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We performed a genome-wide association study meta-analysis of body fat distribution, measured by 

waist-to-hip ratio adjusted for BMI (WHRadjBMI), and identified 463 signals in 346 loci. Heritability 

and variant effects were generally stronger in women than men, and the 5% of individuals carrying 

the most WHRadjBMI-increasing alleles were ~1.62 times more likely than the bottom 5% to have a 

WHR above the thresholds used for metabolic syndrome. These data, made publically available, will 

inform the biology of body fat distribution and its relationship with disease. 

  

One in four adults worldwide are either overweight or obese1,2 and are at increased risk of metabolic 

disease. While higher adiposity increases morbidity and mortality,1,3 epidemiological studies indicate 

that the location and distribution of excess fat within particular depots is more informative than general 

adiposity for predicting disease risk. Independent of their overall body mass index (BMI), individuals with 

higher central adiposity have increased risk of cardiometabolic diseases, including type 2 diabetes (T2D) 

and stroke4,5; in contrast, individuals with higher gluteal adiposity have lower risk of such outcomes.5 

Previous studies indicate that fat distribution, as assessed by waist-to-hip ratio (WHR), is a trait with a 

strong heritable component, independent of overall adiposity (measured by BMI)5,6, and recent Mendelian 

randomisation studies using known WHR-associated genetic variants showed putative causal effects of 

higher WHR on T2D and coronary artery disease independently of BMI.7 

 

With the goal of pinpointing genetic variants associated to body shape and fat distribution, and motivated 

by the recent release of genetic data from half a million individuals,8 we performed a meta-analysis of 

WHR adjusted for BMI (WHRadjBMI). WHRadjBMI is an easily-measured fat distribution phenotype that 

correlates well with imaging-based fat distribution measures.9 We performed genome-wide association 

studies (GWAS) of WHRadjBMI in the UK Biobank data set,8 a collection of 484,563 individuals with 

densely-imputed genotype data, using a linear mixed model10 to account for relatedness and ancestral 

heterogeneity. We then combined the results with publicly-available GWAS data generated by the GIANT 

consortium for the same phenotype (Table 1 and Methods)5, resulting in a meta-analysis of 694,649 

samples (Table 1) and ~27.4M SNPs (Methods). As a sensitivity analysis and to evaluate the robustness 

of our results, we also performed a GWAS of WHR unadjusted for BMI (Table 1). 

 

We identified 346 loci (300 novel) containing 463 independent signals associated with WHRadjBMI (p < 5 

x 10-9, to account for the denser imputation data11; Methods, Supplementary Table 1 and 

Supplementary Fig 1). The Linkage Disequilibrium (LD) Score Regression12 intercept (1.0346) of the 

meta-analysis results indicated that the observed enrichment in genomic signal was primarily due to 

polygenicity and not confounding (Supplementary Table 2). Of the 300 novel signals, 234 (78%, pbinomial<1 

x 10-7) were directionally-consistent in an independent dataset with a relatively small sample size (N = 

7,721) and signals were consistent in several sensitivity checks (Supplementary Tables 3-5 and 

Supplementary Fig 2-3). These variants combined explained ~3.9% of the variance in WHRadjBMI in the 

independent study (Methods and Table 1). We constructed a weighted polygenic score using the 346 

index SNPs discovered in the combined meta-analysis and tested this score in the same independent 

study. The 5% of individuals carrying the most WHRadjBMI-raising alleles were approximately 1.62 times 

more likely to meet the WHR threshold for metabolic syndrome13 than the 5% carrying the fewest 

(Methods).   

 

A number of analyses indicated that the majority of signals identified have genuine effects on body shape 

and that any bias caused by adjusting WHR for a correlated covariate (BMI)14,15 was minimal. Of the 346 

index variants, 311 were associated with stronger standard deviation effect sizes for WHR (unadjusted) 

than with standard deviation effect sizes for BMI (Supplementary Table 3 and Supplementary Fig 4). 

This analysis also indicates that the WHR association is unlikely to be secondary to the known effect of 
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higher BMI leading to higher WHR. Furthermore, the common SNP associated with the largest known 

effect on BMI, that in the FTO gene, was not associated with WHRadjBMI (rs1421085, p = 0.40), despite 

a very strong association with WHR (4 x 10-118). Finally, carrying each additional WHRadjBMI-raising allele 

(weighted) was associated with 0.0199 SD higher WHRadjBMI (p = 6 x 10-62; adjusted R2 = 4%), 0.0111 SD 

higher WHR (unadjusted; p = 3 x 10-20; adjusted R2 = 0.12%) and 0.0038 SD lower BMI (P-value = 0.0014; 

adjusted R2 = 0.13%) in our independent dataset (consistent with the results obtained from an unweighted 

polygenic score; Methods). 

