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Abstract 
Core object recognition, the ability to rapidly recognize objects despite variations in their 

appearance, is largely solved through the feedforward processing of visual information. Deep 

neural networks are shown to achieve human-level performance in these tasks, and explain the 

primate brain representation. On the other hand, object recognition under more challenging 

conditions (i.e. beyond the core recognition problem) is less characterized. One such example is 

object recognition under occlusion. It is unclear to what extent feedforward and recurrent processes 

contribute in object recognition under occlusion. Furthermore, we do not know whether the 

conventional deep neural networks that were shown to be successful in solving core object 

recognition, can perform similarly well in problems that go beyond the core recognition. Here, we 

characterize neural dynamics of object recognition under occlusion, using 

magnetoencephalography (MEG), while human subjects were presented with images of objects 

with various levels of occlusion. We provide evidence from multivariate analysis of MEG data, 

behavioral data, and computational modelling, demonstrating an essential role for recurrent 
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processes in object recognition under occlusion. Furthermore, the computational model with local 

recurrent connections, used here, suggests a mechanistic explanation of how the human brain 

might be solving this problem. 

 

1. Introduction 
 

There is abundance of feedforward, and recurrent connections in the primate visual cortex (Lamme 

et al., 1998, Sporns and Zwi, 2004). The feedforward connections form a hierarchy of cortical 

areas along the visual pathway, playing a significant role in various aspects of visual object 

processing (Felleman and Van Essen, 1991). However, the role of recurrent connections in visual 

processing have remained poorly understood (Lamme et al., 1998, Lamme and Roelfsema, 2000, 

Gilbert and Li, 2013, Kafaligonul et al., 2015, Klink et al., 2017).  

Several complementary behavioral, neuronal, and computational modeling studies have confirmed 

that a large class of object recognition tasks called “core recognition” are largely solved through a 

single sweep of feedforward visual information processing (DiCarlo and Cox, 2007, DiCarlo et 

al., 2012, Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014, Cadieu et al., 2014, Wen 

et al., 2018). Object recognition is defined as the ability to differentiate an object’s identity or 

category from many other objects having a range of identity-preserving changes (DiCarlo and Cox, 

2007). Core recognition refers to the ability of visual system to rapidly recognize objects despite 

variations in their appearance, e.g. position, scale, and rotation (DiCarlo and Cox, 2007).  

Object recognition under challenging conditions, such as high variations (Ghodrati et al., 2014, 

Karimi-Rouzbahani et al., 2017), degradation and occlusion (Rensink and Enns, 1998, Oram, 

2010, Fabre-Thorpe, 2011, Wyatte et al., 2014, Kosai et al., 2014, Choi et al., 2016, Spoerer et al., 

2017, Tang et al., 2017), crowding (Livne and Sagi, 2011, Manassi and Herzog, 2013, Clarke et 

al., 2014) goes beyond the core recognition problem, which is thought to require more than the 

feedforward processes. Object recognition under occlusion is one of the key challenging conditions 

that occurs in many of the natural scenes we interact with every day. How our brain solves object 

recognition under such challenging condition is still an open question. We do not know the 

dynamics of object processing under this challenging condition; and that to what extent object 
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recognition under occlusion relies on recurrent processes. Furthermore, as opposed to the core 

object recognition problem, where the conventional feedforward CNNs are shown to explain brain 

representations (Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014, Cadieu et al., 2014, 

Wen et al., 2018), we do not yet have computational models that successfully explain human brain 

representation and behavior under this challenging condition. 

Few fMRI studies have investigated how and where occluded objects are represented in the human 

brain (Rauschenberger et al., 2006, Hulme and Zeki, 2007, Hegdé et al., 2008, Ban et al., 2013, 

Erlikhman and Caplovitz, 2017). Hulme and Zeki (2007) found that faces and houses in fusiform 

face area (FFA) and lateral occipital cortex (LOC) are represented similary with and without 

occclusion. Ban et al. (2013) used topographic mapping with simple geometric shapes (e.g. 

triangles), finding that the occluded portion of the shape is represented topographically in human 

V1 and V2, suggesting the involvement of early visual areas in object completion. A more recent 

study showed that the early visual areas may only code spatial information about occluded objects, 

but not their identity,  and higher-order visual areas instead represent object-specific information, 

such as category or identity of occluded objects (Erlikhman and Caplovitz, 2017).  While these 

studies provide insights about object processing under occlusion, they do not provide any 

information about the temporal dynamics of these processes, and whether object recognition under 

occlusion requires recurrent processing.  

Our focus in this study is understanding the temporal dynamics of object recognition under 

occlusion; and whether recurrent connections get involved in processing occluded objects? If yes, 

in what form are they engaged (e.g. long range feedback or local recurrent?), and how much is 

their contribution compared to the contribution of the feedforward visual information? We 

constructed a controlled image set of occluded objects, and used the combination of multivariate 

pattern analyses (MVPA) of MEG signals, computational modeling, backward masking, and 

behavioral experiments to characterize representational dynamics of object processing under 

occlusion, and the role of recurrence.  

Here, we provide four complementary evidence for the contribution of recurrent processes in 

recognizing occluded objects. First, MEG decoding time courses show that onset and peak for 

occluded objects—without backward masking—are significantly delayed compared to when the 

whole object is presented without occlusion. Second, time-time decoding analysis (i.e. temporal 
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generalization) suggests that occluded object processing goes through a relatively long sequence 

of stages that involve recurrent interaction—likely local recurrent. Third, the results of backward 

masking demonstrate that while the masking significantly impairs both human categorization 

performances and MEG decoding performances under occlusion, it has no significant effect on 

object recognition when objects are not occluded. Fourth, results from two computational models 

showed that a conventional feedforward CNN (AlexNet) that could achieve human-level 

performance in the no-occlusion condition, performed significantly worse than humans when 

objects were occluded. Additionally, the feedforward CNN could only explain the human MEG 

data when objects were presented without occlusion; but failed to explain the MEG data under the 

occlusion condition. In contrast, a hierarchical CNN with local recurrent connections (recurrent 

ResNet) achieved human-level performance and could explain the MEG neural data when objects 

were occluded. These findings demonstrate significant involvement of recurrent processes in 

occluded object recognition, and improve our understand of object recognition beyond the core 

problem.   

