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Abstract 

Mutations identified in each Acute Myeloid Leukemia (AML) patients are useful for prognosis and to 

select targeted therapies. Detection of such mutations by the analysis of Next-Generation Sequencing 

(NGS) data requires a computationally intensive read mapping step and application of several variant 

calling methods. Targeted mutation identification drastically shifts the usual tradeoff between 

accuracy and performance by concentrating all computations over a small portion of sequence space. 

Here, we present km, an efficient approach leveraging k-mer decomposition of reads to identify 

targeted mutations. Our approach is versatile, as it can detect single-base mutations, several types of 

insertions and deletions, as well as fusions. We used two independent AML cohorts (The Cancer 

Genome Atlas and Leucegene), to show that mutation detection by km is fast, accurate and mainly 

limited by sequencing depth. Therefore, km allows to establish fast diagnostics from NGS data, and 

could be suitable for clinical applications. 
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Introduction 

Extensive molecular characterization of patient samples forms the basis of precision medicine and has 

proven useful in a number of pathologies, including Acute Myeloid Leukemia (AML)1. The use of 

RNA-Seq for sample characterization is appealing because (i) it is unbiased, as library preparation 

does not require capture or amplification, (ii) it focuses on a very small portion of the genome (~2%), 

namely the transcribed one, and (iii) mutations in regulatory regions are expected to leave a trace on 

the transcriptome, such as altering transcript expression. Unfortunately, the diversity of splicing 

events as well as incomplete transcriptome annotations make the mapping of RNA-Seq reads to the 

reference genome a notoriously difficult and computationally intensive task. This mapping step leads 

to frequent mapping errors, which are all inherited by variant calling methods.  

In both clinical and research settings, analysis is often focused on a very limited set of expected 

variants (e.g., specific genes, positions, fusions or splice variants) for which some predictive value has 

been established. For instance, the FLT3 internal tandem duplication (FLT3-ITD) represents such a 

case for AML, since its presence is associated with poor prognosis2, 3. Therefore, clinicians routinely 

assess the presence of FLT3-ITD in patients using PCR-based tests4, 5 on a targeted region. 

Alternatively, attempts to detect FLT3-ITD in Next-Gen Sequencing (NGS) data have been hampered 

by the difficulties of read mappers to properly align reads overlapping repeat junctions. To circumvent 

this problem, recent tools such as ITDseek6 and ITDassembler7, detect ITD from soft-clipped reads 

and require BAM files specifically generated by BWA-MEM8, which does not perform an end-to-end 

alignment. Similarly, the best tools highlighted by Liu et al.9 to detect gene fusions, combine multiple 

read alignment methods to achieve higher accuracy of both read alignment and fusion breakpoint 

detection. These methods spend considerable amount of resources mapping reads outside of targeted 

areas. They might also lose reads due to incorrect mappings. This is especially damaging if the 

incorrect mapping is due to the presence of a variant. This situation is most acute for variants resulting 

from sequence rearrangement (e.g., duplications, inversions, fusions, etc.), prompting the 

development of specialized software tools to detect them from NGS data. 
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Here we present km (https://github.com/iric-soft/km), a general method for targeted variant detection, 

which bypasses mapping to a reference genome. This idea is shared with TASR’s authors10, which 

performs an assembly of targeted unaligned reads. Unfortunately, selecting reads hosting a targeted 

variant while preserving the locality and relevance of the assembly is a difficult task. Instead, km 

looks for evidence of mutations using a compact digest of unaligned reads, similarly to LAVA11 

without being limited to Single Nucleotide Variants (SNV). We demonstrate the usefulness of our 

method by detecting a set of several types of variants, which contributes to the identification of AML 

prognostic subgroups, on two large RNA-Seq cohorts and compare our in-silico results to the 

experimental results of two clinical laboratories. The Leucegene cohort comprises 437 deep 

transcriptomes (average number of reads: 204 x 106) from AML patient samples. The second cohort, 

consisting of 10,407 samples from 33 cancer types (including 151 AML) from TCGA, is analyzed 

mostly as a technical demonstration of km’s efficiency.  

