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Numerous genetic and environmental factors contribute to psychiatric disorders and other 136 

brain disorders. Common risk factors likely converge on biological pathways regulating the 137 

optimization of brain structure and function across the lifespan. Here, using structural 138 

magnetic resonance imaging and machine learning, we estimated the gap between brain age 139 

and chronological age in 36,891 individuals aged 3 to 96 years, including individuals with 140 

different brain disorders. We show that several disorders are associated with accentuated 141 

brain aging, with strongest effects in schizophrenia, multiple sclerosis and dementia, and 142 

document differential regional patterns of brain age gaps between disorders. In 16,269 143 

healthy adult individuals, we show that brain age gap is heritable with a polygenic 144 

architecture overlapping those observed in common brain disorders. Our results identify 145 

brain age gap as a genetically modulated trait that offers a window into shared and distinct 146 

mechanisms in different brain disorders. 147 

Psychiatric disorders and other brain disorders are among the main contributors to morbidity and 148 

disability around the world1, often placing debilitating disadvantages on the individual2. The 149 

disease mechanisms are complex, spanning a wide range of genetic and environmental 150 

contributing factors3. The inter-individual variability is large, but on a group-level, patients with 151 

common brain disorders perform worse on cognitive tests, are less likely to excel professionally, 152 

and engage in adverse health behaviours more frequently4.  153 

Dynamic processes influencing the rate of maturation and change throughout the lifespan 154 

play a critical role, as reflected in the wide range of disease onset times from early childhood to 155 

old age5. This suggests that the age at which individual trajectories diverge from the norm is a 156 

key characteristic in the underlying pathophysiology. Whereas autism spectrum disorder (ASD) 157 

and attention-deficit/hyperactivity disorder (ADHD) have onset in childhood6, schizophrenia 158 
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(SZ) and bipolar (BD) spectrum disorders likely evolve during adolescence, before the outbreak 159 

of severe symptoms, which is typically in early adulthood6,7. Likewise, multiple sclerosis (MS) 160 

most often presents itself in early adulthood but the disease process likely starts much earlier8,9. 161 

First episodes in major depressive disorder (MDD) can appear at any stage from adolescence to 162 

old age6,10, whereas mild cognitive impairment (MCI) and dementia (DEM) most often evolve in 163 

old age11. When attempting to decode the underlying brain dysfunction of these disorders, age-164 

related deviations from the norm may also differ in terms of spatial location, direction, change 165 

rate and magnitude, all of which add complexity to the interpretation of observed effects.  166 

Magnetic resonance imaging (MRI) is a powerful tool to unveil abnormal brain 167 

development12,13 and age-related degeneration14,15. Machine learning techniques enable robust 168 

estimation of the biological age of the brain using MRI-derived features16, and initial evidence 169 

suggests that a deviation between brain and chronological age – termed the brain age gap - is 170 

present in several brain disorders17. These findings may render brain age gap a promising marker 171 

of brain health17, but several critical issues remain to be addressed. First, while advantageous for 172 

narrowing the complexity, reducing a rich set of brain imaging features into a single estimate of 173 

brain age inevitably compromises spatial specificity, thereby potentially removing disorder-174 

specific patterns. Second, most studies so far have been rather small-scale, performed within a 175 

limited age range and focusing on a single disorder, which left them unable to uncover clinical 176 

specificity and lifespan dynamics. Third, the genetic underpinnings of brain age gap are not 177 

understood and it is unknown to what degree they overlap with the genetic architecture of major 178 

clinical traits. To address these critical knowledge gaps, large imaging genetics samples covering 179 

a range of prevalent brain disorders are necessary. 180 

The availability of unprecedented sample sizes of neuroimaging and genetics data through 181 

global data sharing and population-based efforts provide new opportunities for accurate 182 
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modelling of lifespan differences in brain anatomy and its application to brain disorders18. Here, 183 

we have gathered raw structural MRI data from a large number of individuals. We employed a 184 

centralized and harmonized processing protocol including automated surface-based morphometry 185 

and subcortical segmentation using Freesurfer19 (Suppl. Fig. 1). The main analysis in this study 186 

is based on data from 36,891 individuals aged 3 to 96 years that passed quality control, 187 

representing the largest brain imaging study on brain age to date.  188 

This sample included data from healthy controls (HC; n = 30,967; 3-95 years), as well as 189 

from 5924 individuals with diverse brain disorders with typical onset age distributed across the 190 

lifespan6,11. We included data from individuals with ASD (n = 975; 5-64 years) and ADHD (n = 191 

751; 7-62 years), individuals with prodromal SZ or at risk mental state (SZRISK; n = 98; 16-42 192 

years), individuals with SZ (n = 1,145; 18-66 years), a heterogeneous group with mixed 193 

diagnoses in the psychosis spectrum (PSYMIX; n = 294; 18-69 years), individuals with BD (n = 194 

445; 18-66 years), MS (n = 254; 19-68 years), MDD (n = 211; 18-71 years), MCI (n = 992; 38-91 195 

years), and DEM (including Alzheimer’s disease (AD); n = 759; 53-96 years). Supplementary 196 

Tables 1 and 2 provide details on the sample’s characteristics.  197 

Brain age prediction across brain disorders 198 

We used machine learning to estimate individual biological brain age based on structural brain 199 

imaging features. First, we grouped all subjects into different samples. For each of the ten clinical 200 

groups, we identified a group of healthy individuals of equal size, matched on age, sex and 201 

scanning site using propensity score matching20. All remaining individuals were joined into one 202 

sample comprising healthy individuals only. The latter constituted a training sample, used to train 203 

and tune the machine learning models for age prediction (n = 26,535; 14,182 females and 12,353 204 
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males, aged 3-89 years), whereas the ten clinical samples were used as independent test samples. 205 

Figure 1a illustrates the respective age distributions per sex and diagnosis.  206 

 
Figure 1: Sample distributions and brain features used for brain age prediction. a, Age distributions 

of the training (left) and the ten test samples (right) per sex and diagnosis. The groups in each test sample 

were of equal size and were matched for age, sex and scanning site20. b, Cortical features from the Human 

Connectome Project (HCP) atlas21 as well as cerebellar/subcortical features19 used for brain age 

prediction. Colours were assigned randomly to each feature. All features were used in the full brain 

feature set (left), whereas only those from specific regions (occipital, frontal, temporal, parietal, cingulate, 

insula, cerebellar/subcortical) were included in the region-wise feature set (right). For illustration purpose, 

the left hemisphere is shown. 