 

2. Results 

We used multivariate pattern analysis (MVPA) of MEG data to characterize representational 

dynamics of object recognition under occlusion (Carlson et al., 2013, Cichy et al., 2014, Isik et al., 

2014, Grootswagers et al., 2017). MEG along with MVPA allows for a fine-grained investigation 

of the underlying object recognition processes across time (Grootswagers et al., 2017, Contini et 

al., 2017). Subjects (N=15) were presented with images of objects with varying levels of occlusion 

(i.e., 0% = no-occlusion, 60% and 80% occlusion; Figure 1b).  We also took advantage of the 

visual backward masking (Breitmeyer and Öğmen, 2006)  as a tool to further control the 

feedforward and feedback flow of visual information processing. In the MEG experiment, each 

stimulus was presented for 34 ms, followed by a blank-screen ISI, and then in half of the trials 

followed by a dynamic mask (Figure S1). We extracted and pre-processed MEG signals from -100 

ms to 700 ms with regard to the stimulus onset. To calculate pairwise discriminability between 

objects, a support vector machine (SVM) classifier was trained and tested at each time point 

(Figure 1a). MEG decoding time-courses show the pairwise discriminability of object images 
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averaged across individuals. We first present the MEG results of the no-mask trials. After that in 

section 2.3 we discuss the effect of backward masking.   

 

2.1. Object recognition is significantly delayed under occlusion 

We used pairwise decoding analysis of MEG signals to measure how object information evolves 

over time, Figure 1a. Significantly above-chance decoding accuracy means that objects can be 

discriminated using the information available to the brain at that time-point. The decoding onset 

latency indicates the earliest time that the object-specific information becomes available and the 

peak decoding latency is the time-point wherein we have the highest object-discrimination 

performance.  

We found that object information emerges significantly later under occlusion compared to the no-

occlusion condition. Object decoding under no-occlusion had an early onset latency at 79ms [±3 

ms standard deviation (SD)] and was followed by a sharp increase reaching its maximum accuracy 

(i.e. peak latency) at 139±1 ms (Figure 1c). This early and rapidly evolving dynamic is well 

consistent with the known time-course of the feedforward visual object processing (Liu et al., 

2009, Carlson et al., 2013, Cichy et al., 2014).  

However, when objects were partially occluded (i.e. 60% occlusion), decoding time-courses were 

significantly slower than the no-occlusion condition: the onset for decoding accuracy was at 

123±15 ms followed by a gradual increase in decoding accuracy until it reached its peak decoding 

accuracy at 199±3 ms (Figure 1c). The difference between onset latencies and peak latencies were 

both statistically significant with p<10-4 (two sided sign-rank test). The slow temporal dynamics 

of object recognition under occlusion and the observed significant temporal delay in processing 

occluded objects compared to un-occluded objects do not match with a fully feedforward account 

of visual information processing. This may be best explained by the engagement of recurrent 

processes. 
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Figure 1. Temporal dynamics object recognition under various levels of occlusion. (a) Multivariate pattern 
classification of MEG data. We extracted MEG signals from -100 ms to 700 ms relative to the stimulus onset. At each 
time point (ms resolution), we computed average pairwise classification accuracy between all exemplars. (b) Sample 
images of occluded and un-occluded objects. There are four object categories: camel, deer, car, and motor. Images are 
occluded at 0% (no-occlusion), 60%, and 80% occlusion. (c) Time courses of pairwise decoding accuracies for the 
three different occlusion levels (without backward masking) averaged across 15 subjects. Thicker lines indicate a 
decoding accuracy significantly above chance (right-sided signrank test, FDR corrected across time, p < 0.05), 
showing that MEG signals can discriminate between object exemplars. Shaded error bars represent standard error of 
the mean (SEM). The onset latency is 79±3 ms (mean ± SD) in the no-occlusion condition; and 123±15 ms in the 60% 
occlusion; the difference between onset latencies is significant (p<10-4, two-sided signrank test). Arrows above the 
curves indicate peak latencies. The peak latencies are 139±1ms and 199±3ms for the un-occluded and partially 
occluded (60%) objects respectively. The difference between the peak latencies is also statistically significant (p < 10-

4). 
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Under 80% occlusion, the MEG decoding results do not reach significance (Figure 1c). However, 

behaviorally, human subjects still perform above-chance in object categorization even under 80% 

occlusion (Figure 4b). This discrepancy might be due to MEG acquisition noise, whereas the 

behavioral categorization task is by definition free from that type of noise.  

While the MEG and behavioral data have different levels of noise, we show that within the MEG 

data itself, object images with different levels of occlusion (0%, 60%, 80%) do not differ in terms 

of their level of noise (Figure S2). Thus, the difference in decoding performance between different 

levels of occlusion cannot be simply explained by difference in noise.  

 

2.2. Time-time decoding analysis for occluded objects suggests a 
neural architecture with recurrent interactions  

We performed time-time decoding analysis measuring how information about object 

discrimination generalizes across time (Figure 2a). Time-time decoding matrices are constructed 

by training a SVM classifier at a given time point and testing its generalization performance at all 

other time-points (see Methods). The pattern of temporal generalization provides useful 

information about the underlying processing architecture (King and Dehaene, 2014). 