Result 

Overview of km 

Taking advantage of its targeted nature, km performs an extensive analysis of a single user-defined 

sequence, called the target sequence, which contains the region of interest. This target sequence is 

broken down into k-mers (subsequences of size k) overlapping by k-1 base pair (bp) to produce a 

linear directed graph. In this graph, each vertex represents a k-mer and each edge represents two 

overlapping k-mers (Figure 1(a)). Independently, a k-mer count table is prepared, that reports the 

occurrence of each k-mer in the sequenced sample12. A sequenced variant will then appear as an 

alternative path, connecting the starting and ending k-mers, identified by walking along the linear 

directed graph and following new overlapping k-mers queried from the count table. Similarly to 

colored de Brujin graph (use by Cortex13), this process returns a graph as an approximate local 

assembly, which is then used to identify the presence of simple (e.g., single-base mutation) and more 

complex sequence variants, e.g., indel and other insertions or deletions (Figure 1(b)). In the absence 

of an alternative path, the target sequence has no variants in sequenced reads. 
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Figure 1: Overview of km. The input is a sequence from a region of interest, given by the user. (a) 

This region is segmented in k-mers to create a linear graph, which represent the research space 

delimited by the first and last k-mers (in grey). (b) A variant will be represented by a new path 

between the two extremities nodes. This path will be found by walking along the linear directed graph 

and following new overlapping k-mers, queried from the count table. 

 

Analysis time 

Table 1 reports our current set of target sequences prepared to annotate some variants of interest to the 

AML community. This set was designed to represent several types of mutations and illustrate 

strategies used by km to detect them. It includes SNVs in IDH114, DNMT3A15 and MYC16, insertions 

in NPM117, Internal Tandem Duplication (ITD)18 and mutations in the Tyrosine Kinase Domain 

(TKD) of FLT319, Partial Tandem Duplication (PTD) in KMT2A and a fusion between NUP98 and 

NSD116, 18. Moreover, these variants have already been validated, clinically or with other in-silico 

methods, in the two cohorts16, 20, 21. To our knowledge, all these variants are specific to AML, 

excluding the SNV on IDH1 also use in prognostic for Glioma tumour22. 
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Table 1: Current catalog of targeted mutations for AML. Average computation times are reported for 

Leucegene samples and assume that k-mer count tables are cached in RAM before running km. The 

performance of the caching step is highly dependent on I/O architecture, taking around 25 seconds on 

a typical system. The approaches used to prepare each target sequence for detecting the expected 

mutations are presented in Methods. 

Applying km to the 437 samples from the Leucegene cohort, for all targets sequences in Table 1, 

required 3 hours and 11 minutes of CPU time (an average of 26 seconds per sample) considering 

precomputed count tables. Starting from reads, the Leucegene cohort can thus be annotated for 7 

variants under 4 days, on a single workstation (i7-6700K@4.00GHz, using 4 threads, 8 GB of RAM 

and 31 bp-long k-mers). In contrast, aligning reads for all samples using STAR23, with the same 

computational resources and 40 GB of RAM, requires approximately 19 days and is a prerequisite to 

run all alignment-based variant detection algorithms. In addition, the required storage space is about 4 

times smaller for the k-mer count tables compared to aligned reads in BAM format, with an average 

file size of 3.2 GB per sample (see Supp. Fig. 1). 

Cohort annotation 

Table 2 presents the outcome of km on the catalog of target sequences for the Leucegene and TCGA 

cohorts. Columns “km type” indicate the specific km annotations returned for each variant. In 

Gene Expected type of 
variant

Gene location Target sequence 
length (bp)

Average running 
time (s/sample)

IDH1 SNP (R132) Exon 4 65 0.008

DNMT3A SNP (R882) Exon 23 65 0.010

NPM1 4bp insertion Exon 10-11 + UTR 80 0.017

FLT3 ITD Exon 13-15 345 0.107

FLT3 TKD Exon 20 68 0.019

MYC SNP (T58A/P59R) Exon 2 68 0.018

NUP98-NSD1 Fusion Exon 11 + 7 62 0.070

NSD1-NUP98 Fusion Exon 6 + 13 62 0.061

KMT2A PTD Exon 8 + 2 62 0.067

�1
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particular, km reports insertions using 4 subtypes based on the composition of the inserted sequence. 