The large sample size and wide age-span of the training sample allowed us to model male 207 

and female brain age separately, thereby accounting for potential sexual dimorphisms in brain 208 

structural lifespan trajectories. For each sex, we built a machine learning model based on gradient 209 

tree boosting (xgboost)22 to predict the age of the brain from a set of thickness, area and volume 210 

features extracted using a multi-modal parcellation of the cerebral cortex21 as well as a set of 211 

cerebellar/subcortical volume features19 (1,118 features in total, Fig. 1b). Five-fold cross-212 

validations confirmed the validity of the models, yielding high correlations between 213 

chronological age and predicted brain age (r=.94 and r=.95 for the female and male model, 214 
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respectively; Suppl. Fig. 2). Next, we applied the models to predict brain age for each individual 215 

in the ten independent test samples, and tested for effects of diagnosis on the brain age gap. We 216 

used mega-analysis (across-site analysis) as the main statistical framework as it may best exploit 217 

the benefits of the big data approach, while also providing results from a meta-analysis 218 

framework in the supplement. We controlled all associations and group differences reported in 219 

this paper for age, age², sex, and scanning site. Further, to rule out confounding effects of data 220 

quality on the results23, we repeated the main analyses using a more stringent multivariate quality 221 

control and exclusion procedure24. 222 

 

Figure 2: Accentuated brain aging is 

common in several brain disorders. 

Compared to healthy controls matched for age, 

sex and scanning site, the gap between 

chronological age and brain age was increased 

in several disorders. Cohen’s d effect sizes 

indicate largest effects in SZ, MS, MCI and 

DEM. 

Figure 2 illustrates that the brain age gap was increased in several brain disorders. 223 

Strongest effects were observed in SZ (Cohen’s d = 0.55), MS (d = 0.72), MCI (d = 0.45) and 224 

DEM (d = 1.06). PSYMIX (d = 0.22) and BD (d = 0.30) showed small effects of increased brain 225 

age gap, whereas other groups showed negligible effects. The meta-analysis converged on the 226 

same findings (Suppl. Fig. 3) and the results replicated regardless of the quality control exclusion 227 

criterion applied (Suppl. Fig. 4). Compared to matched healthy controls, the average brain age 228 

gap was estimated to 1.1 years for ASD, 0.7 years for ADHD, 0.6 years for SZRISK, 3.9 years 229 

for SZ, 1.4 years for PSYMIX, 2.0 years for BD, 5.6 years for MS, 0.8 years for MDD, 3.0 years 230 
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for MCI and 5.8 years for DEM. The brain age gap in all clinical groups was positive and there 231 

were no signs of a negative brain age gap (delay) in children with ASD or ADHD. 232 

Regional specificity of brain age gap  233 

We assessed the specificity of the spatial brain age gap patterns across clinical groups. We 234 

trained age prediction models similar to those for the full brain above, including only occipital, 235 

frontal, temporal, parietal, cingulate, insula, or cerebellar/subcortical features (Fig. 1b). Cross-236 

validation confirmed the predictive performance of all regional models (Suppl. Fig. 2), so we 237 

used these to predict regional brain age in the ten independent test sets. Region-wise brain age 238 

gaps often corresponded to the ones observed on the full brain level, yet some notable differences 239 

in the spatial patterns of the disorders emerged (Fig. 3a). For example, increased 240 

cerebellar/subcortical age gap was most prominent in DEM (d = 0.99) and MS (d = 0.89) but was 241 

not present in SZ (d = 0.08). The largest effect in SZ was observed in the frontal lobe (d = 0.71). 242 

In PSYMIX, brain age gaps in the insula (d = 0.39) and the temporal lobe (d = 0.34) were larger 243 

than the brain age gap observed on the full brain level (d = 0.22). A brain age gap in the temporal 244 

lobe was observed in MDD (d = 0.26), whereas there was no evidence for a brain age gap in ASD 245 

or ADHD in any of the regions.  246 

Figure 3b illustrates a hierarchical clustering of clinical groups based on region-wise 247 

effect sizes. One cluster of groups with similar spatial brain age gap patterns comprised MS, MCI 248 

and DEM, whereas the other groups formed a second cluster. Notably, the spatial patterns of the 249 

groups in the first cluster were negatively associated with several disorders in the second cluster, 250 

pointing toward spatial specificity of these disorders.  251 
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Figure 3: Several disorders displayed regional specific aging patterns. a, Region-wise brain age gaps 

per disorder. Colours indicate Cohen’s d effect sizes for group comparison to healthy controls matched for 

age, sex and scanning site. Strongest patterns were observed in the cerebellar/subcortical region for DEM 

and MS, and in the frontal lobe for SZ. b, Correlation matrix based on the effect sizes from panel (a) 

indicates similarities (e.g. between MS, DEM and MCI) and dissimilarities (e.g. between SZ/PSYMIX 

and MS/DEM) in the spatial brain age patterns between the disorders. Sorting is based on hierarchical 

clustering. c, Effect sizes of region x group interaction effects from repeated measures ANOVAs run for 

each combination of regions and groups (1260 tests in total). Strongest interaction effects were observed 

between MS/MCI/DEM and the other disorders, confirming the dissimilarity pattern from panel (b) with 

an independent analysis.  

To explore these differences further, we tested for group x region interactions on each 252 

pairwise combination of clinical groups and pairwise combination of region-wise brain age gaps 253 

(1260 tests). Figure 3c illustrates the effect sizes for all resulting group x region interactions. 254 

Confirming the results from Figure 3b, strongest interaction effects were observed between the 255 

groups from cluster 1 and those from cluster 2. For example, the three strongest interaction 256 
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effects indicated that brain age gaps for frontal and cerebellar/subcortical regions diverged mostly 257 

between MS and SZ (Partial Eta squared ηp² = 0.16), MS and PSYMIX (ηp² = 0.15) and between 258 

SZ and DEM (ηp² =0.15; Suppl. Fig. 5 provides effect sizes for all tests). Together, these results 259 

demonstrate that several common disorders affecting the brain show anatomically differential 260 

patterns of increased brain age gap, indicating that the rate at which different regions age in 261 

relation to each other oftentimes showed opposite patterns between disorders typically considered 262 

neurodevelopmental and neurodegenerative disorders, respectively.  263 

With converging findings suggesting largest brain age gaps in SZ, MS, MCI and DEM, 264 

we explored the functional relevance of the region-wise brain age gaps for these groups, testing 265 

for associations with clinical and cognitive data. Clinical data available in the SZ test sample 266 

included symptom (n = 81 HC, n = 391 SZ) and function (n = 271 SZ) scores of the Global 267 

Assessment of Functioning scale25 (GAF) as well as positive (n = 57 HC, n = 653 SZ) and 268 

negative (n = 57 HC, n = 655 SZ) scores of the Positive and Negative Syndrome Scale26 269 

(PANSS). In the MS test sample, we assessed associations with scores from the Expanded 270 

Disability Status Scale27 (EDSS, n = 188 MS) and in the joint MCI and DEM test samples, we 271 

assessed associations with Mini Mental State Examination scores28 (MMSE, n = 901 HC, n = 921 272 

MCI, n = 707 DEM). Figure 4a depicts association strengths for all tests and Figure 4b 273 

illustrates the strongest association for each test, except for the PANSS scores where only weak 274 

associations were found. In SZ, larger brain age gaps were associated with lower functioning, in 275 

particular for full brain, frontal, temporal and insula brain age gaps (GAF function all z < - 0.18, 276 

all P < 0.003; GAF symptom all z < - 0.20, all P < 2 x 10-5). In MS, larger brain age gap was 277 

associated with higher disability, in particular for the full brain age gap (z = 0.23, P = .001). 278 

Finally, lower cognitive functioning was associated with larger brain age gaps in the joint 279 
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MCI/DEM samples, with strongest effects for full brain (z = -0.34, P = 4 x 10-65) and 280 

cerebellar/subcortical (z = -0.31, P = 2 x 10-53) brain age gaps.  281 

 
Figure 4. Region-wise brain age gaps were associated with cognitive and clinical scores. a, Fisher z 

score for all tested associations. In the SZ test sample, we assessed associations with GAF (function and 

symptom) and PANSS (positive and negative). In MS, we tested for associations with EDSS and in the 

joint MCI and DEM test samples, we assessed associations with MMSE scores. b, Exemplary illustration 

of the strongest associations for GAF, EDSS and MMSE.  