We were interested to see if there are differences between temporal generalization patterns of 

occluded and un-occluded objects. Different processing dynamics may lead to distinct patterns of 

generalization in the time-time decoding matrix [see (King and Dehaene, 2014) for a review]. For 

example, a narrow diagonal pattern suggests a hierarchical sequence of processing stages wherein 

information is sequentially transferred between neural stages. This hierarchical architecture is well 

consistent with the feedforward account of neural information processing across the ventral visual 

pathway. On the other hand, a time-time decoding pattern with off-diagonal generalization 

suggests a neural architecture with recurrent interactions between processing stages [see Figure 5 

in (King et al., 2016)].     

The temporal generalization pattern under no-occlusion (Figure 2b) indicates a sequential 

architecture, without off-diagonal generalization until its early peak latency at 140 ms. This is 

consistent with a dominantly feedforward account of visual information processing. There is some 

off-diagonal generalization after 140 ms, however that is not of interest here, because the ongoing 
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recurrent activity after the peak latency (as shown in Figure 1c –dark green curve) does not carry 

any information that further improves pairwise decoding performance of un-occluded objects. On 

the other hand, when objects are occluded, the temporal generalization matrix (Figure 2c) indicates 

a significantly delayed peak latency at 199ms with extensive off-diagonal generalization before 

reaching its peak. In other words, for occluded objects, we see a discernible pattern of temporal 

generalization, which is characterized by 1) a relatively weak early diagonal pattern of the 

decoding accuracy during [100 150]ms with limited temporal generalization, which is in contrast 

with the high accuracy decoding of un-occluded objects in the same time period. 2) A relatively 

late peak decoding accuracy with a wide generalization pattern around 200ms. This pattern of 

temporal generalization can be simulated by a hierarchical neural architecture with local recurrent 

interactions within the network [Figure 5 of (King et al., 2016)] 

We also performed sensorwise decoding analysis to explore spatio-temporal dynamics of object 

information. To calculate sensorwise decoding, pairwise decoding analysis was conducted on 102 

neighboring triplets of MEG sensors (2 gradiometers and 1 magnetometer in each location) 

yielding a decoding map of brain activity at each time-point. The sensorwise decoding patterns 

indicated the approximate locus of neural activity: in particular, we see that for both un-occluded 

(supp. movie 1) and occluded (supp. movie2) conditions, during the onset of decoding as well as 

the peak decoding time, the main source of object decoding is in the left posterior-temporal 

sensors. From [110ms to 200ms], the peak of decoding accuracy remains locally around the same 

sensors, suggesting a sustained local recurrent activity.   

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302034doi: bioRxiv preprint 

https://doi.org/10.1101/302034
http://creativecommons.org/licenses/by-nd/4.0/


  9

 

Figure 2. Temporal generalization patterns of object recognition with and without occlusion. (a) Time-time 
decoding analysis. The procedure is similar to the calculations of pairwise decoding accuracies explained in Figure 1, 
except that here the classifier is trained at a given time-point, and then tested at all time-points. In other words, for 
each pair of time points (tx, ty), a SVM classifier is trained by N-1 MEG pattern vectors at time tx and tested by the 
remaining one pattern vector at time ty, resulting to an 801x801 time-time decoding matrix. (b-c) Time-time decoding 
accuracy and plausible processing architecture for no-occlusion and 60% occlusion. The results are for MEG trials 
without backward masking. Horizontal axis indicates testing times and vertical axis indicates training times. Color 
bars represent percent of decoding accuracies (chancel level = 50%). Within the time-time decoding matrices, 
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significantly above chance decoding accuracies, are surrounded by the white dashed contour lines (right-sided 
signrank test, FDR corrected across the whole 801x801 decoding matrix, p < 0.05). For each time-time decoding 
matrix, we also show the plausible processing architecture corresponding to it. These are derived from the observed 
patterns of temporal generalization within the first ~250 ms after the stimulus onset [see Figure 5 of (King et al., 
2016)]. Generalization patterns for the no-occlusion condition are consistent with a hierarchical feedforward 
architecture; whereas, for the occluded objects (60%) the temporal generalization patterns are consistent with a 
hierarchical architecture with recurrent connections.  

 

2.3. Backward masking significantly impaired object recognition 
only under occlusion  

Visual backward masking has been used as a tool to disrupt the flow of recurrent information 

processing, while feedforward processes are left relatively intact (Lamme and Roelfsema, 2000, 

Lamme et al., 2002, Bacon-Macé et al., 2005, Breitmeyer and Öğmen, 2006, Fahrenfort et al., 

2007, Serre et al., 2007, Ghodrati et al., 2014). Our time-time decoding results (Figure 3d un-

occluded) additionally supports the recurrent explanation of backward masking: off-diagonal 

generalization in time-time decoding matrices are representative of recurrent interactions; these 

off-diagonal components disappear when backward masking is present. 

Considering the recurrent explanation of the masking effect, we further examined how the 

recurrent processes contribute in object processing under occlusion. We found that backward 

masking significantly reduced both MEG decoding accuracy time-course (Figure 3b) and subjects’ 

behavioral performances (Figure 4b), only when objects were occluded. When occluded objects 

are masked, the MEG decoding time-course from 185ms to 237ms is significantly lower than the 

decoding time-course when there is no-mask (Figure 3b, black horizontal lines; two-sided signrank 

test, FDR-corrected across time p < 0.05). On the other hand, for un-occluded objects, there is no 

significant difference between decoding time-courses of the mask and no-mask conditions (Figure 

3a).  

 Consistent with the MEG decoding results, while the masking significantly reduced behavioral 

categorization performances when objects were occluded, it had no significant effect on the 

categorization performance for the un-occluded objects (Figure 4b) [two-sided signrank test]. 

Particularly, the backward masking removed the late MEG decoding peak (around 200ms) under 

occlusion (Figure 3f) likely due to disruption of later recurrent interactions. 
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 Taken together, we demonstrated that visual backward masking, which is known to disrupt 

recurrent processes (Lamme and Roelfsema, 2000, Lamme et al., 2002, Breitmeyer and Öğmen, 

2006, Fahrenfort et al., 2007, Macknik and Martinez-Conde, 2007), significantly impairs object 

recognition only under occlusion. On the other hand, masking did not affect object processing 

under no occlusion, when information from the feedforward sweep is shown to be sufficient for 

object recognition. Thus, providing further evidence for the essential role of recurrent processes in 

object recognition under occlusion.  

