reaches zero, which corresponds with achieving a perceptual result (Murray 

et al., 2002; den Ouden et al., 2009, 2012; Alink et al., 2010; Meyer and Olson, 2011; 

Todorovic et al., 2011; Kok et al., 2012; Gordon et al., 2017). Most recently, these two 

hypotheses were reconciled by a third hypothesis where prediction error is computed to 
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be later used to sharpen the neural representations (Kok et al., 2012). Models of vision 

usually employ this mechanism to explain the interacting neural information processing 

pathways (Lee and Mumford, 2003; Friston, 2005; Heeger, 2017). 

 

Most of the top-down modulation studies utilized expectation of a previously-known 

visual stimulus to drive the operation of top-down pathways, and have hence focused 

on lower visual areas. Expectation-of-stimulus tasks facilitate comparison of a 

visualized stimulus and an expected stimulus at the lower visual feature level. While 

such studies have provided an empirical framework for the operation of top-down 

modulation driven by expectation in the lower visual areas, they have not revealed its 

overall operation in regular recognition-targeting visual tasks.  

 

In this study, we tackle this question by investigating top-down pathway operation 

during a natural-image visual recognition task throughout different levels of visual 

processing ranging from lower visual areas (V1–3) to higher visual centers (LOC, FFA, 

and PPA). We drive the operation of top-down modulation by applying degradation to 

natural images by blurring them. When visual images are degraded, the visual sensory 

signal is less reliable, and the visual cortex therefore depends more heavily on prior 

knowledge driving the top-down pathway operation. To unmask the top-down effect, we 

investigate how the neural representations of viewing blurred images deviate from a 

pure feedforward representation leading to a sharpened representation along the visual 

processing pathway.  

 

To demonstrate such sharpening, we measured and analyzed brain activity from 
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functional magnetic resonance imaging (fMRI) brain data from different regions of the 

lower and higher visual areas, to visualize the degradation effect on different levels of 

neural processing. We utilized deep neural network (DNN) feature space as a proxy for 

hierarchical representation. We used a feature decoding method devised by Horikawa 

and Kamitani (2017a) to map brain activity into a DNN representation space. The 

decoded features were analyzed for their similarity to the feedforward-only DNN 

features of the stimulus images and original non-blurred images. These similarities are 

then compared to their counterpart noisy DNN features, which account for decoding 

errors as a baseline for pure-feedforward behavior, to find whether predicted features 

deviate from the pure feedforward ones and how supplementing with prior knowledge 

about stimulus categories would affect the sharpening behavior. We also compared the 

case where the image content is successfully recognized with the one where it is not. If 

image sharpening were in operation, it would be expected that the top-down effect 

would be boosted due to successful perception.  
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Methods and materials 

Subjects 

Five healthy subjects (three males and two females, aged between 22 and 33) with normal 

or corrected-to-normal vision took part in the fMRI experiments. The study protocol was 

approved by the Ethics Committee of ATR. All the subjects provided written informed 

consent for their participation in the experiments.  

 

Visual stimuli  

Both original and blurred image stimuli were shown. The images were selected from the 

ImageNet online database (Jia Deng et al., 2009), which is the database used for training, 

testing, and validation of the pre-trained DNN model used in this study (see below). The 

database contains images that are categorized by a semantic word hierarchy organized in 

WordNet (Fellbaum, 2012). First, images with a resolution lower than 500 pixels were 

excluded, then the remaining images were further filtered to select only those that showed 

the main object at or close to the midpoint of the image. The selected images were then 

cropped to a square that is centered on the midpoint. If no acceptable image remained after 

this filtration process, another image was obtained from the worldwide web through an 

image search. 

 

We created three different levels of blurring for the blurred image stimuli. Blurring was 

conducted by running a square-shaped averaging filter over the whole image. The size of 

the filter relative to the image size dictated the degradation level. The three degradation 

filters used had a side length of 6%, 12%, and 25% of the side length of the stimulus image. 

We then added the original stimulus image represented by a level of 0% (Figure 1A). 
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Experimental design 

Experiments were divided into: 1) the decoder training runs where natural undegraded 

images were presented, and 2) the test image runs where the blurred images were 

presented. Images included in the training and test datasets were mutually exclusive. In 

the decoder training runs, we selected one stimulus image for each of the AlexNet 

classification categories defined in the last layer, resulting in a total of 1000 stimulus 

images. This training stimulus set selection was conducted to avoid any bias to certain 

categories in the decoder. This dataset was divided into 20 runs of 50 images each. 

The subject was instructed to press a button when the image was a repeat of the image 

shown one-back. In each run, 5 of the 50 images were repeated in the following trial to 

form the one-back task. Each image was shown once to the subject (except for the one-

back repetitions).  

 

The test image runs consisted of two conditions. In the first condition, the subjects did 

not have any prior information about the stimuli presented (no-prior condition). In the 

second condition, the subjects were provided a semantic prior in the form of category 

choices (category-prior condition). The stimuli in the category-prior condition consisted 

of images from one of five object categories (airplane, bird, car, cat, or dog). The 

subject was informed of these categories prior to the experiment, but not the order in 

which they were to be presented. 

 

The stimuli in both of the test conditions were presented in sequences of maximum 

blurring to original image (25%, 12%, 6%, and 0% blurring). Each sequence consisted 
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of stimuli representing all four levels of blurring of the same original image. We selected 

this order of presentation to avoid the subjects having a memory-prior of the less 

blurred stimuli when viewing the more blurred ones. For each condition, the sequences 

for 80 images were randomly distributed across two runs (40 images each). The runs 

belonging to the same test experimental condition were conducted in the same 

experimental session. The training and test experiments were conducted over the 

course of five months in total for all subjects. 