 

Given the sex-dimorphism of fat distribution in humans, previously shown to have a genetic basis5, we 

next performed meta-analyses of WHRadjBMI in women and men separately (Table 1 and Supplementary 

Fig 5). We found SNP-based heritability (ℎ𝑔
2) of WHRadjBMI, estimated using the restricted maximum 

likelihood method implemented in BOLT-REML10 (Methods), to be stronger in women (ℎ𝑔
2= 25.6%) 

compared to men (ℎ𝑔
2= 16.7%, pdifference = 9 x 10-85; Table 1, Supplementary Table 6, and Equation 2). In 

addition to the heritability dimorphism, and in keeping with previous studies5, we found signatures of 

sex-dimorphism amongst associated loci: a total of 266 loci associated with WHRadjBMI in women, 

compared to 91 loci in men (p < 5 x 10-9). The consistency between the effect size of 266 female index 

SNPs on WHRadjBMI in women and men (slope = 0.31; p = 2 x 10-33; adjusted R2 = 51%) was greater than 

the consistency between the effect size of 91 male index SNPs on WHRadjBMI in men and women (slope 

= 0.20; p = 0.002; adjusted R2 = 9%). Of all associated index SNPs (p < 5 x 10-9 in the combined or sex-

specific analyses), 105 SNPs were sex-dimorphic (pdiff
16 < 3.3 x 10-5; Methods). Variants discovered in the 

combined sex analysis, will be enriched for those with similar effects in each sex, and variants discovered 

in sex-specific analyses will be enriched for those with different effects between sexes. In the absence 

of any sex-specific effects, we would only expect a slight shift towards stronger associations in women 

because the sample size for women was slightly larger. However, we observed that of the 105 sex-

dimorphic signals, 97 (92.4%) showed stronger effects in women compared to men (Figure 1, 

Supplementary Fig 6, and Methods).  

 

Previous studies have shown that in addition to redistributing body fat, some WHRadjBMI variants are 

also associated with total body fat percentage (BF%)5,17–19. Of relevance to the biology of adipose tissue 

storage capacity, these studies have shown that these pleiotropic associations can occur in both 

directions - some alleles associated with higher WHRadjBMI are associated with higher total BF%, whilst 

others are associated with lower BF%.5,17–19 To test the hypothesis that alleles associated with higher 

WHRadjBMI could have pleiotropic effects on total BF%, and that these effects could occur in both 

directions, we next investigated whether the 346 index variants associated with WHRadjBMI also 

associated with BF%. Of the 59/346 variants associated with BF% in 443,001 European-ancestry UK 

Biobank individuals (p < 0.05/346 = 1.44 x 10-4), 25 alleles were associated with higher WHR and higher 

BF%, whilst 34 alleles were associated with higher WHR but lower BF% (Supplementary Fig 7). 

Additionally, a large proportion (29%) of WHRadjBMI index SNPs with a stronger effect in women had a 

BF% phenotype in men (28 of the 97 female-specific WHRadjBMI SNPs were associated with BF% in men 

and 25 were associated with BF% in women (p < 0.05/105 = 4.8 x 10-4)) (Supplementary Fig 8). These 

variants appear to alter total BF% in men and women to a similar extent, but distribute body fat between 

the upper and lower body to a much greater extent in women (Supplementary Table 7-9 and 

Supplementary Fig 8). Finally, we tested the index SNPs from each of the meta-analyses (combined and 

sex-specific) in a recent GWAS of CT and MRI image based measures of ectopic and subcutaneous fat 

depots.20 Adjusting for the three sample groups and the 8 depots examined in the imaging-based GWAS 

(p < 0.05/24 = 2.1 x 10-3), the alleles associated with higher WHRadjBMI were collectively associated with 

lower measures of subcutaneous fat, and higher measures of visceral fat, including pericardial and 

visceral adipose tissue (Supplementary Fig. 9).  
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While we have performed the largest meta-analysis of a measure of body-fat distribution to date, a 

number of limitations remain. First, the substantially larger number of signals with a stronger effect in 

women compared to men may be influenced by the smaller sample size in the men-only analysis (Table 

1), although we would not expect the difference in sample size to result in 92% of signals being stronger 

in women. Second, our replication sample was too small (~1% of the discovery) to formally replicate 

individual SNP associations, but the fact that 78% of the 300 previously unknown index associations 

showed consistent direction of effect suggests a low false positive rate. Finally, our meta-analysis focused 

only on European-ancestry samples. Given the very different body-fat distributions between people of 

European and non-European ancestry, and their very different risks of adiposity-related disease, studies 

in non-Europeans are urgently needed.21,22  

 

In summary, the genetic variants and loci identified by this meta-analysis will likely provide starting 

points for further understanding the biology of body fat distribution and its relationship with disease. 
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Tables and Figures 

 

Table 1 | Large-scale meta-analysis in body fat distribution. We performed a meta-analysis of fat 

distribution as measured by WHRadjBMI in up to 694,649 individuals. We performed analyses of WHR as 

a sensitivity measure. Our analyses increase the number of WHRadjBMI-associated loci (p < 5 x 10-9, to 

account for SNP density in UK Biobank) to 346 loci. SNP-based heritability (𝒉𝒈
𝟐) results (estimated using 

the restricted maximum likelihood method implemented in BOLT-REML10 (Methods)) and top-associated 

loci indicate patterns of sex-dimorphism. The top-associated index SNPs explain 3.9% of the overall 

phenotypic variance in fat distribution (calculated in an independent dataset, N = 7,721). 