The genetic architecture of brain age gap 282 

Given the known genetic contributions to brain disorders, our results pose the question to what 283 

degree brain age patterns are genetically constrained and if the implied genes overlap with the 284 

polygenic architectures of the disorders. In our cohorts, single nucleotide polymorphism (SNP) 285 

data were available for 16,269 adult healthy controls with European ancestry, after disregarding 286 

subsets with data from clinical groups, children and individuals with non-European ancestry, all 287 

of which were too small to warrant an analysis. We estimated full and region-wise brain age for 288 

these individuals using 5-fold cross-validation in a model trained on all healthy controls (n = 289 

30,967) and regressed age, age², sex, and scanning site effects from the resulting brain age gaps.  290 
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First, we ran genome-wide complex trait analysis (GCTA29) across all 16,269 individuals, 291 

including the first four population components from multidimensional scaling as covariates to 292 

further control for population stratification. The results revealed significant heritability (Fig. 5a), 293 

with common SNPs explaining 18.3% of the variance in brain age gap across all individuals (full 294 

brain, h2
SNP = 0.1828, SE = 0.02, P < 1 x 10-16) and 11.1-18.4% of the variance in region-wise 295 

brain age gaps (all P < 2 x 10-9).  296 

Next, we assessed the overlap between the genetic underpinnings of brain age gap and 297 

common brain disorders. Focusing on those disorders that showed a significant brain age gap in 298 

the main analysis, we gathered genome-wide association analysis (GWAS) summary statistics for 299 

SZ and BD from the Psychiatric Genomics Consortium30,31, MS from the International Multiple 300 

Sclerosis Genetics Consortium32, and AD from the International Genomics of Alzheimer's 301 

Project33. In addition, we performed GWAS on the full brain and region-wise brain age gaps in 302 

the above-described set of 16,269 healthy controls. We used conditional Q-Q plots34 to assess 303 

polygenic overlap between two complex traits, conditioning GWAS summary statistics from each 304 

of the brain age gaps on GWAS summary statistics from each of the disorders. Notably, our 305 

results indicate genetic overlap between brain age gap and brain disorders. Figure 5b provides 306 

exemplary illustrations of conditional Q-Q plots for the frontal brain age gap stratified by SZ, the 307 

cingulate brain age gap stratified by BD and the full brain age gap stratified by MS. When 308 

selecting subsets of SNPs based on their associations with the disorders, the nominal -log10 309 

transformed P-values of the brain age gaps deviated from the trajectories expected under the 310 

global null hypothesis, indicating that the brain age gaps are enriched for SNP associations with 311 

the relevant disorder. SZ and MS also showed patterns of enrichment with subcortical brain age 312 

gap and BD with frontal brain age gap, whereas no clear patterns were observed for AD (Suppl. 313 

Fig. 6).  314 
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Next, we combined GWAS summary statistics of brain age gaps and the disorders in 315 

conjunctional FDR analyses35,36, to identify SNPs that are associated with both phenotypes. We 316 

found 15 independent, significant loci showing pleiotropy between brain age gaps and SZ (2 317 

occipital, 4 frontal, 3 temporal, 1 parietal, 2 cingulate, 1 insula, 2 cerebellar/subcortical; 116 318 

SNPs in total), 6 loci for BD (3 frontal, 2 cingulate, 1 insula; 40 SNPs in total), 7 loci for MS (2 319 

full brain, 2 frontal, 1 temporal, 2 subcortical; 7 SNPs in total) and 1 locus for AD (temporal, 1 320 

SNP), respectively (Suppl. Table 3). An intronic variant (rs940904) in protein coding gene 321 

PITPNM2 at chromosome 12q24.31 underlying the frontal brain age gap significantly overlapped 322 

both with SZ and MS. 323 

 
Fig. 5: The brain age gaps are heritable and the genetic underpinnings overlap with those observed 

for several disorders. a, Heritability (H2) estimated using GCTA (all P < 2 x 10-9). b, Exemplary 

illustration of genetic enrichment between brain age gaps and SZ, BD and MS, assessed using conditional 

Q-Q plots. The dashed line is the expected trajectory under the global null hypothesis, whereas the 

coloured lines are the trajectories observed in the complete set, and in subsets of SNPs identified by their 

association with the disorder. Abbreviations: BAG, brain age gap. SNP, single nucleotide polymorphism. 

Discussion 324 

Taken together, our results provide strong evidence that several common brain disorders are 325 

associated with accentuated aging of the brain compared to chronological age, with effects 326 

observed in SZ, PSYMIX, BD, MS, MDD, MCI and DEM; but not in ASD, ADHD or SZRISK. 327 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303164doi: bioRxiv preprint 

https://doi.org/10.1101/303164


Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

16 

 

Importantly, we revealed a distinct neuroanatomical distribution of brain age gaps in several 328 

disorders. Associations with clinical and cognitive data underlined the functional relevance of the 329 

brain age gaps and genetic analyses in healthy controls provided evidence that the brain age gaps 330 

are heritable, with overlapping genes implicated in the genetic underpinnings of brain age gaps 331 

and common brain disorders.  332 

Our approach of estimating brain age at the level of brain regions was useful to reveal 333 

differential spatial patterns between disorders. Whereas the implicated regions in the spatial brain 334 

age profiles of the disorders matched previously reported structural and functional abnormalities 335 

(e.g. frontal in SZ37-39, or the widespread volume loss in AD with large effects in subcortical 336 

structures40), our region-wise brain age approach preserved the well-established benefit of down-337 

sampling a large number of brain imaging features into a highly condensed and interpretable 338 

score without a total loss of spatial sensitivity. As such, the analysis revealed substantial 339 

differences in spatial aging profiles between disorders typically regarded neurodegenerative 340 

disorders (MS, MCI, DEM) and disorders with established neurodevelopmental sources, 341 

especially SZ and PSYMIX. Whereas these disorders were all associated with an increased brain 342 

age gap on the full brain level, the region-wise analysis uncovered an interaction between the 343 

frontal brain age patterns observed in SZ and PSYMIX and the cerebellar/subcortical patterns 344 

observed in MS and DEM. Moreover, brain age gaps covered functional relevance beyond the 345 

group differences. We identified significant associations with clinical and cognitive data, in 346 

particular with scores of the Global Assessment of Functioning scale25 in SZ, with the Expanded 347 