When the insertion is adjacent to a deletion, km flags the variant as an Indel. When the inserted 

sequence is identical to a part of the target sequence, km returns an ITD (Internal Tandem 

Duplication). An I&I (Insertion and ITD) is returned when the inserted sequence is not identical but 

has more than 50% identity. If none of these conditions describes the inserted sequence, km returns an 

Insertion. The TCGA cohort is divided in two subgroups, 151 AML and 10,256 non-AML samples, to 

show the specificity of each variant found. For more details, output from km is available in the 

Supplementary Material. 

To demonstrate the versatility of km, we included two types of target sequences in our current 

analysis. The first type of target sequence is extracted directly from the reference genome or 

transcriptome and, in that case, variants are identified as alternative paths. With this approach, km can 

find either known and specific variants (e.g. R882 SNV in DNMT3A) or any variant present within 

the targeted region (e.g. FLT3-TKD). A second type of target sequence is used for the last three 

targeted variants of Table 1 and 2. Here, target sequences are designed to represent the expected 

mutation, such as the concatenation of exons from two genes involved in an expected fusion (see, 

Detection of rearrangements). Care must be taken in interpreting km's result when using this type of 

target sequence. In this case, detection of the target sequence confirms the presence of the expected 

mutation and a “variant” (of the target sequence) needs to be interpreted as an alternative to the 

expected mutation. Examples for this type of interpretation are found below for NUP98-NSD1 and 

KMT2A-PTD. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/295808doi: bioRxiv preprint 

https://doi.org/10.1101/295808
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

Table 2: Variants identified by km using our AML catalog in the leucegene and TCGA. The "target" 

column reports the number of samples expressing the target sequence. The "variant" column shows 

the number of samples where at least one variant of the target sequence is found. As a target sequence 

can represent a reference or a mutated sequence, we have indicated in bold counts representing 

mutated samples. The columns "km type" identify the specific types of variants detected. Of note, 

several types of variant can be identified in a given sample. As expected, SNV on IDH1 are found in 

AML and non-AML samples on Lower Grade Glioma (LGG) (see Supp. Table 1).  

Data set Mutation name
Km type

Variant Target Number of 
samplesIns Del Indel Sub ITD I&I

Leucegene

IDH1 R132 0 0 0 32 0 0 32 437

437

DNMT3A R882 0 0 0 64 0 0 64 436

NPM1 4bp ins 22 0 1 0 103 13 139 437

FLT3-ITD 10 3 3 38 83 54 162 429

FLT3-TKD 0 4 0 31 0 0 34 434

MYC T58A/P59R 0 0 0 2 0 0 2 437

NUP98-NSD1 7 * 0 0 0 0 0 7 6
NSD1-NUP98 0 0 0 0 0 0 0 2
KMT2A-PTD 10 ** 0 0 0 0 0 10 15

TCGA (AML)

IDH1 R132 0 0 0 11 0 0 11 148

151

DNMT3A R882 0 0 0 12 0 0 12 149

NPM1 4bp ins 6 0 0 0 28 6 40 151

FLT3-ITD 76 0 5 22 20 18 100 142

FLT3-TKD 0 1 0 11 0 0 12 149

MYC T58A/P59R 0 0 0 2 0 0 2 139

NUP98-NSD1 0 0 0 0 0 0 0 0
NSD1-NUP98 0 0 0 0 0 0 0 2
KMT2A-PTD 3 ** 0 0 0 0 0 3 0

TCGA   
(non-AML)