 

 

Figure 3. Backward masking significantly impairs object decoding under occlusion, but has no significant effect 
on object decoding under no occlusion. (a) Time-courses of the average pairwise decoding accuracies under no-
occlusion. Thicker lines indicate significant time-points (right-sided signrank test, FDR corrected across time, p < 
0.05). Shaded error bars indicate SEM (standard error of the mean). Downward pointing arrows indicate peak decoding 
accuracies. There is no significant difference between decoding time-courses for mask and no-mask trials, under no-
occlusion (b) Time-courses of the average pairwise decoding under 60% occlusion (for 80% occlusion see Figure S3). 
Under occlusion, the decoding onset latency for the no-mask trials is 123±15ms, with its peak decoding accuracy at 
199±3ms; whereas the time-course for the masked trials does not reach statistical significance, demonstrating that 
backward masking significantly impairs object recognition under occlusion. Black horizontal lines below the curves 
show the time-points at which the two decoding curves are significantly different. This is particularly evident around 
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the peak latency of the no-mask trials [from 185ms to 237ms]. (c, d) Time-time decoding matrices of occluded and 
un-occluded objects with and without backward masking. Horizontal axes indicate testing times and the vertical axes 
indicate training times. Color bars show percent of decoding accuracies. (f) Difference between time-time decoding 
matrices with and without backward masking. Statistically significant differences are surrounded by the white dotted 
contours. There are significant differences between mask and no-mask only under occlusion.    

 

2.4. A computational model with local recurrent interactions 
explains both neural and behavioral data under occlusion  

Recent studies have shown that convolutional neural networks (CNNs) achieve human-level 

performance and explain neural data under non-challenging conditions—also referred to as the 

core object recognition [ (DiCarlo and Cox, 2007, Khaligh-Razavi and Kriegeskorte, 2014, 

Yamins et al., 2014), however also see (Rajalingham et al., 2018)]. Here, we first examined 

whether such feedforward CNNs (i.e. AlexNet) can explain the observed human neuronal and 

behavioral data in a challenging object recognition task when objects are occluded.  The model 

accuracy was evaluated by the same object recognition task used to measure human behavioral 

performance (see Method and Figure S4). To assess model’s performance in explaining the human 

MEG data, we used representational similarity analysis (RSA), correlating time-resolved human 

MEG representations with that of the model, on the same set of stimuli (Figure 4a; also see 

Methods).  

We found that in the no-occlusion condition the feedforward CNN could explain both the human 

behavioral performance and the MEG data. Significant correlation between the model and MEG 

representational dissimilarity matrices (RDMs) started at ~90ms after the stimulus onset and 

remained significant for several hundred milliseconds with two peaks at 150ms and 220ms (Figure 

4c). However, the feedforward CNN failed to explain human MEG data when objects were 

occluded. And the model performance was significantly lower than that of human in the occluded 

object recognition task.  

We were wondering if a model with local recurrent connections can account for object recognition 

under occlusion. Inspired by recent advancements in deep convolutional neural networks (He et 

al., 2016a, He et al., 2016b, Liao and Poggio, 2016, Veit et al., 2016), we built a hierarchical 

recurrent ResNet (HRRN) that follows the hierarchy of ventral visual pathway (Figure5, also see 

Methods for more details about the model). The recurrent model (HRRN) could rival the human 

performance in the occluded object recognition task (Figure 4b), performing strikingly better than 
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AlexNet in 60% and 80% occlusion.  The HRRN additionally could explain the human MEG data 

under occlusion [Figure 4c] (onset = 138±2ms; peak = 182±19ms).  

Overall, we demonstrated that a CNN with local recurrent connections could successfully explain 

the human MEG data and the behavioral categorization performances under both occlusion and 

no-occlusion conditions, whereas the feedforward CNN failed to achieve human-level 

performance under occlusion—in both MEG and behavior.   

 

 

Figure 4. Comparing human MEG and behavioral data with feedforward and recurrent computational models 
of visual hierarchy. (a) Time-varying representational similarity analysis between human MEG data and the 
computational models. We, first, obtained representational dissimilarity matrices (RDM) for each computational 
model —using feature values of the layer before the softmax operation—, and for the MEG data at each time-point. 
For each subject, their MEG RDMs were correlated (Spearman’ R) with the computational model RDMs (i.e. AlexNet 
& HRRN) across time; the results were then averaged across subjects. (b) Object recognition performance of humans 
(mask and no-mask trials) and models [AlexNet(feedforward) and HRRN(recurrent)] across different levels of 
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occlusion. We evaluated model accuracies on a multiclass recognition task similar to the multiclass behavioral 
experiment done in humans (Figure S4). By bootstrap resampling (m=1000 resampling), we trained a SVM classifier 
on fifty percent of images and tested on the rest. The classifier is trained and tested at the same level of occlusion. 
Error bars are SEM. Stars indicate a significant difference between the specified conditions (FDR-corrected across 
occlusion levels, p < 0.05). (c) Time-courses of RDM correlations between the models and the human MEG data. 
Thicker lines show significant time points (right-sided signrank test, FDR-corrected across time, p <= 0.05). We 
indicate peak correlation latencies by numbers (mean ± SD) above the downward pointing arrows. Under no-
occlusion, AlexNet and HRRN demonstrate almost similar time-courses except that the peak latency for HRRN 
(249±10ms) is significantly later than the peak latency for AlexNet (219±12ms). However, under occlusion, only 
HRRN showed significant correlation with MEG data, with a peak latency of 182±19ms.    