 

All image presentation was performed using Psychtoolbox (Kleiner et al., 2007). Each 

image (12 × 12 degrees) was presented in a flashing sequence for 8 s at 1 Hz (500 ms 

on time). Images were displayed in the center of the display with a white central fixation 

point. The fixation point changed from white to red 500 ms before each new stimulus 

appeared. A 32-s pre-rest and 6-s post rest period were added at the beginning and end 

of each run respectively. Subjects were required to fixate on the central point. For test 

runs, subjects were required to provide voice feedback of their best guess of the 

perceived content of the stimulus. They were also required to report the certainty level 

of that guess by pressing one of two buttons, one indicating certainty and the other 

indicating uncertainty. We checked if the vocal reports caused excessive motion by the 

subject that leads to degradation in the data quality but found that the motion correction 

results were comparable to runs without vocal response by the same subjects. 

 

MRI acquisition 

FMRI data was collected using a 3-Tesla MAGNETOM Verio (Siemens Medical 

Systems, Erlangen, Germany) MRI scanner located in Kokoro Research Center, Kyoto 
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University. For image presentation experiments, an interleaved T2*-weighted multiband 

accelerated EPI scan was performed to obtain images covering the whole brain. The 

scanning parameters were TR = 2000 ms; TE = 43 ms; flip angle = 80°; FOV = 

192 × 192 mm; voxel size = 2 × 2 × 2 mm; slice gap = 0 mm; number of slices = 76; 

multiband factor = 4. For localizer experiments, an interleaved T2*-weighted gradient-

EPI scan was performed with the following parameters TR = 3000 ms; TE = 30 ms; flip 

angle = 80°; FOV = 192 × 192 mm; voxel size = 3 × 3 × 3 mm; slice gap = 0 mm; 

number of slices = 46. For retinotopy experiments, an interleaved T2*-weighted 

gradient-EPI scan was also performed where the scanning parameters were TR = 2000 

ms; TE = 30 ms; flip angle = 80°; FOV = 192 × 192 mm; voxel size = 3 × 3 × 3 mm; 

slice gap = 0 mm; number of slices = 30. T2-weighted turbo spin echo (TSE) images 

with the same slice positions as the EPI images were also acquired, to act as high-

resolution anatomical images. The parameters for the anatomical sequences matching 

the image presentation acquisition were TR = 11 000 ms; TE = 59 ms; flip angle = 160°; 

FOV = 192 × 192 mm; voxel size = 0.75 × 0.75 × 2.0 mm; slice gap = 0 mm; number of 

slices = 76. For the localizer experiment, the TSE parameters were TR = 7020 ms; TE = 

69 ms flip angle = 160°; FOV = 192 × 192 mm; voxel size = 0.75 × 0.75 × 3.0 mm; slice 

gap = 0 mm; number of slices = 48. For the retinotopy TSE acquisition the parameters 

were TR = 6000 ms; TE = 58 ms; flip angle = 160°; FOV = 192 × 192 mm; voxel size = 

0.75 × 0.75 × 3.0 mm. T1-weighted magnetization-prepared rapid acquisition gradient-

echo (MP-Rage) fine-structural images of the entire head were also acquired. The 

scanning parameters for these were TR = 2250 ms; TE = 3.06 ms; TI = 900 ms; flip 

angle = 9°; FOV = 256 × 256 mm; voxel size = 1 × 1 × 1 mm number of slices = 208. 
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MRI data preprocessing 

After rejection of the first 8 seconds of each acquisition to avoid scanner instability 

effects, the fMRI scans were preprocessed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm, RRID: SCR_007037), including 3D motion correction, 

slice-timing correction, and co-registration to the appropriate high resolution anatomical 

images. Both scans were then also co-registered to the T1 anatomical image. The EPI 

data were then interpolated to 2 × 2 × 2 mm voxels and further processed using Brain 

Decoder Toolbox 2 (https://github.com/KamitaniLab/BrainDecoderToolbox2, RRID: 

SCR_013150). Volumes were shifted by 2 s (1 volume) to compensate for 

hemodynamic delays, then the linear trend was removed from each run and the data 

were normalized. As each image was presented for 8 s, it was represented by four fMRI 

volumes. These four volumes were then averaged to provide a single image with 

increased signal to noise ratio for each stimulus image. The averaged voxel values for 

each stimulus block were used as an input feature vector for the decoding analysis. 

 

Region of interest construction 

Regions of interest (ROIs) were created for several regions in the visual cortex, 

including the lower visual areas V1, V2, and V3, the intermediate area V4, and the 

higher visual areas consisting of the lateral occipital complex (LOC), parahippocampal 

place area (PPA), and fusiform face area (FFA).  

First, anatomical 3D volumes and surfaces were reconstructed from T1 images using 

the FreeSurfer reconstruction and segmentation tool 

(https://surfer.nmr.mgh.harvard.edu/, RRID: SCR_001847). To delineate the areas V1–

4, a retinotopy experiment was conducted following a standard protocol (Engel et al., 
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1994; Sereno et al., 1995) involving a rotating double wedge flickering checkerboard 

pattern. The brain activity data for this experiment was analyzed using the FreeSurfer 

Fsfast retinotopy analysis tool (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast, RRID: 

SCR_001847). The analysis results were visually examined and ROIs were delineated 

on a 3D inflated image of the cortical surface. Voxels comprising areas V1–3 were 

selected to form the lower visual cortex (LVC) ROI. 