IDH1 R132 0 0 0 394 0 0 394 9850

10256

DNMT3A R882 0 0 0 0 0 0 0 9267

NPM1 4bp ins 0 0 0 0 0 0 0 10232

FLT3-ITD 0 0 0 9 0 0 9 163

FLT3-TKD 0 0 0 0 0 0 0 361

MYC T58A/P59R 0 0 0 5 0 0 5 9204

NUP98-NSD1 0 0 0 0 0 0 0 0
NSD1-NUP98 0 0 0 0 0 0 0 0
KMT2A-PTD 0 0 0 0 0 0 0 0

                 * Fusion with exon 12 found as an insertion in the target sequence

                ** Tandem duplication extended with exon 9 or 9 and 10

�1
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Sensitivity and precision 

We assessed sensitivity and precision of km based on the detection of insertions in NPM1 and FLT3 

(see Supp. Table 2). These two variants have been experimentally validated by the Banque de Cellules 

Leucémique du Québec (BCLQ, www.bclq.org) and TCGA20, independently from RNA-Seq. For 

FLT3-ITD, we also compare km with existing methods previously proposed to detect ITD (e.g. 

ITDassembler7, Pindel24 and Genomon ITDetector25). We have performed limited tests using TASR10 

with our NPM1 and FLT3-ITD target sequences. On 7 Leucegene and 3 TCGA AML samples, we 

found that it returns a large number of mutated sequences (even on not mutated samples), without 

providing annotations on the type and location of possible variants. This format of output impedes the 

application of the method to the entire Leucegene or TCGA cohorts. 

On NPM1 variants, km successfully identified 117 mutated Leucegene samples of the 118 clinically 

validated cases by the BCLQ (on 202 tested). All mutated samples identified by km were either 

validated independently by the BCLQ or not part of the subset of samples tested clinically. This high 

level of performance is also observed with the AML subset of the TCGA cohort20, where km 

identified all clinically validated mutated samples (36 clinically validated of 150 tested), more 4 

mutated samples not detected in clinical settings. Nevertheless, all 4-bp insertions reported by km are 

also known variants from the COSMIC database (see Table 3). 
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Table 3: NPM1 mutations identified by km in both Leucegene and TCGA cohorts. 

 

Similar performance is observed for FLT3-ITD, where km identifies all variants clinically validated 

from the Leucegene cohort and 31 out of 33 cases for the TCGA AMLs. Upon further investigation of 

km's output for these missing samples (IDs TCGA-AB-2812 and TCGA-AB-2988), we found that the 

expected ITD sequences are detected but that the sequences were filtered of the final output, due to 

part of the target sequence having zero coverage (before or after the diverging path, see Methods). We 

opted to filter out these sequences, as they can arise from the expression of a region made up of k-

mers derived from a different transcript but in common with the target sequence. However, this is not 

the case for these two samples where identification of the ITDs is missed due to an homozygous SNV 

after the ITD (t/C at chr13:28,034,322). Unfortunately, km is designed to independently report single 

mutation events for a target sequence in a given sample. Here, the homozygous SNV is detected by 

km and can be flagged as a potential false negative or used to modify the target sequence to find the 

FLT3-ITD in a second km analysis. Other strategies are currently being explored to account for the 

Type COSMIC ID Km variant Km type Leucegne TCGA AML

A COSM17559 TCTG ITD 103 28

D COSM17573 CCTG I&I 11 4

B COSM17571 CATG Insertion 10 4

COSM20809 CCAG Insertion 3 0

COSM29814 CAGA Insertion 2 0

COSM3356078 CAAG Insertion 1 0

COSM29814 CCGA Insertion 1 0

COSM3356078 CGCG Insertion 1 1

COSM28066 CGGA Insertion 1 0

COSM20811 CTTG Insertion 1 0

COSM20815 TATG I&I 1 2

COSM20813 TCGG I&I 1 0

COSM27390 TTCG Insertion 1 0

COSM20850 AGAA Insertion 1 0

COSM20810 TTGT Insertion 0 1

Unknown gc/CAGGG Indel 1 0

Total mutated / Total 138/437 40/151

�1
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possibility of concurrent mutations for a given target without compromising speed, sensitivity and 

precision. 