 

 

Figure 5. Hierarchical Recurrent ResNet (HRRN) in unfolded form is equivalent to an ultra-deep ResNet. (a) 
A hierarchy of convolutional layers with local recurrent connections. This hierarchical structure models the 
feedforward and local recurrent connections along the hierarchy of ventral visual pathway (e.g. V1, V2, V4, IT). (b) 
Each recurrent unit is equivalent to a deep ResNet with arbitrary number of layers depending on the unfolding depth. 
ht is the layer activity at a specific time (t) and Kt represents a sequence of nonlinear operations (e.g. convolution, 
batch normalization, and ReLU). [see (Liang and Hu, 2015) for more info] 
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3. Discussion 
We investigated how the human brain processes visual objects under occlusion. Using multivariate 

MEG analysis, behavioral data, backward masking and computational modeling, we demonstrated 

that recurrent processing plays a major role in object recognition under occlusion.  

 

3.1. Beyond core object recognition 

Several recent findings have indicated that a large class of object recognition tasks referred to as 

‘core object recognition’ are mainly solved in humans within the first ~100 ms after stimulus onset 

(Thorpe, 2009, Liu et al., 2009, Carlson et al., 2013, Isik et al., 2014, Cichy et al., 2016),  largely 

associated with the feedforward path of visual information processing (Lamme and Roelfsema, 

2000, Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014, Cadieu et al., 2014).  More 

challenging tasks, such as object recognition under occlusion, go beyond the core recognition 

problem. So far it has not been clear whether the visual information from the feedforward sweep 

can fully account for this or otherwise recurrent information are essential to solve object 

recognition under occlusion.  

3.1.1. Temporal dynamics  

We found that under the no-occlusion condition, the MEG object-decoding time-course peaked at 

140ms with an early onset at 79ms, consistent with findings from previous studies (DiCarlo and 

Cox, 2007, Carlson et al., 2013, Cichy et al., 2014, Isik et al., 2014). Furthermore, studies have 

reported that approximately after 150ms, a very complex and dynamic phase of visual processing 

may begin deriving a category-specific semantic representation (Clarke et al., 2011, Clarke, 2015), 

which is likely to be driven by recurrent (Thorpe, 2009).  In our study, when objects were occluded, 

object decoding accuracy peaked at 200ms—significantly later than the peak under the no-

occlusion (i.e. 140ms)—suggesting the involvement of recurrent processes. Given the results from 

the temporal generalization analysis (Figure 2c), and the computational modelling, we argue for 

the engagement of mostly local recurrent connections as opposed to long-range top-down feedback 

in solving object recognition under occlusion for this image set. Previous studies also suggest that 
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long-range top-down recurrent is prominently engaged after 200ms from stimulus onset (Tomita 

et al., 1999, Garrido et al., 2007, Liu et al., 2009, Goddard et al., 2016).  

The additional time needed for processing occluded objects may specifically facilitate object 

recognition through providing integrated semantic information from visible parts of the target 

objects. In other words, partial semantic information (e.g. having wheels, having legs, etc.) may 

activate prior information associated with the category of the target object (Clarke and Tyler, 2014, 

Clarke, 2015). Overall these suggest the observed temporal delay under 60% occlusion can be best 

explained by the engagement of recurrent processes—mostly local recurrent connections.  

3.1.2. Computational modeling 

Feedforward CCNs have been shown to be able to account for the core object recognition (Cadieu 

et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014, Güçlü and van Gerven, 

2015, Kubilius et al., 2016, Kheradpisheh et al., 2016a, Kheradpisheh et al., 2016b, Khaligh-

Razavi et al., 2017). The natural question to ask next is whether these models perform similarly 

well under more challenging conditions, beyond the core object recognition. To address this, we 

compared a conventional feedforward CNN with a recurrent convolutional network in terms of 

their object recognition performance, and their representational similarity with that of the human 

MEG data, under the challenging condition of occlusion. The feedforward CNN only achieved 

human-level performance when objects were not occluded; and performed significantly lower than 

the humans and the recurrent network when objects were occluded. The feedforward CNN also 

failed to explain human neural data when objects were occluded. On the other hand, the 

convolutional network with local recurrent connections could achieve human-level performance 

in occluded object recognition and explained a significant variance of the human neural data. Thus, 

demonstrating that the conventional feedforward CNNs (such as AlexNet) do not account for 

object recognition under such challenging conditions, where recurrent computations have a 

prominent contribution.  

3.2. Object occlusion vs. object deletion 

Object recognition when part of an object is removed without an occluder is one of the challenging 

conditions that has been previously studied (Wyatte et al., 2014, Tang et al., 2014, Tang et al., 

2017) and may partly look similar to occlusion. However, as shown by Johnson and Olshausen 
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(2005) deleting part of an object is different from occluding it with another object. Occlusion 

occurs when an object or shape appears in front of another one (Johnson and Olshausen, 2005), in 

which case the occluding object might serve as an additional cue for object completion. On the 

other hand, deletion occurs when part of an object is removed without additional cues about the 

shape or the place of the missing part. Given the difference between these two phenomena at the 

level of stimulus set, dynamics of object processing (and the underlying computational 

mechanisms) will likely be different when part of an object is occluded compared to when it is 

deleted. Future studies need to further characterize how these two may differ.  

3.3. Does a feedforward system with arbitrarily long depth work 
the same as a recurrent system with limited depth?   

  While conventional CNNs could not account for object recognition beyond the core recognition 

problem, we do not rule out the possibility that much deeper CNNs could perform better under 

such challenging conditions.  

 

Computational studies have shown that very deep CNNs outperform shalow ones on a variety of 

object recognition tasks (Simonyan and Zisserman, 2014, Szegedy et al., 2015, Taigman et al., 

2014). Specifically, residual learning allows for a much deeper neural network  with hundreds (He 

et al., 2016a) and even thousands (He et al., 2016b) of the layers providing better performance. 