Functional localizer experiments were conducted for the higher visual areas. Each 

subject undertook eight runs of 12 stimulus blocks. For each block, intact and pixel-

scrambled images of face, object, and scene categories were presented in the center of 

the screen (10 × 10 degrees). Each block contained 20 images from one of the 

previous six categories. Each image was presented for 0.3 s followed by 0.45 s of blank 

gray background. This led to each block having a duration of 15 seconds. Two blocks of 

intact and scrambled images of the same category were always displayed 

consecutively (the order of scrambled and intact images was randomly chosen), 

followed by a 15- s rest period with a uniform gray background. Pre-rest and post-rest 

periods of 24 s and 6 s respectively were added to each run. The brain response to the 

localizer experiment was analyzed using the FreeSurfer Fsfast event related analysis 

tool. Voxels showing the highest activation response to intact images for each of the 

face, scene, and object categories in comparison with their scrambled counterparts 

were visualized on a 3D inflated image of the cortical surface and delineated to form 

FFA, PPA, and LOC regions respectively. Voxels constituting the areas FFA, PPA, and 

LOC were then selected to form the higher visual cortex (HVC) ROI and the 

aggregation of LVC, V4, and HVC was used to form the visual cortex (VC) ROI. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2018. ; https://doi.org/10.1101/230078doi: bioRxiv preprint 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
https://doi.org/10.1101/230078
http://creativecommons.org/licenses/by/4.0/


13 
 

Selected ROIs for both retinotopy and localizer experiments were transformed back into 

the original coordinates of the EPI images. 

 

Deep neural network model 

The neural representations were transformed into a deep neural network (DNN) feature 

proxy using the AlexNet DNN model (Krizhevsky et al., 2017). The Caffe 

implementation of the network packaged for the MatConvNet tool for MATLAB (Vedaldi 

and Lenc, 2015) was used for implementation. This network was trained to classify 

1000 different image categories with images from the ImageNet database. The model 

consisted of 8 layers; the first five of which were convolutional layers, while the last 

three were fully-connected layers. The input to each layer is the output of the previous 

one as follows 

𝑦𝑦 = 𝑓𝑓8(𝑓𝑓7( … 𝑓𝑓1(𝑥𝑥0) … )) 

where x is the input image and y is the resulting image classification vector and the 

function 𝑓𝑓𝑛𝑛 is the operation for each layer is 

𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) = 𝑟𝑟𝑛𝑛�𝑧𝑧𝑛𝑛(𝑥𝑥𝑛𝑛)� 

and 

𝑧𝑧𝑛𝑛(𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑛𝑛(𝑤𝑤𝑛𝑛 , 𝑥𝑥𝑛𝑛) + 𝑏𝑏𝑛𝑛 

where 𝑟𝑟𝑛𝑛 is a non-linearity function of the nth layer (rectified linear operation for the first 

seven layers and softmax for the final layer), 𝑤𝑤𝑛𝑛 is the nth layer weight matrix that are 

pretrained in the model using the ImageNet dataset, 𝑐𝑐𝑛𝑛 is the operation conducted at 

the nth layer between its input and weights (convolution in the case of convolutional 

layers and matrix multiplication in the case of fully-connected layers), and 𝑏𝑏𝑛𝑛 is the nth 
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layer bias term. We extract features from each layer n as the output of 𝑧𝑧𝑛𝑛(𝑥𝑥𝑛𝑛) before 

the application of the non-linearity. 

One thousand features were extracted from each layer (out of 290400, 186624, 64896, 

64896, 43264, 4096, 4096, and 1000 features from DNN layer 1–8 respectively), with 

the features with the highest feature decoding accuracy according to the mean 

accuracy of the five subjects’ data in Horikawa and Kamitani (2017a) being selected. All 

the feature units in the last layer were selected, as this layer contained 1000 units in 

total. The features from each layer were labelled as DNN1–DNN8. 

 

DNN feature decoding 

Multiple linear regression decoders were constructed to predict each feature extracted 

from the voxels of each ROI from the layers of the DNN. The decoders were 

constructed using sparse linear regression (SLR; Bishop, 2006). This algorithm 

assumes that each feature can be predicted using a sparse number of voxels and 

selects the most significant voxels for predicting the features (For details, see Horikawa 

and Kamitani, 2017a). 

 

A decoder was constructed for each feature. Voxel selection was undertaken for each 

ROI, to select the 500 voxels with the highest correlations with each feature value. 

FMRI data and features of the training image dataset were first normalized to a zero 

mean with one standard deviation. The mean and standard deviation values subtracted 

were also recorded. The decoders were then trained on the normalized fMRI data and 

DNN features. The recorded mean and standard deviation from the training fMRI data 

were then used to normalize the test data before decoding the features. The resulting 
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features were denormalized only by multiplying it by the standard deviation but not the 

addition of the mean to avoid the effect of baseline correlation in the subsequent data 

analysis. For the correlation analysis, the feature vectors emanating from the DNN were 

normalized by subtracting the mean of the training dataset, to match the predicted 

features. These normalized feature vectors are referred to as “true” feature vectors in 

this study. 

 

The feature pattern correlation was computed for each stimulus image by aligning the 

predicted 1000 features from each DNN layer and computing their Pearson correlation 

coefficient with the corresponding true feature vector. 