Until now, methods specialized to detect ITD were designed for exome sequencing, such as 

ITDassembler, Pindel and Genomon ITDetector. Consequently, comparison with km was performed 

on a reduced TCGA AML cohort of 28 samples shared by all studies (33 samples reported by 

ITDassembler 7, less 5 for which no RNA-seq data was available). Of these 28 samples, 22 had 

clinically validated FLT3-ITD annotations20. On this reduced cohort, km has a sensitivity of 95% (21 

out of 22), while ITDassembler identified 15 samples, Genomon 14 (1 had an incorrect duplication 

length) and Pindel 11 (5 had incorrect duplication lengths). As mentioned by ITDassembler’s author 7, 

5 out of the 7 missed mutated samples can be attributed to the length of the duplication, which 

approaches or exceeds the read length (>60 bp in a 75-bp read). By contrast, the nature of km's 

algorithm does not limit the duplication size to the read length but instead relies on a user-defined 

parameter that limits the maximum length of alternative branches to explore (default 500 bp). All 

details of ITDs found by each software can be found in the Supp. Table 3. 

Sensitivity and coverage in RNA-Seq 

RNA-Seq specific features need to be accounted for to correctly interpret km's results. First, is the 

presence of non-spliced transcripts, resulting in reads corresponding to intron sequences being 

reported by km as insertions in the target sequence. These sequences are easily detected by their 

specific genomic positions, lengths and nucleotide sequences across different samples. We 

encountered this case during the FLT3-ITD analysis, where the target sequence overlaps exons 13 to 

15 in order to cover all ITD locations (see section “Target sequence” in Methods). Consequently, we 

have removed from km's output 86-bp and 90-bp insertions, respectively found at locations 

chr13:28,034,083 and chr13:28,034,304, corresponding to known introns (identified in 76 out of 151 

TCGA AML and 10 out of 437 Leucegene samples). 

A related subtlety arises when the variant sequence is largely underrepresented compared to the target 

sequence. This can be due to the variant being present in a rare sub-clone or to strongly biased allele-
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specific expression. In this case, we can lower the coverage ratio threshold (default p = 0.05) to avoid 

ignoring these variants. The missing Leucegene NPM1 mutated sample (13H065) is such a case, 

where km was able to detect a tg/GTCCGA Indel using higher sensitivity thresholds (p = 0.01). This 

variant has a local coverage ratio of 4% in this sample, just below the default threshold of 5%. Similar 

cases are identified for DNMT3A, where our km analysis of the TCGA cohort20 missed the 

identification of 7 clinically annotated samples (out of 18 with available RNA-Seq). By adjusting km's 

parameters for higher sensitivity (p = 0.01 and c = 2), 3 of those samples are correctly identified. 

Detection of rearrangements 

Detection of rearrangements bringing together two distant regions of the genome (such as 

translocations, large inversions, duplications or deletions) requires a slightly different approach to the 

design of the target sequence. In the case of translocations (such as NUP98-NSD1), neither genomic 

nor transcript sequences can be used as a source for the target sequence. Instead we created an 

artificial sequence that represents an expected transcript of the fusion. This artificial target sequence 

is then used to verify that each k-mer is covered in the sample's count table. With this approach, 

support for the target sequence is interpreted as a confirmation that this fusion is present in the 

sample. For large duplications or deletions, the same strategy is applied to avoid capturing several 

mutations (e.g. common single-base mutations) by using excessively large target sequences. 