Disability Status Scale27 in MS and with Mini Mental State Examination scores28 in the dementia 348 

spectrum. These results may warrant further research in which the link between the rate of 349 

changes in brain age gaps and the clinical and cognitive outcome can be studied in a longitudinal 350 

setting. Depending on the sensitivity of such associations to dynamic changes in clinical and 351 
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cognitive function, such studies may also explore the biological mechanisms underlying these 352 

associations as a potential anchor point for treatment options. 353 

Genetic analysis offers one way of exploring the constraining factors underlying 354 

phenotypic variation. Here, we provided evidence that full and region-wise brain age gaps 355 

represent genetically influenced traits, and illustrated that the genetic variants associated with 356 

brain age gaps are also associated with SZ, BD, MS and AD. In line with the accumulating 357 

evidence that common disorders of the brain are highly polygenic and partly overlapping30-34,36,41, 358 

these results suggest shared molecular genetic mechanisms between brain age gaps and brain 359 

disorders. Statistical associations do not necessarily signify causation, and functional 360 

interpretations of the identified genes should be made with caution. Larger imaging genetics 361 

samples, in particular those including individuals with common brain disorders, may in the future 362 

allow the investigation of specificity of the implicated genes. Considering the observed 363 

interaction effects in spatial brain age profiles between some disorders, we speculate that such 364 

analyses may offer novel insight into specific molecular mechanisms and will allow us to 365 

delineate the processes that affect the pace and profile of global and regional brain aging for each 366 

of these disorders. 367 

 In conclusion, in this largest brain age study to date, we established that the brain age gap 368 

is genetically constrained, increased in several common brain disorders, and linked to clinical and 369 

cognitive phenotypes. Our results establish the potential of advanced lifespan modelling in the 370 

clinical neurosciences, highlighting the benefit of big data resources that cover a wide span of 371 

ages and disease conditions. Delineating dynamic lifespan trajectories within and across 372 

individuals will be essential to disentangle the pathophysiological complexity of brain disorders.  373 

 374 
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Online methods 470 

Samples 471 

We have included data collected through collaborations, data sharing platforms, consortia as well 472 

as available in-house cohorts. Supplementary Table 1 and 2 provide detailed information on the 473 

individual cohorts. All included cohorts have been published on, and we refer to a list of 474 

publications that can be consulted for a more detailed overview of cohort characteristics. Data 475 

collection in each cohort was performed with participants’ written informed consent and with 476 

approval by the respective local Institutional Review Boards. 477 

Image pre-processing and quality control 478 

Raw T1 data for all study participants were stored and analysed locally at University of Oslo, 479 

following a harmonized analysis protocol applied to each individual subject data (Suppl. Fig. 1). 480 

We performed automated surface-based morphometry and subcortical segmentation using 481 

Freesurfer 5.319. We deployed an automated quality control protocol executed within each of the 482 

contributing cohorts (Suppl. Tables 1-2), that excluded potential outliers based on global data 483 

quality measures. In brief, we regressed age, age², sex and (in case of multiple scanners) scanning 484 

site from mean cortical thickness, cortex volume, subcortical grey matter volume and from 485 

estimated total intracranial volume. Next, we z-standardized the resulting absolute of the 486 

residuals and excluded those subjects that exceeded a pre-defined standard deviation (SD) 487 

threshold of 4 SD. On top of this, a random set of data was carefully screened by trained research 488 

personnel to identify segmentation errors, assess the quality of each subject’s brain images 489 

manually, edit segmentation where possible and to exclude data of insufficient quality (n = 3957 490 

manually controlled, n = 166 excluded, n = 219 edited). Taken together, the main analysis 491 

excluded cases identified by manual QC as well as cases exceeding a threshold of 4 SD in the 492 
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automated quality control on either of the four brain imaging measures, yielding 36,891 subjects. 493 

In addition, we performed supplementary analyses using a subset of data, where a more stringent 494 

quality control and exclusion procedure was applied. Using multivariate outlier detection based 495 

on robust methods as implemented in the R package mvoutlier24, we identified an additional 5513 496 

data sets with potentially less sufficient data quality. Thus, supplemental analysis provides a 497 

sanity check with those subjects excluded (sample size: n = 31,378). 498 

Brain age prediction  499 

We utilized the most recent cortical parcellation scheme21 to extract cortical thickness, area and 500 

volume for 180 regions of interest (ROI) per hemisphere. In addition, we extracted the classic set 501 

of cerebellar/subcortical and cortical summary statistics19. This yielded a total set of 1118 502 

structural brain imaging features (360/360/360/38 for cortical thickness/area/volume as well as 503 

cerebellar/subcortical and cortical summary statistics, respectively).  504 

We used machine learning on this feature set to predict the age of each individual’s brain. 505 

First, we split the available data into a training sample and ten independent test samples, as 506 

described in the main text (Fig. 1a). Next, for each sex, we trained machine learning models 507 

utilizing the xgboost package in R42, chosen due to its resource efficiency and demonstrated 508 

superior performance in previous machine learning competitions, to predict the age of the brain 509 

using data available in the training set. First, model parameters were tuned using a 5-fold cross-510 

validation of the training data. This step identified the optimal number of model training 511 

iterations by assessing the prediction error for 1500 rounds and implementing an early stopping if 512 

the performance did not improve for 20 rounds. Based on previous experience, the learning rate 513 

was pre-set to eta=0.01 and all other parameters were set to default42 for linear xgboost tree 514 

models. After determining the optimal number of training iterations, the full set of training data 515 
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was used to train the final models with the adjusted nrounds parameter. In addition, to assess 516 

overall model performance, prediction models were cross-validated within the training set using a 517 

5-fold cross validation, each fold implementing the above described training procedure and 518 

testing on the hold-out part of the training set. Brain age predictions on the level of individual 519 

brain regions followed the same procedures as those described for the full brain level, except that 520 

the feature set was reduced to cover only those features that overlapped more than 50% with a 521 

given lobe. Regions were defined following the Freesurfer lobesStrict segmentation as occipital, 522 

frontal, temporal, parietal, cingulate and insula. In addition, given the limited number of 523 

cerebellar features available in the Freesurfer summary statistics, cerebellar and subcortical 524 

features were grouped into a cerebellar/subcortical region (Fig. 1b).  525 

For the genetic analyses, a different approach had to be taken to ensure maximum 526 

exploitation of the limited availability of genetic data. Rather than splitting into training and test 527 

sets, we selected all healthy subjects and estimated their brain age using a 5-fold cross-validation 528 

approach like the one performed when validating performance of the training set. The resulting 529 

unbiased estimates of brain age gaps for all individuals with genetic data available went into the 530 

genome-wide complex trait analysis and conjunctional FDR. 531 

Main statistical analysis framework 532 

We performed both mega- (across cohorts) and meta- (within cohort) analyses. To estimate group 533 

effects on a given measure in a mega-analysis framework, we computed the effect of diagnosis in 534 

relation to the healthy controls for each of the ten test samples in a linear model accounting for 535 

age, age², sex and scanning site. Cohen’s d effect sizes were estimated based on contrast t-536 

statistics43 following Formula 1: 537 

  (1) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303164doi: bioRxiv preprint 

https://doi.org/10.1101/303164


Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

24 

 