 

Noise-matched features 

The decoded features of blurred stimulus images can be assumed to comprise the 

result of both bottom-up and top-down processing in addition to fMRI noise, while those 

of the true features from the DNN only contain the result of the bottom-up processing. 

To isolate the effect of the top-down processing, we defined baseline features (noise-

matched feature) by adding noise to the true features. We could extract the matching 

noise level from the decoded features of the non-blurred stimulus images assuming that 

they do not elicit a sharpening top-down process and hence only contain the bottom-up 

and fMRI noise components. Thus, we can add noise to the true DNN features elicited 

from non-blurred stimulus images till their behavior matches that of the decoded 

features of the same images. To perform this operation, Gaussian noise was added to 

the true features so that the correlation between the noisy and the true features 

equated the correlation between the decoded and the true features. This matching 
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noise level was calculated for each ROI/DNN layer pair in each subject. 

 

Feature gain 

The similarity of the decoded features to the original image features and that to the 

stimulus image features were evaluated by the correlation coefficients, 𝑟𝑟o and 𝑟𝑟s, 

respectively, and the difference was calculated 

𝛥𝛥𝛥𝛥decode =  𝑟𝑟o −  𝑟𝑟s, 

which indicates the bias toward the original features. To set a baseline, the same 

difference of the correlation coefficients was calculated for the noise-matched features 

 

𝛥𝛥𝛥𝛥noise =  𝑟𝑟onoise −  𝑟𝑟snoise. 

The feature gain was defined as the difference between these 

Feature Gain =  𝛥𝛥𝛥𝛥decode −  𝛥𝛥𝛥𝛥noise. 

A positive feature gain means that the decoded features are more biased towards the 

original image features as compared to the noise-matched features. 

 

Content specificity 

To estimate the content specificity of the predicted features from the VC, their 

correlation with the original image features was compared to that with the other original 

image features. The correlation of predicted features for each stimulus was calculated 

for each of the non-corresponding original images in the test dataset (n = 39), and the 

mean correlation was then calculated. The mean over all the stimulus images from the 

stimuli grouped by DNN layer with all blur levels pooled was calculated (Different image 

correlation), and compared with the mean of the correlations with the corresponding 
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original images (Same image correlation). To compare this to the baseline correlation 

between different images, the mean of the correlation between each stimulus image 

vector and the feature vectors of other original images was calculated (True feature 

correlation). 

 

Behavioral data extraction 

The subject vocal response was recorded manually from the voice recordings. The 

written record was then revised with each subject to ensure accuracy. The record was 

written as incorrect in the cases where the subject missed giving a voice response. In 

the cases when the subject missed giving a button response, the previous button 

response from the same sequence was used, except when the stimulus was the last 

(original image) or the first (most degraded image) in the sequence, when the response 

was set to certain and uncertain respectively. Correct responses were the ones identical 

to the response of the last stimulus in each sequence (original image). 

 

Code accessibility 

The code described in the manuscript is freely available online at 

[https://github.com/KamitaniLab/BlurImageSharpening]. The code is available as extended 

data (Extended Data 1). It was created and run on MATLAB R2016b (RRID: SCR_001622) 

on a Linux Centos operating system on a computer cluster for parallel computing. Data to 

reproduce our results are also available at 

[http://brainliner.jp/data/brainliner/Blur_Image_Sharpening/].  
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Results 

DNN feature decoding 

We posed a question on how top-down modulation in the visual cortex affects the 

neural representation of blurred images. To address this question, we measured brain 

activity while presenting blurred images. The protocol involved the presentation of 

stimuli in blurred-to-original image sequences. Each sequence consisted of stimuli 

showing different blur levels of the same image presented in the order of the most 

blurred to the non-blurred original image (Figure 1A) so the subject is progressively 

receiving sharper information about the stimulus. Subjects vocally reported the 

perceived object in each stimulus, while also reporting their certainty of their perception. 

We conducted two experiments using this protocol. In the first experiment, each image 

(stimulus sequence) was chosen from a random object category and the subject had no 

prior information of the object category (no-prior condition). In the second experiment, 

the stimulus sequences were chosen from five predefined object categories (airplane, 

bird, car, cat, and dog). The subjects were informed about the object categories of the 

set, but not of each stimulus (category-prior condition). Using these two conditions we 

can analyze the effect of adding prior information on the top-down effect in different 

visual areas. 

 

To examine the effect of top-down modulation, we investigated the neural 

representation of blurred images via the proxy of a hierarchical feedforward-only 

representational space (Horikawa and Kamitani, 2017a). To transform brain data into 

the DNN feature space, we trained multivoxel decoders to predict DNN features from 
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brain activity data using a separate training stimulus dataset consisting of 1000 natural 

non-blurred images. To confirm that this choice of stimuli in training dataset did not 

cause the decoder to be biased to non-blurred images, we conducted a content 

specificity analysis as will be presented later. 

 

Using the trained decoders, the brain activity pattern induced by each stimulus in the 

blurred-to-original sequences was decoded (transformed) into the DNN feature space. 

For each stimulus image, the Pearson correlation coefficient between its decoded 

feature vector and the true features of the same stimulus image (rs) at each layer was 

computed. In addition, the correlation between the decoded feature vector and the true 

features of the corresponding non-blurred original image (ro) was computed (Figure 1B). 

For non-blurred stimuli, rs and ro are identical.  