We applied this approach to the detection of the NUP98-NSD1 fusion and report the results in 

Table 2. We identified 6 samples in the Leucegene cohort that express a fusion transcript joining exon 

11 of NUP98 to exon 7 of NSD116. An alternative inserted sequence, that matches exactly exon 12 of 

NUP98, is also identified for 7 samples (including the previous 6). These results suggest alternative 

splicing events occurring in the fusion transcript. In the TCGA AML cohort, clinical analyses20  

reports an NSD1-NUP98 fusion on samples TCGA-AB-2930 and TCGA-AB-2856 and a NUP98-

NSD1 fusion on TCGA-AB-2930. By adding a second target sequence to identify the fusion on the 

reverse strand, we identified all NSD1-NUP98 fusions but not the one on NUP98-NSD1. This can be 

explained by a fusion transcript undetectable with this target sequence (a fusion involving at least one 
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exon at extremities of target sequence, e.g. exon 10 and 8 of NUP98 and NSD1, respectively) or a 

sequencing coverage too low to catch this variant.  

The KMT2A-PTD is a tandem duplication that spans from exon 2 to exon 8 or 10 of KMT2A. Here, 

applying the strategy used for FLT3-ITD would require a target sequence of about 3,712 bp. Instead, 

we designed our target sequence by joining exon 8 directly to exon 2 to capture the specific junctions 

created by the duplication. Using this sequence, km identifies all versions of this duplication by 

adding an insertion when more exons are included in the duplicated region (Table 2). Surprisingly, 

further investigation of km’s output revealed that among the 24 samples identified as having a 

KMT2A-PTD in the Leucegene cohort21, 6 samples showed evidence for more than one transcript. On 

the TCGA AML cohort, no report of this mutation has been found in cBioPortal or GDC (which 

combines clinical20 and computational analyses) but km identifies 3 samples with a tandem 

duplication that includes up to exon 10. 

Discussion  

To our knowledge, km is the first simple and unified method to detect variants arising from various 

sequence rearrangements (e.g., substitutions, duplications, inversions and fusions). Other methods are 

designed for the detection of a specific type of rearrangement6, 7 and report all cases by exploiting 

characteristics discriminant for the selected type of variant. Alternatively, km uses any sequence as an 

expected reference and reports all alternative forms sharing the reference's extremities. This approach 

is strictly restricted to the region analyzed but not to the type of variant to be identified. Moreover, 

this strategy improves the sensitivity for detecting challenging cases such as the FLT3-ITD where 

position and length are highly variable. 

The small amount of computational resources and time required by km to process and detect variants 

in 10,844 samples, is unparalleled. Indeed, since the advent of whole genome and transcriptome 

sequencing, the default approach has been to perform analyses globally, resulting in very resource-

intensive processes. Instead, km performs a deeper analysis on focused parts of the genome, 

preselected based on each user’s interest (e.g. valuable for prognosis or targeted therapy). Thereby, km 
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avoids consuming resources on a priori irrelevant parts of the genome and returns no results outside 

selected regions. Nonetheless, km analyses are incremental and allow to test new regions and enrich 

previous annotations for new variants.  Unsurprisingly, our approach is sensitive to a lack of coverage 

over the target region, either from allelic imbalance or cellular heterogeneity. In these situations, the 

design of the RNA sequencing (e.g., depth, number of cells) needs to be adjusted for increased 

sensitivity. 

Finally, this study shows km’s potential to establish fast and detailed diagnostics for any given patient, 

using only one sequencing, further extending the usefulness of these techniques in clinical settings. 

Indeed, all variants used to evaluate km have been shown to have prognostic value15-19 for Acute 

Myeloid Leukemia. As shown here, identifying these variants in 437 samples can successfully be 

done in four days with km, using a single workstation. Moreover, as sequencing becomes cheaper and 

more available, we envision a transition from targeted to whole sequencing, followed by targeted 

analysis using methods like km. This will provide fast clinical prognostics but also gather the 

complete data related to a patient’s disease for complementary analyses, to uncover other mutations 

during treatment, as well as for large-scale research. In the future, selecting and testing new target 

variants to extend the existing catalog would be an interesting step to extend km’s clinical (and 

research) applications to other diseases.  

Methods 

RNA-Seq sequencing of AML samples 

This study is part of the Leucegene project, an initiative approved by the Research Ethics Boards of 

Université de Montréal and Maisonneuve-Rosemont Hospital. All AML samples were collected with 

informed consent between 2001 and 2015 according to Quebec Leukemia Cell Bank procedures. 