For the meta-analysis, similar models were computed within cohorts. In addition to estimating 538 

Cohen’s d (Formula 1), we estimated the variance of d following Formula 2.  539 

Cumulative effects across cohorts were then estimated using a variance-weighted random-effects 540 

model as implemented in the metafor package in R44. 541 

Assessment of regional specificity 542 

The clustering in Figure 3b was performed using heatmap.2 from the gplots package45 in R. A 543 

correlation matrix was computed based on the case-control effect sizes obtained from each test 544 

sample and region and hierarchical clustering was performed using the default settings. To 545 

further explore regional specificity, we performed another analysis that involved only the clinical 546 

groups. We regressed age, age², sex and scanning site from the brain age gaps in each test 547 

sample. Next, we joined data from each pair of clinical groups and each pair of regions for 548 

repeated measures analysis of variance and estimated the effect sizes of region x group 549 

interactions (1260 ANOVAs in total). The interaction effects were visualized in Figure 3c using 550 

the circlize package46 in R. 551 

Genetic analyses 552 

We restricted all genetic analyses to individuals with European ancestry, as determined through 553 

multidimensional scaling (MDS), and included the first four population components as covariates 554 

to further control for population stratification. Single Nucleotide Polymorphism (SNP) data were 555 

available for 16,269 adult healthy individuals with European ancestry. We used genome-wide 556 

complex trait analysis29 (GCTA) to estimate the proportion of variance in brain age explained by 557 

SNPs. Before the analysis, we removed high LD regions from the genetic data and pruned it, 558 

using a sliding window approach with a window size of 50 base pair (bp), a step size of 5 bp and 559 

  (2) 
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an r2 of 0.2, leaving 133,147 SNPs. All GCTA analyses accounted for age, age², sex, scanning 560 

site and genetic batch.  561 

Furthermore, we used conditional Q-Q plots34 and conjunctional FDR analyses35,36 to 562 

assess polygenic overlap between two complex traits. We gathered genome-wide association 563 

analysis (GWAS) summary statistics for SZ and BD from the Psychiatric Genomics 564 

Consortium30,31, MS from the International Multiple Sclerosis Genetics Consortium32, and AD 565 

from the International Genomics of Alzheimer's Project33; and performed GWAS on the full 566 

brain and region-wise brain age gaps in the above-described sample of 16,269 healthy adults. The 567 

MHC region was excluded from the analysis. The SNPs were pruned using a pairwise correlation 568 

coefficient approximation to LD (r²), where SNPs were disregarded at r²<0.2 and pruning 569 

performed with 20 iterations, as described elsewhere34. Conjunctional FDR was run for each pair 570 

of full brain / region-wise brain age gap and group, using conjunctional FDR threshold of 0.05. 571 

SNPs were annotated using the Ensembl Variant Effect Predictor47. 572 

Cognitive and clinical associations 573 

Cognitive and clinical associations were tested in subsets based on data availability as described 574 

in the main text. First, we regressed age, age², sex and scanning site from the brain age gaps. 575 

Next, we correlated the resulting residuals with scores of the Global Assessment of Functioning 576 

scale25 (GAF), the Positive and Negative Syndrome Scale26 (PANSS), the Expanded Disability 577 

Status Scale27 (EDSS) and Mini Mental State Examination scores28 (MMSE). We transformed 578 

the resulting correlations using Fisher’s z transform. Therefore, the reported associations 579 

essentially reflect a partial correlation between full brain / region-wise brain age gaps and 580 

clinical/cognitive scores, controlling for confounding effects of age, sex and site. 581 

Code availability.  582 
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The main analysis was performed using R statistics48. The code needed to reproduce the results is 583 

available from the authors upon request. 584 
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Supplementary Figures 679 

 

Suppl. Figure 1: Outline of the main analysis pipeline. 
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Suppl. Figure 2: Cross-validation of the prediction models confirmed validity of the models. The 

correlation between chronological age and predicted brain age estimated using 5-fold cross-validation 

within the training set is shown for each feature set. 
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 683 

 

Suppl. Figure 3: Meta-analysis confirmed mega-analysis results. All Cohen’s d effect sizes for the 

effect of group accounted for age, age² and sex. Further, Cohen’s d for all cohorts that were collected at 

multiple sites also accounted for scanning site. 
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Suppl. Figure 4: Replication of results in a subset of 31,378 individuals following more stringent, 

multivariate exclusion criteria. a, Replication of group effects (for comparison, see Fig. 2) b, 

Replication of spatial brain age gap patterns (for comparison, see Fig. 3a) c, Replication of interaction 

effect pattern (for comparison, see Fig 3c). d, Replication of associations with clinical and cognitive 

scores (for comparison, see Fig. 4). 
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Suppl. Figure 5: Results from 1260 repeated measures ANOVAs confirm group x region interaction 

effects in brain age patterns. Strongest effects were observed between MS and SZ, MS and PSYMIX as 

well as DEM and SZ, suggesting divergent aging patterns in these disorders. 
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 686 

Suppl. Figure 6: Conditional Q-Q plots for all brain age gaps conditioned for SZ, BD, MS or AD 687 

suggests enrichment for several brain age gaps.  688 
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Supplementary Tables 689 

Suppl. Table 1: Summary of the included cohorts. Several of the cohorts are under ongoing data 690 

collection, thus the subject numbers provided in the reference publications may not match those in this 691 
article. 692 
Cohort Source Comment Reference 

ABIDE1 

http://fcon_1000.projects.nitrc.org/  

Primary support for the work by Adriana Di Martino was provided 

by the NIMH (K23MH087770) and the Leon Levy Foundation. 

Primary support for the work by Michael P. Milham and the INDI 

team was provided by gifts from Joseph P. Healy and the Stavros 

Niarchos Foundation to the Child Mind Institute, as well as by an 

NIMH award to MPM (R03MH096321). 

49 

ABIDE2 

http://fcon_1000.projects.nitrc.org/ 

Primary support for the work by Adriana Di Martino and her team 

was provided by the National Institute of Mental Health (NIMH 

5R21MH107045). Primary support for the work by Michael P. 

Milham and his team provided by the National Institute of Mental 

Health (NIMH 5R21MH107045); Nathan S. Kline Institute of 

Psychiatric Research). Additional Support was provided by gifts 

from Joseph P. Healey, Phyllis Green and Randolph Cowen to the 

Child Mind Institute. 