 

Feature gain computation 

The correlation with stimulus image features (rs) reflects the degree to which image 

features resulting from feedforward processing are faithfully decoded from brain activity, 

while the correlation with original images (ro) reflects the degree to which the decoded 

features are “sharpened” by top-down processing, to be similar to those of the non-

blurred images. Figure 2A shows a scatter plot depicting a representative result for 

prediction of the DNN layer 6 feature vector from the region of interest comprised of all 

the visual areas (Visual cortex, VC) of Subject 4. DNN6 is a higher middle layer of 

AlexNet where we can visualize the top-down effect on mid-level representations of 

visual stimuli. It is also a fully connected layer that processes global stimulus 

information rather than local information in the case of convolutional layers. This would 
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lead to better separated clusters that could show the transition from the most to the 

least blurred. Each point represents a stimulus image pooling both category-prior and 

no-prior conditions, and disregarding behavioral data while the mean points are also 

shown (white points with black borders) to demonstrate how decreasing blur level leads 

to decoded features veering towards original image features. Figure 2B shows the 

mean of the results in Figure 2A, grouping stimuli by different blur levels. From the 

results of rs and ro, we define Δrdecode as the difference between them. We notice from 

the representative data that decoded features have higher correlation with the original 

image features than with the stimulus image features, except when the blurring effect 

becomes too large, as in the 25% blur level. This suggests that a sharpening effect 

occurring in the visual cortex causes the neural representations of viewing the blurred 

image to mimic those of a less blurred version of it. 

 

One shortcoming of this measure (Δrdecode) is that it does not have an appropriate 

baseline for sharpening. A value of Δrdecode equal to zero implies that decoded features 

are equally similar to stimulus and original image features, but it does not mean that 

there is no sharpening. Thus, we defined a baseline for no sharpening according to the 

behavior of feedforward-only processing. Decoded features from feedforward-only 

processing were modeled by stimulus image features plus Gaussian noise. The noise 

level was determined to match the decoding errors with the non-blurred images used as 

stimuli, in which no sharpening was assumed to be involved. Noise was added to the 

point where the decoded and noise-added features had nearly identical correlations to 

the original image features (Figure 2B and C; 0% blur level in each). The same level of 

noise (the mean across images in each subject and DNN layer) was added to the 
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stimulus features of the blurred images. We then computed rs and ro for the noise-

matched features, from which we could obtain the noise-matched baseline Δrnoise 

(Figure 2C).  

 

By comparing B and C in Figure 2, it is possible to note an opposite trend in how the 

features are correlated. As the decoder was trained to predict image features, the 

natural trend for Δrdecode would be negative, similar to Δrnoise. This indicates a level of 

alteration in the neural representation of the blurred images, to improve the match with 

the original images. 

 

By subtracting the noise baseline from Δrdecode, we obtained the “feature gain” incurred 

by top-down processing (Figure 2D). The value of the feature gain indicates how the 

top-down pathways affect the predicted features in comparison with pure feedforward 

behavior. Figure 2E shows the results of the mean feature gain for different subjects for 

each layer. We can observe positive significant feature gains for most of the DNN layers 

and blur levels (17 out of 24 DNN layer/blur level combinations; t-test across subjects 

with Bonferroni correction, p < 0.002, Bonferroni correction factor = 24). This suggests 

that top-down processing modulates neural representations to bias them towards the 

original images. We also noticed that the fully-connected layers DNN6–8 had more 

pronounced positive feature gains than the convolutional layers. Another notable issue 

is that the 12% blur level shows better feature gain relative to both 6% and 25% blur 

levels in higher visual areas. One possible explanation is that at 6% blur level the local 

information start to unravel leading to sharpening at the shallower layers only. 
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One possible cause for this result is the training scheme of the decoders that only used 

natural non-blurred images. This could have biased the output features to those 

resembling natural images. In this case, the features could be correlated to any natural 

image features. We investigated this possibility by measuring the content specificity of 

the predicted features. We computed the correlation of predicted features (excluding 

those with a 0% blur level) with the corresponding original image feature (ro). This was 

then compared with the mean correlation of the same predicted features, but with the 

original features of different images. This measure provided information on how tightly 

the predicted features were associated with the presented stimulus content, as opposed 

to natural images in general. Figure 3 shows the result of such a content specificity 

analysis. There are significant differences between correlations with the same image 

features and mean correlations with different image features in all layers (t-test across 

subjects, p < 0.05, uncorrected), indicating a tight association of the predicted features 

with the stimulus image content, and ruling out a decoder bias explanation. 

 

As mentioned before, the DNN model used in this study implements hierarchical 

processing that is synonymous with that happening in the visual cortex. Previous 

studies have shown homology between the features of the DNNs and the 

representations in the visual cortex (Cadieu et al., 2014; Khaligh-Razavi and 

Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Horikawa and 

Kamitani, 2017a). To this point, we have shown the results of features predicted from 

the collection of all denoted visual areas (VC). We further investigated the separate 

visual areas of the lower, intermediate, and higher visual areas, to examine the 

homology between the feature gain and the visual cortex hierarchy (Figure 4). We 
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showed that the feature gain also shows similar homologies to the visual hierarchy, in 

that we could observe that shallower DNN layers showed larger feature gain from the 

lower visual areas (V1–3), while deeper DNN layers showed larger feature gain from 

the higher visual areas (LOC, FFA, PPA). The results are significantly positive for most 

of the layers and regions of interest (ROI), especially in the higher visual areas and fully 

connected layers (t-test, p < 0.05, uncorrected). However, DNN1 did not show 

significantly positive feature gains. These results imply that feature gain also follows the 

same visual homology in the visual cortex areas, and that the top-down effect is more 

pronounced in higher visual areas. 