This is due to the fact that the complex functions that can be represented by deeper architectures 

cannot be represented by shallow architectures (Bengio and LeCun, 2007).  Recent computational 

modeling studies have tried to clarify why increasing the depth of a network can improve its 

performance (Liang and Hu, 2015, Liao and Poggio, 2016). These efforts have demonstrated that 

unfolding a recurrent architecture across time leads to a feedforward network with arbitrary depth, 

in which the weights are shared among the layers. Although such a recurrent network has far fewer 

parameters, Liao and Poggio (2016) have empirically shown that it performs as well as a very deep 

feedforward network without shared weights. We also showed that a very deep ResNet (e.g. with 

150 layers) can be reformulated into the form of a recurrent CNN with much fewer layers (e.g. 

five layers) (Figure 5). Thus, a compact architecture that resembles these very deep networks in 

terms of performance is a recurrent hierarchical network with much fewer layers. This compact 

architecture is probably what the human visual system has selected to be like (Lamme et al., 1998, 
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Sporns and Zwi, 2004), given the biological constraints of having a very deep neural network 

inside the brain  (Dunbar, 1992, Kaas, 2000, Weaver, 2005, Isler and van Schaik, 2009, Bosman 

and Aboitiz, 2015). 

 From a computational viewpoint, recognition of complex images might require more processing 

efforts; in other words, they might need to go through more layers of processing to be prepared for 

the final readout. Similarly, in a recurrent architecture, more processing means more iterations. 

Our modeling results supports this assumption, showing that under more challening recogntion 

tasks, more iterations are required to reach human-level perfomrance.  

While the feedforward path of the HRRN (i.e. no local recurrent engaged) was sufficient for 

achieving human-level performance under no-occlusion, the model reached human-level 

performance only when the local recurrent connections were enabled. Under 60% and 80% 

occlusion, the model reached human level performance, respectivley after going through 13 local 

recurrent stages, and 43 local recurrent stages (Figure S5). 

3.4. The neural basis of masking effect  

Backward masking is a useful tool for studying temporal dynamics of visual object processing 

(Lamme et al., 2002, Breitmeyer and Öğmen, 2006). It can impair recognition of the target object 

and reduce or eliminate perceptual visibility through the presentation of a second stimulus (mask) 

immediately or with an interval after the target stimulus, e.g. 50 ms after the target’s onset. While 

the origin of masking effect was not the focus of the current study, our MEG results could provide 

some insights about the underlying mechanisms of backward masking.  

There are several accounts of backward masking in the literature:  Breitmeyer and Ganz (1976) 

provided a purely feedforward explanation (two-channel model), arguing that the mask travels 

rapidly through the fast channel disrupting recognition of the target object traveling through the 

slow channel. A number of other studies, however, suggest that the masking mainly interferes with 

the top-down feedback processes (Lamme and Roelfsema, 2000, Lamme et al., 2002, Breitmeyer 

and Öğmen, 2006, Fahrenfort et al., 2007).  And finally, Macknik and Martinez-Conde (2007) 

explain the masking effect by the lateral inhibition mechanism of neural circuits within different 

levels of the visual hierarchy; arguing that the mask interferes with the recognition of the target 

object through lateral inhibition (i.e. inhibitory interactions between target and mask).  
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The last two accounts of masking, while being different, both argue for the disruption of recurrent 

processes by the mask: either the top-down recurrent processes, or the local recurrent processes 

(e.g. lateral interactions). With a short interval between the target and mask, the mask may interfere 

with the fast recurrent processes (i.e. local recurrent) while with a relatively long interval it may 

interfere with the slow recurrent processes (i.e. top-down feedback). 

Our results of MEG decoding time-courses, time-time decoding and behavioral performances 

under the no-occlusion condition does not support the purely feedforward account of visual 

backward masking. We showed that the backward masking did not have a significant effect on 

disrupting the fast feedforward processes of object recognition under no occlusion (MEG: Figure 

3a; behaviorally: Figure 4b). On the other hand, when objects were occluded the backward 

masking significantly impaired object recognition both behaviorally (Figure 4b) and neurally 

(Figure 3b). Additionally, the time-time decoding results (Figure 3c,3d,3f) showed that backward 

masking, under no occlusion, had no significant effect on disrupting the diagonal component of 

the temporal generalization matrix that is mainly associated with the feedforward path of visual 

processing. On the other hand, the masking removed the off-diagonal components and the late 

peak (>200ms) observed in the temporal generalization matrix of the occluded objects.   

Taken together, our MEG and behavioral results are in favor of a recurrent account for backward 

masking. Particularly in our experiment with a short stimulus onset asynchrony (SOA = time from 

stimulus onset to the mask onset), the mask seems to have affected mostly the local recurrent 

connections.  

 

4. Methods  
4.1. Occluded objects image set 

Images of four different object categories (i.e. camel, deer, car, and motorcycle) were used as the 

stimulus set (Figure 1b). Object images were transformed to be similar in terms of size and contrast 

level. To generate an occluded image, in an iterative process we added several black circles (as 

artificial occluders) of different sizes in random positions on the image. To simulate the type of 

occlusion that occurs in natural scenes, the black circles are positioned in both front and back of 

the target object. The percent of object occlusion is defined as the percent of the target object 
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covered by the black occluders. We defined three levels of occlusion: 0% (no occlusion), 60% 

occlusion and 80% occlusion. Black circles also existed in the 0% occlusion, but not covering the 

target object; this was to make sure that the difference observed between occluded and un-occluded 

objects cannot be solely explained by the presence of these circles. The generated image set is 

comprised of 12 conditions: four objects  three occlusion levels. For each condition, we generated 

M = 64 sample images varying by the occlusion pattern and the target object position. To remove 

the potential effect of low-level visual features in object discrimination—objects positions were 

slightly changed around the center of the images (by x ≤ 15, y ≤ 15 pixels). Overall, we 

controlled for low-level image statistics, as such that images of different levels of occlusion could 

not be discriminated simply by using low-level visual features (i.e. Gist and V1 model). 