50 

ABM Authors ABM was supported by the Research Council of Norway (grant 

number 229135) and Health South East Research Funding Agency 

(grant number 2015052) 

https://www.biorxiv. 

org/content/early/ 

2018/02/19/267591 

 

ADDNEUROMED Authors AddNeuroMed consortium was led by Simon Lovestone, Bruno 

Vellas, Patrizia Mecocci, Magda Tsolaki, Iwona Kłoszewska, 

Hilkka Soininen. Their work was supported by InnoMed 

(Innovative Medicines in Europe), an integrated project funded by 

the European Union of the Sixth Framework program priority (FP6-

2004- LIFESCIHEALTH-5) 

51,52 

ADHD200 

http://fcon_1000.projects.nitrc.org/ 

F. Xavier Castellanos, David Kennedy, Michael Milham, and 

Stewart Mostofsky are responsible for the initial conception of the 

ADHD-200 Consortium. Consortium steering committee includes 

Jan Buitelaar, F. Xavier Castellanos, Dan Dickstein, Damien Fair, 

David Kennedy, Beatriz Luna, Michael Milham (Project 

Coordinator), Stewart Mostofsky, and Julie Schweitzer. Data 

aggregation and organization was coordinated by the INDI team, 

which included Saroja Bangaru, David Gutman, Maarten Mennes, 

and Michael Milham. Web infrastructure and data storage were 

coordinated by Robert Buccigrossi, Albert Crowley, Christian 

Hasselgrove, David Kennedy, Kimberly Pohland, and Nina Preuss. 

The ADHD-200 Global Competition Coordinators were Damien 

Fair (Chair of Selection Committee, Editor in Chief for Global 

Competition Special issue) and Michael Milham 

53,54 

ADHDWUE Authors Primary support for the study was provided by the German 

Research Foundation, grant number DFG KFO 125 1/2 and 

Pa566/7-3. KPL and his team are supported by the Deutsche 

Forschungsgemeinschaft (DFG: CRU 125, CRC TRR 58 A1/A5), 

European Community (EC: AGGRESSOTYPE FP7/No. 602805; 

Fritz Thyssen Foundation (No. 10.13.1185), ERA-Net 

NEURON/RESPOND, No. 01EW1602B, and 5-100 Russian 

Academic Excellence Project. 

55,56 

ADNI1 http://adni.loni.usc.edu/ Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). For up-to-date information, see 

www.adni-info.org.  

Data collection and sharing for this project was funded by the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) (National 

Institutes of Health Grant U01 AG024904) and DOD ADNI 

(Department of Defense award number W81XWH-12-2-0012). 

ADNI is funded by the National Institute on Aging, the National 

Institute of Biomedical Imaging and Bioengineering, and through 

generous contributions from the following: AbbVie, Alzheimer’s 

Association; Alzheimer’s Drug Discovery Foundation; Araclon 

Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; 

CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli 

Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and 

its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 

IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & 

Development, LLC.; Johnson & Johnson Pharmaceutical Research 

& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; 

57,58 

ADNI2 http://adni.loni.usc.edu/ 
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Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack 

Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 

Piramal Imaging; Servier; Takeda Pharmaceutical Company; and 

Transition Therapeutics. The Canadian Institutes of Health 

Research is providing funds to support ADNI clinical sites in 

Canada. Private sector contributions are facilitated by the 

Foundation for the National Institutes of Health (www.fnih.org). 

The grantee organization is the Northern California Institute for 

Research and Education, and the study is coordinated by the 

Alzheimer’s Therapeutic Research Institute at the University of 

Southern California. ADNI data are disseminated by the Laboratory 

for Neuro Imaging at the University of Southern California. 

BETULA Authors Betula was supported by a Wallenberg Scholar Grant (KAW). 59 

CAMCAN https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/ 

Data collection and sharing for this project was provided by the 

Cambridge Centre for Ageing and Neuroscience (CamCAN). 

CamCAN funding was provided by the UK Biotechnology and 

Biological Sciences Research Council (grant number 

BB/H008217/1), together with support from the UK Medical 

Research Council and University of Cambridge, UK. 

60,61 

CIMH Authors CIMH was supported by the Deutsche Forschungsgesellschaft 

(DFG, projects ZI1253/3-1, ZI1253/3-2, KI 576/14-2, ME 1591/6-

2) and the European Community‘s Seventh Framework Programme 

(FP7/2007–2013) grant agreement #602450 (IMAGEMEND) 

62,63 

CORR http://fcon_1000.projects.nitrc.org/  64 

DLBS http://fcon_1000.projects.nitrc.org/  65 

DS000030 (CNP) https://openfmri.org/ DS* data sets were obtained from the OpenfMRI database.  

DS000030 work was supported by the Consortium for 

Neuropsychiatric Phenomics (NIH Roadmap for Medical Research 

grants UL1-DE019580, RL1MH083268, RL1MH083269, 

RL1DA024853, RL1MH083270, RL1LM009833, PL1MH083271, 

and PL1NS062410). DS000115 was supported through NIH Grants 

P50 MH071616 and R01 MH56584. DS000119 was supported by 

the National Institutes of Mental Health (NIMH RO1 MH067924). 

Enami Yasui provided assistance with data collection.  DS000171: 

Trisha Patrician and Natalie Stroupe assisted with screening of 

participants. Allan Schmitt and Franklin Hunsinger collected the 

MR data.  

66,67 

DS000115 

(CCNMD) 

https://openfmri.org/ 68,69 

DS000119 https://openfmri.org/ 70 

DS000171 https://openfmri.org/ 71 

DS000202 https://openfmri.org/ 72,73 

DS000222 https://openfmri.org/ 74 

HCP https://www.humanconnectome.org/ Data were provided [in part] by the Human Connectome Project, 

MGH-USC Consortium (Principal Investigators: Bruce R. Rosen, 

Arthur W. Toga and Van Wedeen; U01MH093765) funded by the 

NIH Blueprint Initiative for Neuroscience Research grant; the 

National Institutes of Health grant P41EB015896; and the 

Instrumentation Grants S10RR023043, 1S10RR023401, 

1S10RR019307. 

75 

HUBIN Authors This study was supported by the Swedish Research Council (2006-

2992, 2006-986, K2007-62X-15077-04-1, 2008-2167, K2008-62P-

20597-01-3. K2010-62X-15078-07-2, K2012-61X-15078-09-3, 

2017-00949), the regional agreement on medical training and 

clinical research between Stockholm County Council and the 

Karolinska Institutet, the Knut and Alice Wallenberg Foundation, 

and the HUBIN project. 

76 

HUNT https://www.ntnu.edu/hunt The HUNT Study is a collaboration between HUNT Research 

Centre, Faculty of Medicine and Health Sciences, Norwegian 

University of Science and Technology (NTNU), Nord-Trøndelag 

County Council, Central Norway Regional Health Authority, and 

the Norwegian Institute of Public Health. HUNT-MRI and the 

genetic analysis were funded by grants from the Liaison Committee 

between the Central Norway Regional Health Authority and NTNU 

to principal investigator Asta Håberg, and the Norwegian National 

Advisory Unit for functional MRI. We thank the HUNT MRI 

participants, MRI technicians and the Department of Diagnostic 

Imaging at Levanger Hospital, Professor Lars Jacob Stovner 

(NTNU) and the administrative staff at HUNT. 