RNA-Seq were deposited in the Gene Expression Omnibus (GSE49642, GSE52656, GSE62190, and 

GSE67040) and exome sequencing in the Short Read Archive (BioProject PRJNA358716). Workflow 

for sequencing, mutation analysis and transcript quantification has been described previously21. 

Briefly, libraries were prepared with TruSeq RNA Sample Preparation kits (Illumina) and sequencing 
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was performed using an Illumina HiSeq 2000 with 200 cycle paired-end reads. The complete dataset 

consists of 437 RNA-Seq (204M reads per sample, on average). 

TCGA data was obtained from the GDC portal for all 33 cancers types and preprocessed using Picard 

to obtain raw sequences from the available aligned files, which were then converted to Jellyfish count 

tables. The complete dataset represents 10,407 RNA-Seq samples of which 151 correspond to AML 

samples (TCGA-AB-2975 sample was not in the initial TCGA AML cohort20). TCGA results shown 

here are in whole or part based upon data generated by the TCGA Research Network: 

http://cancergenome.nih.gov/. 

K-mer count tables with Jellyfish 

We used Jellyfish (v2.1.4)12 to create canonical k-mer count tables of length 31 bp, and opted not to 

store k-mers that were seen in a single read (parameters: -m 31 -C -L 2). These occurrences either 

result from sequencing errors or from very low coverage regions, and in both cases, cannot be 

leveraged to confirm the presence of a mutation. We also filtered k-mers based on sequencing quality 

(default: >’+’). In our approach, sequencing errors or low base quality results in the k overlapping k-

mers to be ignored during k-mer walking. 

km: k-mer walking as a local assembly 

The main idea behind the implementation of a k-mer walking algorithm is to identify, in the raw 

sequencing reads, variant sequences that overlap with the two extremities of a target sequence 

designed to interrogate a region of interest. This target sequence can be broken down into k-mers 

overlapping by k-1 bp to produce a linear directed graph where vertices represent k-mers and edges 

represent overlaps. Using this graph and a k-mer count table, diverging paths can be identified that 

connect the starting k-mer to the ending one. In the absence of an alternative path, the target sequence 

doesn’t have a variant. Consequently, the target sequence needs to flank the variant by at least k bp to 

have this common starting and ending k-mer. And k must be large enough to linearly decompose the 

target sequence.  
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The k-mer walking algorithm is implemented as a depth-first search. To limit search space, we ignore 

branches that do not come back to a k-mer derived from the target sequence within s steps (default: 

500). Also, new branches are explored only if each k-mer has a count greater than a fixed threshold c 

(default: 5) and greater than a fraction p (default: 5%) of the alternative k-mer count. These 

parameters may need to be adjusted to support detection of certain variants (e.g. as we did to find the 

indel on 13H065, see section "Sensitivity and coverage in RNA-seq") but we have found that the 

default values perform well in general. 

To extract variant sequences from the directed graph, we assign small weights (i.e. 0.01) to edges that 

are part of the target sequence while the others are assigned a unit weight. This ensures the 

preferential use of paths from the reference sequence, and variants are enumerated by finding the set 

of unique shortest paths covering all edges of the graph. 

The k-mer count table is the core data structure used by our approach and its content, construction 

time and necessary storage represent key operational characteristics in using km. Once the k-mer 

count tables are prepared, the process of identifying variants is typically IO-bound until the queried 

count table is entirely cached in RAM. From an operational perspective, it becomes important to 

complete the analysis of all target sequences for each sample, before moving to the next sample. 

Alternatively, we have obtained great performance by copying count tables to a RAM disk (or by 

ensuring that it is cached using a simple scanning command such as "wc -l") before launching a series 

of targeted analyses. The speedup observed for using km is largely dependent on the number of 

regions to be investigated but in absolute terms, preparation of the k-mer count table requires around 3 

seconds per million reads of sequences and 0.1 seconds per samples for each target with length < 300 

bp (preloading of the jellyfish database to RAM requires around 25s).  