 

Effects of prior knowledge and recognition 

In the previous analyses, the data from different experimental conditions were pooled 

together. We then further investigated the difference between the category-prior and no-

prior conditions. We compared the feature gain means grouped according to the 

experimental condition (category-prior vs. no-prior) while pooling all the behavioral 

responses (Figure 5). We performed two-way ANOVA on the feature gain data using the 

ROI and the experimental conditions as the independent variables. The addition of a 

prior caused significant enhancement to the feature gain in layers DNN4, 7, 8 (p < 

0.006, Bonferroni correction factor = 8). The difference was most pronounced in DNN8 

(p = 0.0000026). This result indicates that addition of prior information enhances top-

down modulation, thereby causing an increase in feature gain. This implies augmented 

sharpening of neural representations.  

 

This result, however, pooled both correctly and incorrectly reported results. When 
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considering behavioral data, there are considerable differences between category-prior 

and no-prior conditions. The category-prior condition was characterized by a higher 

number of correct responses (235 out of 300 total instances for five subjects) compared 

with the no-prior condition (92 out of 300 total instances for five subjects). However, in 

the category prior condition, the task was to choose one of five categories. This could 

lead to false positives, as if a subject responded in a random manner, 20% of the 

responses would be likely to be correct. In some cases when the stimulus was highly 

degraded, the best guess response by the subjects could be random. To attempt to 

curb this problem, we could use the certainty level as an indicator of correctness, 

especially for the category prior. We found from the behavioral results that nearly all the 

trials labelled as certain were also correctly recognized (category prior: 138 out of 139 

certain trials were correct; no-prior: 57 out of 70 certain trials were correct). This further 

supports the observation that adding priors aids recognition. 

 

We further analyzed our data by grouping it according to both experimental condition 

(category-prior and no-prior) and recognition performance (correct and incorrect). We 

show the results of the mean feature gain over subject means for each DNN layer in 

Figure 6. For each experimental condition, we performed a three-way ANOVA test using 

ROI, recognition performance, and blur level as independent variables. For the 

category-prior condition, we found significant enhancement in feature gain when an 

image was correctly recognized in DNN6, while for the no-prior condition no significant 

enhancement was found (p < 0.003, Bonferroni correction factor = 16). From these 

results, we notice that the effect of recognition leads to a very faint enhancement in the 

feature gain.  
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We also analyzed our data by grouping it according to certainty level (certain and 

uncertain). We show the results of mean feature gain over subject means for each DNN 

layer of this analysis in Figure 7. For the category-prior condition, when an image was 

recognized with certainty we found significant enhancement in feature gain in DNN5, 

while for the no-prior condition significant enhancement was found in DNN1 and 7. 

 

From the results of Figures 6 and 7, we can observe that in some layers and conditions, 

recognition has a significant boosting effect on feature gain. However, we also found a 

considerable feature gain even without recognition that indicates a sharpening effect 

not guided by subjective recognition. This could be caused by a lower-level sharpening 

associated with local similarity or object component sharpening that could be common 

across different objects (like body parts in animals). 
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Discussion 

In this study, we have demonstrated sharpening of the neural representations of blurred 

visual stimuli. This sharpening can assist the visual system in achieving successful 

prediction. It originates from endogenous processing elicited by top-down projections or 

recurrent connections (or both) in the visual cortex. Compared with pure-feedforward 

behavior, the neural representations of blurred images tended to be biased towards 

those of corresponding original images, even though the original images had not yet 

been viewed. This sharpening effect was also found to follow a visual hierarchy similar 

to that in the visual cortex. We found that this sharpening was content-specific, and not 

just due to a natural image bias. It was also shown to be boosted by giving category 

information to the subject prior to stimulus viewing. This indicated that adding a more 

specific prior leads to further sharpening of the neural representations. However, we did 

not find that recognition had a strong role in boosting the enhancement process. 

 

In our experimental protocol, the subjects viewed blurred stimuli in randomly organized 

sequences. In each sequence, different levels of blur of the same image were shown, 

ordered from the most blurred to the non-blurred stimulus (Figure 1A). This ensured 

that subjects did not have pixel level information. Nonetheless, the results show a 

tendency for the blurred images’ neural representations to correlate with the original 

images (Figure 2A and B). Conversely, the feedforward behavior demonstrated by the 

noisy DNN output showed an opposite tendency (Figure 2C). We computed the feature 

gain to investigate how the predicted DNN features deviated from pure feedforward 

behavior. Feature gain analysis showed that the predicted features are rather correlated 

with the original image features (Figure 2E). This indicates that a sharpening effect 
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happens across the visual cortex, leading to a more natural-image-like neural 

representation.  

 

We notice also that feature gain is relatively higher in deeper layers of the DNN (DNN6–

8, Figure 2E). This effect could be caused by the nature of image degradation. Image 

blurring tends to conceal localized details in favor of the global shape information.  

This could lead to the subject attempting to recognize the global object while ignoring 

localized details. Another observation is that feature gain in deeper layers drops 

between the 12% and 6% blur levels. At the 6% blur level, localized details start to 

unravel in most of the stimulus images. This could cause the lower layers’ feature gain 

to increase at the expense of the deeper layers’ feature gain (Figure 2E). If we consider 

the stimulus sequence from the most blurred stimulus to the original image stimulus, we 

could visualize the time scale of the top-down effect where deeper layers peak earlier 

than shallower ones. This could be one effect of our image presentation protocol where 

the subject is accumulating evidence at each level starting from global shape evidence 

followed by localized details to confirm their concordance with the global shape 

evidence.  