77,78 

IXI http://brain-development.org/ixi-

dataset/ 

 79 

KASP Authors KaSP was supported by grants from the Swedish Medical Research 

Council (SE: 2009-7053; 2013-2838; SC: 523-2014-3467), the 

Swedish Brain Foundation, Åhlén-siftelsen, Svenska 

Läkaresällskapet, Petrus och Augusta Hedlunds Stiftelse, Torsten 

Söderbergs Stiftelse, the AstraZeneca-Karolinska Institutet Joint 

Research Program in Translational Science, Söderbergs Königska 

Stiftelse, Professor Bror Gadelius Minne, Knut och Alice 

Wallenbergs stiftelse, Stockholm County Council (ALF and PPG), 

Centre for Psychiatry Research, KID-funding from the Karolinska 

Institutet. 

80,81 

MALTOSLO Authors The study was funded by the South-Eastern Norway Regional 

Health Authority (2015-2015078), Oslo University Hospital, a 

research grant from Mrs. Throne-Holst, and the Ebbe Frøland 

82,83 
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foundation. 

NCNG Authors The sample collection was supported by grants from the Bergen 

Research Foundation and the University of Bergen, the Dr Einar 

Martens Fund, the K.G. Jebsen Foundation, the Research Council 

of Norway, to SLH, VMS, AJL, and TE. The authors thank Dr. 

Eike Wehling for recruiting participants in Bergen, and Professor 

Jonn-Terje Geitung and Haraldplass Deaconess Hospital for access 

to the MRI facility. Additional support by RCN grants 177458/V50 

and 231286/F20. 

84 

NIMAGE Authors This project was supported by grants from National Institutes of 

Health (grant R01MH62873 to SV Faraone) for initial sample 

recruitment, and from NWO Large Investment (grant 

1750102007010 to JK Buitelaar), NWO Brain & Cognition (grant 

433-09-242 to JK Buitelaar), ZonMW Grant 60-60600-97-193, and 

grants from Radboud University Medical Center, University 

Medical Center Groningen, Accare, and VU University Amsterdam 

for subsequent assessment waves. NeuroIMAGE also receives 

funding from the European Community’s Seventh Framework 

Programme (FP7/2007 – 2013) under grant agreements n° 602805 

(Aggressotype), n° 278948 (TACTICS), and n° 602450 

(IMAGEMEND), and from the European Community’s Horizon 

2020 Programme (H2020/2014 – 2020) under grant agreements n° 

643051 (MiND) and n° 667302 (CoCA). 

85 

NORCOG Authors The Norwegian register of persons assessed for cognitive 

symptoms (NorCog) includes clinical, imaging and biological data 

from memory clinics in Norway 

(https://www.aldringoghelse.no/norkog/). The register is owned by 

Oslo University Hospital and administered by Norwegian National 

Advisory Unit on Ageing and Health. 

86 

OASIS http://www.oasis-brains.org/ The study was supported by grants P50 AG05681, P01 AG03991, 

R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584. 

87,88 

PING http://pingstudy.ucsd.edu/ Data used in the preparation of this article were obtained from the 

Pediatric Imaging, Neurocognition and Genetics (PING) Study 

database (http://ping.chd.ucsd.edu/). PING was launched in 2009 

by the National Institute on Drug Abuse (NIDA) and the Eunice 

Kennedy Shriver National Institute Of Child Health & Human 
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 693 

Suppl. Table 2: Summary of group size, age and sex for each cohort. 694 
Cohort Number of subjects per 

group 

Age in years: mean ± sd | 

range (group) 

Sex: f/m 

ABIDE1 561 (HC) 517 (ASD)  17.1±7.8 | 6.5-56.2 (HC) 

17.2±8.5 | 7.0-64.0 (ASD)  

161/917 

ABIDE2 498 (HC) 440 (ASD)  15.8±9.9 | 5.9-64.0 (HC) 

15.4±9.6 | 5.1-62.0 (ASD)  

212/726 

ABM 73 (HC) 192 (MDD)  42.2±13.3 | 19.0-64.0 (HC) 

39.3±13.4 | 18.0-71.0 (MDD)  

179/86 

AddNeuroMed 126 (HC) 141 (MCI) 148 

(DEM)  

73.3±6.5 | 53.0-87.8 (HC) 

74.8±5.9 | 56.8-90.1 (MCI) 

76.0±6.5 | 58.2-88.6 (DEM)  

237/178 

ADHD200 542 (HC) 320 (ADHD)  11.3±3.0 | 7.0-21.0 (HC) 

10.6±2.5 | 7.0-17.0 (ADHD)  

322/540 

ADHDWUE 55 (HC) 59 (ADHD)  40.0±12.1 | 24.0-61.0 (HC) 

40.1±10.7 | 18.0-62.0 (ADHD)  

56/58 

ADNI1 218 (HC) 386 (MCI) 187 

(DEM)  

75.9±5.1 | 59.9-89.6 (HC) 

74.7±7.4 | 54.4-89.3 (MCI) 

75.2±7.5 | 55.1-90.9 (DEM)  

334/457 

ADNI2 268 (HC) 323 (MCI) 139 

(DEM)  

72.9±6.0 | 56.2-90.1 (HC) 

71.7±7.3 | 55.0-91.4 (MCI) 

74.5±7.9 | 55.6-90.3 (DEM)  

347/383 

BETULA 347 (HC)  63.0±13.2 | 25.0-81.3 (HC)  181/166 

CAMCAN 648 (HC)  54.2±18.6 | 18.0-88.0 (HC)  329/319 

CIMH 43 (HC) 53 (SZ)  30.6±11.5 | 18.0-60.0 (HC) 

31.2±8.6 | 18.0-48.0 (SZ)  

31/65 

CNP 125 (HC) 41 (ADHD) 50 

(SZ) 49 (BD)  

31.5±8.8 | 21.0-50.0 (HC) 

32.3±10.4 | 21.0-50.0 (ADHD) 

36.5±8.9 | 22.0-49.0 (SZ) 

35.3±9.0 | 21.0-50.0 (BD)  

112/153 
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CoRR 1360 (HC)  26.1±15.9 | 6.0-88.0 (HC)  694/666 

DLBS 311 (HC)  54.3±20.0 | 20.6-89.1 (HC)  194/117 

ds000119 73 (HC)  16.2±4.7 | 8.1-26.8 (HC)  43/30 

ds000171 20 (HC) 19 (MDD)  29.4±11.3 | 18.0-59.0 (HC) 

33.5±13.7 | 18.0-56.0 (MDD)  

22/17 

ds000202 94 (HC)  22.1±2.7 | 18.0-30.0 (HC)  94/0 

ds000222 79 (HC)  44.4±20.1 | 21.0-73.0 (HC)  41/38 

HCP 1113 (HC)  28.8±3.7 | 22.0-37.0 (HC)  606/507 

HUBIN 102 (HC) 94 (SZ)  42.0±8.8 | 19.4-56.2 (HC) 

41.7±7.6 | 24.9-56.3 (SZ)  

57/139 

HUNT 909 (HC)  58.8±4.2 | 50.5-66.8 (HC)  477/432 

IXI 562 (HC)  48.6±16.5 | 20.0-86.3 (HC)  312/250 

KASP 45 (HC) 37 (SZ) 27 

(PSYMIX)  