 

Phenotype Sex Sample sizes 
Associated loci 

p < 5 x 10-9 

Dimorphic 
index SNPs  
(% of total) 

𝒉𝒈
𝟐(se) 

Variance explained 

(adjusted R2) 

  UKBB GIANT Meta Loci 
Indep. 
signals 

   

WHRadjBMI 

Combined 484,563 210,086 694,649 346 463 53 (15.3) 
0.174 

(0.002) 
3.9% 

Women 262,759 116,742 379,501 266 363 77 (28.9) 
0.256 

(0.003) 
3.6% 

Men 221,804 93,480 315,284 91 102 13 (14.3) 
0.167 

(0.003) 
1.0% 

WHR 

Combined 485,486 212,248 697,734 316 382 37 (11.7) 
0.194 

(0.002) 
3.0% 

Women 263,148 118,004 381,152 203 261 64 (31.5) 
0.254 

(0.003) 
4.0%  

Men 222,338 94,434 316,772 79 82 10 (12.7) 
0.208 

(0.003) 
0.3% 
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Figure 1 | Sex-dimorphic association signals in fat distribution. For each associated locus from the 

combined or sex-specific meta-analyses, we tested the index SNP for sex-dimorphism. Whilst index SNPs 

identified in the combined (men and women) sample will be biased away from sex-dimorphism, and index 

SNPs identified in the sex-specific sample will be biased towards sex-dimorphism, due to winner’s curse, 

when we compared all SNPs we observed stronger effects in women. For example, of the index SNPs from 

the men-only analysis (red points), 14% showed evidence of sex-dimorphism. In contrast, ~29% of the 

index SNPs from the women-only analysis show evidence of dimorphism. 92.4% sex-dimorphic SNPs show 

a stronger effect in women compared to men. Index SNPs that are not sex-dimorphic are plotted with 

faded colors. Points are sized by the -log10(pdiff) sex-dimorphism test. Horizontal bars indicate standard 

error in men; vertical bars indicate standard error in women. 
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Online Methods 

 

Data and code availability 

 

Code and data related to this project, including summary-level data from the meta-analyses, can be 

found on-line at https://github.com/lindgrengroup/fatdistnGWAS. 

 

Phenotypes 

 

To generate phenotypes for the waist-to-hip ratio (WHR) and waist-to-hip ratio adjusted for body mass 

index (WHRadjBMI) analyses in the UK Biobank data (Supplementary Table 10), we followed a phenotype 

conversion consistent with that performed in previous efforts investigating WHR and WHRadjBMI by the 

GIANT consortium.5,23 Using phenotype information from UK Biobank, we divided waist circumference by 

hip circumference to calculate the WHR measure, and then regressed the WHR measure on age at 

assessment, age at assesment squared, and assessment centre. To generate the WHRadjBMI phenotype, 

we followed the same procedure and included body mass index (BMI) as an additional independent 

variable in the regression. We performed rank inverse normalization on the resulting residuals from the 

regression (Supplementary Fig 10), and used these normalized residuals as the tested phenotype in 

downstream genome-wide association testing. To generate phenotypes for the sex-specific analyses, we 

followed this same procedure but ran the regressions in sex-specific groups. 

 

Genome-wide association analyses 

 

The UK Biobank data 

 

We conducted genome-wide association testing in the second release (June 2017) version of the UK 

Biobank data8; this release did not contain the corrected imputation at non-Haplotype Reference 

Consortium (HRC24) sites and we therefore subsetted all of the SNP data down to HRC SNPs only. The UK 

Biobank applied quality control to samples and genotypes, and imputed the resulting genotype data using 

sequencing-based imputation reference panels. We performed all of our genome-wide association testing 

and downstream analyses on the publicly-available imputation data (released in bgen format). 

 

We excluded samples as suggested by the UK Biobank upon release of the data (Supplementary Table 

11). Sample exclusions included samples with genotype but no imputation information, samples with 

missingness > 5%, samples with mismatching phenotypic and genotypic sex, and samples that have 

withdrawn consent since the initiation of the project. 