 

4.2. Participants and MEG experimental design 

Fifteen young volunteers (22-38 year-old, all right-handed; 7 female) participated in the 

experiment. The study was conducted according to the Declaration of Helsinki. The experiment 

protocol was approved by the local committee on the use of humans as experimental subjects. 

Volunteers completed a consent form before participating in the experiment and were financially 

compensated after finishing the experiment. 

During the experiment, participants completed eight runs; each run consisted of 192 trials and 

lasted for approximately eight minutes (total experiment time for each participant = ~70min). Each 

trial started with 1sec fixation followed by 34ms presentation of an object image (6° visual angle). 

In half the trials, we employed backward masking in which a dynamic mask was presented for 

102ms shortly after the stimulus offset—inter-stimulus-interval (ISI) of 17ms—(Figure S1). In 

each run, each object image (i.e. camel, deer, car, motor) was repeated 8 times under different 

levels of occlusions without backward masking; and another 8 repetitions with backward masking. 

In other words, each condition (i.e. combination of object-image, occlusion-level, mask or no-

mask) was repeated 64 times over the duration of the whole experiment. 

Every 1-3 trials, a question mark appeared on the screen (lasted for 1.5 sec) prompting participants 

to choose animate if the last stimulus was deer/camel and inanimate if the last stimulus was 

car/motor (Figure S1; see Figure S6 for behavioral performance of animate/inanimate task).  
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Participants were instructed to only respond and blink during the question trials to prevent 

contamination of MEG signals with motor activity and the eye-blink artifact. The question trials 

were excluded from further MEG analyses.   

The dynamic mask was a sequence of random images (n = 6 images; each presented for 17ms) 

selected from a pool of the synthesized mask images. They were generated by using a texture 

synthesis toolbox that is available at: http://www.cns.nyu.edu/~lcv/texture/ (Portilla and 

Simoncelli, 2000). The synthesized images have low-level feature statistics similar to the original 

stimuli.  

4.3. MEG acquisition 

To acquire brain signals with millisecond temporal resolution, we used 306-sensors MEG system 

(Elekta Neuromag, Stockholm). The sampling rate was 1000Hz and band-pass filtered online 

between 0.03 and 330 Hz. To reduce noise and correct for head movements, raw data were cleaned 

by spatiotemporal filters [Maxfilter software, Elekta, Stockholm; (Taulu and Simola, 2006)]. 

Further pre-processing was conducted by Brainstorm toolbox (Tadel et al., 2011). Trials were 

extracted -200ms to 700ms relative to the stimulus onset. The signals were then normalized by 

their baseline (-200ms to 0ms), and were temporally smoothed by low-pass filtering at 20Hz. 

4.4. Behavioral task of multiclass object recognition  

We ran a psychophysical experiment, outside MEG, to evaluate human performance on a multi-

class occluded object recognition task. Sixteen subjects participated in a session lasting about 40 

minutes. The experiment was a combination of mask and no-mask trials that were randomly 

distributed across the experiment. Each trial, started by a fixation point presented for 0.5s followed 

by a stimulus presentation of 34ms. In the masked trials, a dynamic mask of 102ms was presented 

after a short ISI of 17ms (Figure S4). Subjects were instructed to respond accurately and as soon 

as possible after detecting the target stimulus. They were asked to categorize the object images by 

pressing one of the pre-assigned four keys on a keyboard corresponding to the four object 

categories: camel, deer, car, and motorcycle.  

Overall, 16 human subjects (25 to 40 years-old) participated in this experiment. Before the 

experiment, participants performed a short training phase on a totally different image-set to learn 
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the task and reach a predefined performance level in the multi-class object recognition task. The 

main experiment consisted of 768 trials that were randomly distributed into four blocks of 192 

trials (32 repetitions of object images with small variations in position and the pattern of occlusion 

 three occlusion levels  two masking conditions   four object categories = 768). Images of 

256x256 pixels size were presented at a distance of 70 cm at the center of a CRT monitor with the 

frame rate of 60 Hz and a resolution of 1024768. We used the MATLAB based psychophysics 

toolbox of (Pelli, 1997).       

4.5. Multivariate pattern analyses (MVPA) 

4.5.1. Pairwise decoding analysis  

To measure temporal dynamics of object information processing, we used pairwise decoding 

analysis on the MEG data (Isik et al., 2014, Cichy et al., 2014, Kietzmann et al., 2017). For each 

subject, at each time-point, we created a data matrix of 64-trials  306-sensors per condition.  We 

used a support vector machine (SVM) to pairwise decode any two conditions, with a leave-one-

out cross-validation approach. At each time-point, for each condition, N-1 pattern vectors were 

used to train the linear classifier [SVM; LIBSVM, (Chang and Lin, 2011), software available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/], and the remaining Nth vector was used for evaluation. 

The above procedure was repeated 100 times with random reassignment of the data to training and 

testing sets. This was then averaged over the six pairwise decoding accuracies. The SVM decoding 

analysis is done independently for each subject and then we report the average decoding 

performance over these individuals (Figure 1a). 

4.5.2. Time-time decoding analysis  

We also reported time-time decoding accuracies, obtained by cross-decoding across time. For each 

pair of objects, a SVM classifier is trained at a given time and tested at all other time-points, thus 

showing the generalization of the classifier across time. The results are then averaged across all 

the pairwise classifications. This yields an 801x801 (t=-100 to 700 ms) matrix of average pairwise 

decoding accuracies for each subject. Figure 2 shows the time-time decoding matrices averaged 

across 15 participants. To test for statistical significance, we did one-sided signrank test against 

the chance-level and then corrected for multiple comparison using FDR. 
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4.5.3. Sensorwise decoding analysis  

We also examined a sensorwise visualization of pairwise object decoding across time (Supp 

Movies 1 & 2). To this end, we trained and tested the SVM classifier at the level of sensors (i.e. 

combination of three neighboring sensors) across the whole 306 sensors.  First, 306 MEG sensors 

were grouped into 102 triplets (Elekta Triux system; 2 gradiometers and 1 magnetometer in each 

location). At each time-point, we applied the same pairwise decoding procedure as previously 

explained in 4.5.1, this time at the level of groups of 3 adjacent sensors (instead of taking all the 

306 MEG sensors together). Average pairwise decoding accuracies across subjects, at each time 

point, are color-coded across the head surface. We used black dots to indicate channels with 

significantly above chance accuracy (FDR-corrected across both time and sensors), and gray dots 

to show accuracies with p<0.05, before correcting for multiple comparison. At each time-point, 

we also specify the channel with peak decoding accuracy by a red dot.  