25.7±5.2 | 19.0-43.0 (HC) 

28.5±7.5 | 18.0-50.0 (SZ) 

29.1±8.3 | 18.0-48.0 (PSYMIX)  

43/66 

MALTOSLO 44 (HC) 44 (BD)  31.2±9.1 | 20.0-50.0 (HC) 

34.4±7.3 | 18.0-48.0 (BD)  

58/30 

MOT 57 (HC)  25.3±3.9 | 21.0-36.0 (HC)  33/24 

NCNG 465 (HC)  53.3±16.5 | 19.4-82.3 (HC)  310/155 

NIMAGE 372 (HC) 331 (ADHD)  16.9±3.8 | 7.7-28.6 (HC) 

16.8±3.6 | 7.4-27.5 (ADHD)  

310/393 

NORCOG 312 (HC) 142 (MCI) 186 

(DEM)  

63.3±10.9 | 40.0-95.0 (HC) 

65.0±10.2 | 38.1-85.2 (MCI) 

71.5±8.1 | 52.9-90.7 (DEM)  

351/289 

OASIS 315 (HC) 99 (DEM)  45.0±23.9 | 18.0-94.0 (HC) 

76.9±7.1 | 62.0-96.0 (DEM)  

254/160 

PING 1162 (HC)  12.0±5.1 | 3.0-21.0 (HC)  556/606 

PNC 1466 (HC)  15.1±3.6 | 8.2-23.2 (HC)  775/691 

RSI-MS 254 (MS), HC were 

sampled from TOP 

(same scanner) 

41.0±10.0 | 19.0-68.3 (MS) 

 

196/58 

SALD 493 (HC)  45.2±17.4 | 19.0-80.0 (HC)  307/186 

SCHIZCONNECT1 230 (HC) 225 (SZ)  35.2±12.2 | 18.0-65.0 (HC) 

36.3±13.0 | 18.0-66.0 (SZ)  

117/338 

SCHIZCONNECT2 145 (HC) 158 (SZ)  32.3±13.1 | 14.0-68.1 (HC) 

34.4±11.7 | 19.0-62.4 (SZ)  

120/183 

SCORE 44 (HC) 80 (SZRISK) 78 

(PSYMIX)  

25.5±4.3 | 19.0-39.0 (HC) 

24.3±5.2 | 18.0-42.0 (SZRISK) 

26.9±6.7 | 18.0-42.0 (PSYMIX)  

69/133 

SLIM 556 (HC)  20.1±1.2 | 17.0-27.0 (HC)  316/240 

STROKEMRI 61 (HC)  27.7±5.6 | 18.0-40.0 (HC)  36/25 

TOP 958 (HC) 18 (ASD) 18 

(SZRISK) 444 (SZ) 189 

(PSYMIX) 352 (BD)  

33.0±10.2 | 12.0-59.0 (HC) 

27.7±9.3 | 18.6-48.2 (ASD) 

21.8±4.4 | 15.6-29.1 (SZRISK) 

31.2±9.3 | 18.0-62.0 (SZ) 

30.5±9.6 | 18.0-69.0 (PSYMIX) 

33.6±11.3 | 18.0-65.9 (BD)  

913/1066 

UBA 1099 (HC)  22.5±3.4 | 18.0-35.0 (HC)  714/385 

UKBB 14581 (HC)  55.7±7.5 | 40.2-70.2 (HC)  7573/7008 

UNIBA 435 (HC) 84 (SZ)  26.7±7.7 | 18.0-63.0 (HC) 

34.3±7.7 | 19.0-58.0 (SZ)  

246/273 
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Suppl. Table 3: Significant loci from conjunctional FDR analysis reflecting overlap between brain 695 

age gaps and the respective disorders. The gene column reflects the gene closest to the significant SNP 696 
as identified via the Ensembl Variable Effect Predictor47, unless the closest gene is more than 5000 bp 697 

away in which case no annotation is provided.  698 
Brain region, 

group 

Lead SNP Chr. 

region 

Chr. 

position 

Conj. 

FDR 

Consequence Gene 

occipital, SZ rs354232 2p16.2 54916910 0.042 Intergenic variant - 

occipital, SZ rs994261 2q33.1 199908378 0.033 Intron variant, 

non-coding 

transcript variant 

AC018717.1 

frontal, SZ rs10803691 2p25.2 5449582 0.047 Downstream gene 

variant 

AC073143.1 

frontal, SZ rs12820906 12q24.31 123493123 0.014 Intron variant PITPNM2 

frontal, SZ rs4981695 14q12 29700996 0.028 Intergenic variant - 

frontal, SZ rs221923 14q24.2 71584473 0.035 Downstream gene 

variant 

PCNX 

temporal, SZ rs11892879 2q24.1 156114425 0.048 Intergenic variant - 

temporal, SZ rs4689287 4p16.2 5990110 0.049 Missense variant C4orf50 

temporal, SZ rs2764264 6q21 108934461 0.0065 Intron variant FOXO3 

parietal, SZ rs9379851 6p22.2 26354780 0.0061 Upstream gene 

variant 

RNU6-1259P 

cingulate, SZ rs6704641 2q33.1 200164252 0.031 Intron variant SATB2 

cingulate, SZ rs7729320 5p13.1 38725149 0.04 Upstream gene 

variant 

RP11-122C5.1 

insula, SZ rs10460398 2q33.1 200214742 0.0061 Intron variant SATB2 

subcortical, SZ rs673253 1p34.2 44062154 0.045 Intron variant PTPRF 

subcortical, SZ rs13107325 4q24 103188709 0.00026 Missense variant SLC39A8 

frontal, BD rs9489193 6q22.1 117769728 0.039 Downstream gene 

variant 

RP1-92C8.3 

frontal, BD rs10160070 10q21.1 54201572 0.046 Intergenic variant - 

frontal, BD rs1884431 20q11.22 33338585 0.05 Intron variant NCOA6 

cingulate, BD rs174583 11q12.2 61609750 0.016 Intron variant FADS2 

cingulate, BD rs1034589 22q12.2 31579233 0.013 Intron variant RNF185 

insula, BD rs2273684 20q11.22 33529766 0.035 Intron variant GSS 

full brain, MS rs4465231 1p36.22 9347278 0.018 Intergenic variant - 

full brain, MS rs12146713 12q23.3 106476805 0.02 Intron variant NUAK1 

frontal, MS rs11164855 1p22.1 93466960 0.032 Intergenic variant - 

frontal, MS rs940904 12q24.31 123491572 0.032 Intron variant PITPNM2 

temporal, MS rs10484566 6p21.32 32835258 0.045 Regulatory region 

variant 

- 

subcortical, MS rs6482190 10p12.31 22037809 0.049 Intergenic variant - 

subcortical, MS rs12146713 12q23.3 106476805 0.026 Intron variant NUAK1 

temporal, AD rs6485758 11p11.2 47530024 0.046 Intron variant CELF1 
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