 

This representation was also confirmed as not being due to a natural-image bias 

caused by the decoder training dataset, which consisted of natural unaltered images 

(Figure 3). These results are in line with previous studies showing that neural 

representations are improved due to a top-down effect (Lee and Mumford, 2003; Hsieh 

et al., 2010; Kok et al., 2012; Gayet et al., 2017). Kok et al. (2012) demonstrated that 

even though the overall neural activation weakens, the neural representations improve 
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when a stimulus is in agreement with the expectation. Gayet et al. (2017) also showed 

that visual working memory enhances the neural representations of viewed stimuli. The 

reverse hierarchy theory also suggests that top-down modulation serves to fine-tune 

sensory signals by means of predictions initially made using lower spatial frequency 

features (Hochstein and Ahissar, 2002; Ahissar and Hochstein, 2004). Furthermore, 

Revina et al. (2017) showed that blurred stimuli can generate top-down processes that 

generalize to higher spatial frequencies. Modelling studies that incorporated top-down 

and recurrent connections have also shown a sharpening-like effect under an image 

degradation scheme visible in text-based CAPTCHAs (George et al., 2017). 

 

Our analysis also shows that feature gain follows a similar hierarchy to the visual cortex 

(Figure 4). This indicates that the sharpening process occurs in the same hierarchical 

processing localization as normal processing where low level sharpening occurs in 

lower visual areas and enhancement of higher level features occurs in the higher visual 

areas. It could be indicative of a convergent mechanism by which bottom-up and top-

down pathways are integrated into a single neural representation of the stimulus. This 

suggestion could be supported by previous reports on the prediction of visual features. 

Horikawa and Kamitani (2017a) demonstrated that visual perception and mental 

imagery yielded feature prediction that was homologous with that of the visual cortex 

hierarchy. Horikawa and Kamitani (2017b) also showed similar results from dream 

induced brain activity. Earlier studies showed strong representational similarities 

between the deeper layers of DNN and the brain activity in the inferior temporal cortex 

(IT; Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; 

Güçlü and van Gerven, 2015). This could be further investigated by high resolution 
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imaging to reveal the layered structures in the visual cortex and analyze the neural 

representations in each layer. We demonstrate that top-down effects also show similar 

homology, thus suggesting that DNN-based methods are useful for studying visual top-

down pathways since it can reveal the localization of the sharpening by means of DNN 

layer feature gain. 

 

When we added a category-prior to the task, the number of competing categories for 

recognition decreased, thus the subjects tended to have a more directed top-down 

effect, due to the fewer number of competing stimuli (Bar and Aminoff, 2003). This led 

to a higher feature gain that was especially noted in the higher layers (Figure 5). This 

further supports the idea of neural representation sharpening when given a prior 

describing the stimulus content, as the top-down signal would be more correlated with 

the correct recognition results, thus leading to a stronger feature gain.  

 

We also found that when subjects successfully recognized the image content, the 

feature gain in some layers predicted from lower visual areas was significantly 

improved. However, this was not salient as a general trend (Figures 6, 7). It was 

expected that recognition would lead to a boost in feature gain from the sensory 

competition perspective, as the subject would attend to the successfully recognized 

object in the stimulus image, leading to a directed top-down effect (Moran and 

Desimone, 1985; Kastner et al., 1998, 1999). Hsieh et al. (2010) also showed that 

successful recognition of binary images leads to a neural representation that is more 

correlated with the natural image, although in their study, recognition was driven by 

ground truth image viewing before watching the degraded stimulus at a later time.  
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Our results could be justified by the findings in de-Wit et al. (2012), where top-down 

prediction was shown to be topologically inaccurate as it led to activity reduction in the 

whole of V1, rather than at the predicted location. Revina et al. (2017) also found that 

brain patterns due to top-down modulation did not share information with the 

corresponding bottom-up signals. In the prediction error realm, successful prediction 

would lead to zero error in the higher visual areas, and thus feature gain would 

decrease. Our results show an opposite, albeit weak effect, which nonetheless supports 

the representation-sharpening rather than prediction error hypothesis. Thus, prediction 

error mechanisms do not appear to be in operation when stimuli are blurred or they 

could be calculated and used as the sharpening signal as proposed in Kok et al. (2012). 

The sharpening effect without recognition may be driven by more localized and lower-

level feature mechanisms. These mechanisms would enhance features corresponding 

to local components of the main objects that were common across many objects (i.e. 

eyes in animals). These local enhancement effects could lead to different recognition 

results. This was shown to be true for computer vision DNN-based deblurring 

algorithms, where the results of the enhancement process can lead to different results, 

according to the desired object (Bansal et al., 2017). 

 

From these results, we can deduce that top-down modulation is in operation when 

visual input is degraded, even in the absence of a memory or expectation prior. 

Previous studies have proposed that the brain makes an initial processing step using 

low spatial frequency information. This step generates predictions of the content of the 

image in the orbitofrontal cortex; these predictions are then used to drive the top-down 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2018. ; https://doi.org/10.1101/230078doi: bioRxiv preprint 

https://doi.org/10.1101/230078
http://creativecommons.org/licenses/by/4.0/


31 
 

modulation effect (Bar and Aminoff, 2003; Bar et al., 2006; Kveraga et al., 2007; 

Breitmeyer, 2014). This top-down effect comes about in the form of sharpening of 

neural representations resulting from viewing degraded images. The mechanisms by 

which this effect materializes have been mostly overlooked in previous literature, due to 

the difficulty in finding a baseline for measurement. There has been more focus on the 

source of this top-down modulation effect than on how it materializes in the visual 

cortex (Bar et al., 2006; Chiou and Lambon Ralph, 2016). As we demonstrate here, the 

DNN representations could offer a plausible proxy for representing brain activity and for 

attaining a pure-feedforward baseline that can be used for measuring top-down effects. 