 

4.5.4. Representational similarity analysis (RSA) over time 

We used representational similarity analysis (RSA) (Kriegeskorte, 2009, Kriegeskorte and Kievit, 

2013, Cichy et al., 2014, Carlson et al., 2013, Khaligh-Razavi et al., 2016), to compare 

representations of computational models with time-resolved representations derived from MEG 

data. 

For the MEG data, representational dissimilarity matrices (RDM) were calculated at each time-

point by computing the dissimilarity (1 - Spearman’s R) between all pairs of the MEG patterns 

elicited by object images. Time-resolved MEG RDMs were then correlated (Spearman’s R) with 

the computational model RDMs, yielding a correlation vector over time (Figure 4a).  

To construct CNN model RDMs, we used the extracted features from the penultimate layer of the 

networks (i.e. the layer before softmax operation). Significant correlations were determined by 

one-sided signrank test (p < 0.5, FDR-corrected across time).  

 

4.6. Significance Testing  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302034doi: bioRxiv preprint 

https://doi.org/10.1101/302034
http://creativecommons.org/licenses/by-nd/4.0/


  24

We used the non-parametric Wilcoxon signrank test (Gibbons and Chakraborti, 2011) for random 

effect analysis. To determine time-points with significantly above chance decoding accuracy (or 

significant RDM correlations), we used a right-sided signrank test across n = 15 participants. To 

adjust p-values for multiple comparisons (e.g. across time), we further applied the false discovery 

rate (FDR) correction (Benjamini and Hochberg, 1995) [RSA-Toolbox: is available from 

https://github.com/rsagroup/rsatoolbox (Nili et al., 2014)]. 

To determine whether two time-courses (e.g. correlation or decoding) are significantly different at 

any time interval, we used a two-sided signrank test, FDR corrected across time.   

Onset latency: We defined onset latency as the earliest time where performance became 

significantly above chance for at least ten consecutive milliseconds. Mean and standard deviation 

(SD) for onset latencies were calculated by leave-one-subject-out repeated for N=15 times.   

Peak latency: The time for peak decoding accuracy was defined as the time where the decoding 

accuracy was the maximum value. The mean and SD for peak latencies were calculated similar to 

the onset latencies. 

   

4.7. Computational modeling 

4.7.1. Feedforward computational model (AlexNet) 

We used a well-known CNN (AlexNet) (Krizhevsky et al., 2012) that is shown to account for the 

core object recognition (Khaligh-Razavi and Kriegeskorte, 2014, Cadieu et al., 2014, 

Kheradpisheh et al., 2016a, Kheradpisheh et al., 2016b). CNNs are cascades of hierarchically 

organized feature extraction layers. Each layer has several hundred convolutional filters and each 

convolutional filter scans various places on the input generating a feature map at its output. A 

convolutional layer may be followed by a local or global pooling layer merging outputs of a group 

of units. The pooling layers make the feature maps invariant to small variations (Bengio and 

LeCun, 2007). AlexNet has eight cascading layers: five convolutional layers and three fully-

connected layers (Krizhevsky et al., 2012). A pre-trained version of the model, which is trained on 

1.2 million images from ImageNet dataset (Russakovsky et al., 2015) is used for the experiments 
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here. We used the features extracted by the fc7 layer (before softmax operation) as the model 

output.  

4.7.2. Hierarchical Recurrent ResNet (HRRN) 

In convolutional neural networks, performance in visual recognition tasks can be substantially 

improved by adding to the depth of the network (Simonyan and Zisserman, 2014, Szegedy et al., 

2015, He et al., 2015). However, this comes at a cost: deeper networks of simply stacking layers 

(plain nets) have higher training errors due to the vanishing gradients (degradation) (Glorot and 

Bengio, 2010) problem that prevents convergence in the training phase. To address this problem, 

He et al. (2016a) introduced a deep residual learning framework. Residual networks can overcome 

the vanishing gradient problem during learning by employing identity shortcut connections that 

allow bypassing residual layers. This framework enables training ultra-deep networks, e.g. with 

1202 layers, leading to much better performances compared to the shallower networks (He et al., 

2016a, He et al., 2016b). 

Residual connections give ResNet an interesting characteristic of having several possible pathways 

with different lengths from the network’s input to the output instead of a single deep pathway (Veit 

et al., 2016). For example, the ultra-deep 152-layers ResNet in its simplest form—by skipping all 

the residual layers—is a hierarchy of five convolutional layers. By including additional residual 

layers, more complex networks with various depths are constructed [see table 1 in (He et al., 

2016a)]. In this study, we proposed a generalization of this convolutional neural network by 

redefining residual layers as local recurrent connections. As shown in Figure 5, we reformulated 

the 152-layers ResNet of He et al. (2016a) into the form of a five-layer convolutional network with 

folded residual layers as its local recurrent connections. The model is pre-trained on ImageNet 

2012 dataset with a training set similar to that of Alexnet (1.2 million training images).  It is shown 

experimentally that an unfolded recurrent CNN (with shared weights) is similar to a very deep 

feedforward network with non-shared weights (Liao and Poggio, 2016). In our analyses, we used 

the extracted features of the penultimate layer (i.e. layer pool5, which is before the softmax layer) 

as the model output.  
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