Read dependency 

An important caveat to identifying variants based on k-mer count tables is that we ignore read 

dependency between k-mers. During the k-mer walking, the overlap by k-1 bp between two k-mer is 

taken as an evidence that there exist at least one read that support the assembled sequence. In a De 
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Bruijn graph26, the read dependency is explicitly stored in the graph which explains the high memory 

requirements of this data structure. For km, the consequence of ignoring read dependency is that 

reducing k directly impacts the false positive rate by increasing the frequency of incorrect 

reconstruction, which grows with the frequency of ambiguous regions of length k-1. The constraint to 

begin and end variant paths on k-mers belonging to the target sequence acts as a very stringent filter 

to eliminate these spurious branches that would arise from low complexity regions of the genome. 

DiscoSNP27 shares with km an internal step where variants are identified through k-mer based local 

assembly. To provide a safety net, the authors of DiscoSNP opted to include a further step during 

which they align reads to variant sequences to compute k-read-coherency. Besides being a sound 

precaution, this read coherency will always remain limited to the read length, thus only protecting 

against incorrect identifications induced by ambiguous sequences of lengths between k and the read 

length (respectively 31 and 100 bp for the results presented here).  

It can be very tempting to increase k (up to the read length) with the intention of increasing accuracy, 

but two factors need to be taken into consideration. First, any sequencing error throws away the 

contribution of k k-mers. Thus, as k is increased, the effective depth contributing to the analysis is 

decreased. Second, km’s algorithm cannot detect a variant that is located less than k bp away from the 

extremity of the target sequence, since the variant branch would not merge back to the last k-mer. 

Thus, as k is increased, longer target sequences must be used which can be problematic (see the case 

of NPM1, in section "Target sequences"). Although in a very different context (genome annotation 

from NGS), an optimal k was proposed to be between 19 and 20 to prepare k-mer count tables of the 

human genome. Using k = 22, a 10-4 probability of false location was also estimated28. These 

observations should be used as guiding principles in the rare cases where k needs to be adjusted. 

Based on our experience in analyzing the Leucegene and TCGA cohorts, we have found few cases 

that prompted us to raise k from 21 to 31 as the project progressed. We have been so far satisfied with 

results obtained at k = 31. In a general case, we have no estimate of the frequency with which a 

variant would be wrongly identified at k = 31 and correctly disproved using the full reads. This 

subject remains to be further explored.  
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Target sequences 

Creation of target sequences by an end user is relatively simple. In general, k bp from each side of the 

targeted variant are required for exact mutation identification and larger regions may be used for more 

exploratory analyses. Our target sequence for the DNMT3A R882 mutation serves as a simple 

example in which 65 bp (31 + 3 + 31 = 65) represent the minimal target sequence flanking the R882 

codon.  

The FLT3-ITD and the 4-bp insertion in NPM1 present more challenging situations. For NPM1, the 

expected mutation appears close to the end of the last exon and we recommend extending the 

sequence as it is essential that the last k-mer of the target sequence does not overlap the targeted 

mutation (see section "k-mer walking as a local assembly"). Consequently, we prepared an 80-bp 

target sequence comprising the end of exon 10, exon 11 and 14 bp of the 3’-UTR. For the FLT3-ITD, 

the duplication can span over two exons (14 and 15) and can be longer than sequencing reads. To 

cover all insertion points and lengths, we prepared a 345-bp target sequence overlapping exons 13 to 

15 of the FLT3 transcript. For detection of rearrangements, we need to include k bp on each side of 

the junction created by the targeted variant (see section "Detection of rearrangements").  

To assess the fraction of the transcriptome that can be targeted using km, we computed the fraction of 

unique sequences identified for various values of k between 10 and 100. With k = 31, 96.76% of the 

human transcriptome is readily represented by a linear k-mer graph and thus accessible as a target 

sequence for km (see Supp. Fig. 2).  
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