The illustrated enhancement was shown to be affected by the presence of prior 

semantic information, leading to a boost in the enhancement effect that was more 

visible in higher-level features. To the contrary, successful recognition did not also 

cause an overall boost in neural representation enhancement. Our results contribute to 

the long-standing question of how top-down and recurrent pathways affect bottom-up 

signals to achieve successful perception, which is believed to cause the hallucinatory 

symptoms associated with psychological disorders such as schizophrenia when their 

balance is disrupted (for review, see Friston et al., 2016; Jardri et al., 2016). Moreover, 

our stimulus presentation protocol could be used to test more comprehensive models of 

decision making under accumulation of evidence tasks (Platt and Glimcher, 1999). We 

have examined the question from a more general perspective of vision, which has 

allowed us to achieve a more comprehensive understanding of the vision process.  
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Figure 1 | Study design: (A) The stimulus sequence was divided into sequences of 

four stimuli each. Stimuli in the same sequence contained different blur levels of the 

same image organized from the highest blur level (25%) to the lowest (0%). Each 

stimulus was presented for 8 seconds. (B) Overview of the feature decoding analysis 

protocol; fMRI activity was measured as the subjects viewed the stimulus images 

presented, described in A. Trained decoders were used to predict DNN features from 

fMRI activity patterns. The decoded features were then analyzed for their similarity with 

the true DNN features of both the original image (ro) and stimulus image (rs). The same 

procedure was also conducted for noise matched DNN features that are composed of 

true DNN features with additional Gaussian noise to match predicted features from 

fMRI. 
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Figure 2 | Correlation of decoded features with original and stimulus image 

features: (A) Scatter plot showing feature correlation of DNN6 features decoded from 
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the whole visual cortex (VC) of subject 4, with original image features (rs; x-axis) and 

stimulus image features (ro; y-axis). Each point represents a stimulus image for all 

blurring levels except 0% while the white points with black borders show the mean of all 

points of the same blur level. Diagonal dotted line represents the line of equal 

correlation (Δrdecode = 0). (B) Representative result from DNN6 features decoded from 

the whole visual cortex (VC) of subject 4. Solid lines represent the mean correlation at 

different blur levels while pooling different experimental conditions and behavioral 

response data. The difference between ro and rs is labelled as Δrdecode. (C) 

Representative result showing mean noise-matched feature correlation with the original 

and stimulus image features for different blur levels. Noise-matching was performed to 

match the correlation of the DNN6 predicted features of the 0% blur stimuli decoded 

from VC of subject 4 (thus obtaining equal values with the decoded features at the 0% 

level). The difference between ro and rs yields the noise baseline (Δrnoise). (D) Feature 

gain is defined as the difference between Δrdecode and Δrnoise. Δr could be defined as the 

displacement along the ro axis of the point on the plot from the line of equal correlation. 

So by subtracting the vector representing noise matched feature correlations from 

decoded feature correlation, we can calculate feature gain. (E) Mean feature gain is 

indicated for each DNN layer for features decoded from VC at different stimulus blur 

levels (excluding the 0% level). Error bars indicate 95% confidence interval (CI) across 

five subjects. 
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Figure 3 | Content specificity of decoded features with blurred images: Same 

image correlation indicates correlation of predicted features (blur levels pooled, 

excluding 0%) with corresponding original image features. Different images correlation 

indicates the mean of correlations of the same predicted features with original image 

features of different images. The mean correlation is shown for different DNN layers. 

Error bars indicate 95% CI across five subjects.  
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Figure 4 | Feature gain across visual areas: Feature gain for features predicted from 

different visual areas. Mean feature gain is indicated for each DNN layer (blur levels 

pooled, 0% excluded). Error bars indicate 95% CI across five subjects.  
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Figure 5 | Effect of category prior: Feature gain for features predicted from different 

visual areas grouped by experimental condition (category-prior vs. no-prior). Mean 

feature gain is indicated for each DNN layer (blur levels pooled, 0% excluded). Error 

bars indicate 95% CI across five subjects. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2018. ; https://doi.org/10.1101/230078doi: bioRxiv preprint 

https://doi.org/10.1101/230078
http://creativecommons.org/licenses/by/4.0/


44 
 

 

Figure 6 | Effect of behavioral performance: Feature gain for features predicted from 

different visual areas grouped by experimental condition (category-prior vs. no-prior) and 

recognition (correct vs. incorrect). Legends include the total number of occurrences of 

each response across subjects. Mean feature gain is indicated for each DNN layer (blur 

levels pooled, 0% excluded). Error bars indicate 95% CI across five subjects.  
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Figure 7 | Effect of confidence level: Feature gain for features predicted from different 

visual areas grouped by experimental condition (category-prior vs. no-prior) and 

confidence level (certain vs. uncertain). Legends include the total number of 

occurrences of each response across subjects. Mean feature gain is indicated for each 

DNN layer (blur levels pooled, 0% excluded). Error bars indicate 95% CI across five 

subjects. 
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