 

LD scores and genetic relationship matrix for BOLT-LMM 

 

We implemented all genome-wide association studies (GWAS) in BOLT-LMM10, which performs association 

testing using a linear mixed model. To run, BOLT-LMM requires three primary components: the (imputed) 

genotypic data for association testing; a reference panel of Linkage Disequilibrium (LD) scores per SNP, 

calculated using LD Score Regression12; and genotype data used to approximate a genetic relationship 

matrix (GRM), which is the best method available in this sample size to account for all forms of 

relatedness, ancestral heterogeneity in the samples, and other (potentially hidden) structure in the data.  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://github.com/lindgrengroup/fatdistnGWAS
https://paperpile.com/c/hmZyFT/mE23+Zmsw
https://paperpile.com/c/hmZyFT/2nP4
https://paperpile.com/c/hmZyFT/RGn6
https://paperpile.com/c/hmZyFT/iz2o
https://paperpile.com/c/hmZyFT/Aq5u
https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 

We performed sensitivity testing (Supplementary Information, Supplementary Tables 12-13 and 

Supplementary Fig 11) using three LD Score reference datasets and four SNP-sets to construct the GRM. 

For our final GWAS, we used LD scores calculated from a randomly-selected, 9,748 unrelated UK Biobank 

samples (~2% of the full UK Biobank sample set; Supplementary Information) and a GRM constructed 

using: imputed SNPs with imputation info score > 0.8; MAF > 1%; Hardy Weinberg P-value > 1 x 10-8; 

genotype missingness < 1%, after converting imputed dosages to best-guess genotypes; LD pruned at a 

threshold (r2) of 0.2; and excluding the major histocompatibility complex, the lactase locus, and the 

inversions on chromosomes 8 and 17 (Supplementary Information).  

 

Association testing 

 

For genome-wide association testing, we used BOLT-LMM to run a linear mixed model (LMM). We tested 

SNPs with imputation quality (info) > 0.3, minor allele frequency (MAF) > 0.01%, and only those single-

nucleotide variants (SNVs) and single-nucleotide polymorphisms (SNPs) represented in the Haplotype 

Reference Consortium25 imputation reference panel. We used only the standard LMM implementation 

(i.e., infinitesimal model, using --lmm) in BOLT-LMM (Supplementary Fig 12-13); we did not run 

association testing using a non-infinitesimal model. The only covariate used in the LMM was the SNP array 

used to genotype sample; we included no other covariates. 

 

After association testing, we looked at known SNPs already reported in WHR, WHRadjBMI, and BMI.5,23 At 

the previously-described loci, we checked correlation of frequency, beta, standard error, and -log10(P-

value) between our UK Biobank GWAS and the previous GWAS results (Supplementary Fig 14). 

Additionally, we estimated genomic inflation (lambda) and the LD Score Intercept to check if the P-

values were well calibrated (Supplementary Table 2); calculations were performed using the LD Score 

software (https://github.com/bulik/ldsc).12 

 

Meta-analysis of results from UK Biobank and GIANT 

 

Data preparation and quality control 

 

We downloaded summary-level results from previous meta-analyses of WHR and WHRadjBMI 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files and 

Supplementary Information) performed by the GIANT consortium.5 Marker names in both the GIANT data 

and UK Biobank were lifted over to their dbSNP151 identifier. We additionally renamed markers as 

“rsID:A1:A2” to avoid ambiguity at multiallelic SNPs in the UK Biobank data. As the GIANT data was 

imputed with HapMap 225,26 data (hg18), we additionally lifted chromosomal positions to hg19 for this 

data. SNPs with a frequency difference > 15% between GIANT and UK Biobank were removed from the 

data (Supplementary Fig 15). 

 

Meta-analysis and downstream quality control  

 

We performed inverse variance-weighted fixed effects meta-analysis in METAL.28 To estimate LD score 

intercepts and genomic inflation (lambda) for the meta-analysis results, we first estimated LD scores 

from the same samples used to estimate the LD score reference for BOLT-LMM. LD scores were only 

estimated at high-quality SNPs (using the same criteria as used for SNPs included in the GRM in BOLT-

LMM, but without applying a MAF threshold; Supplementary Information). We then calculated LD Score 

Regression intercepts and lambda with the LDSC software.12 
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As an additional quality control check, we reran all of our GWAS using two different subsets of the UK 

Biobank samples: (1) the unrelated samples only, and (2) the unrelated white British samples only. These 

subsamples were selected to test if our initial UK Biobank-wide GWAS was confounded by either 

relatedness or ancestral heterogeneity. After running these GWAS, we meta-analyzed the results with 

the existing GIANT summary-level data, and checked the concordance of our signals (Supplementary Fig 

2-3).  

 

Identification of index and secondary signals 

 

Linkage disequilibrium clumping  

 

To identify genomic loci (i.e., genomic windows) containing independent association signals, we first 

constructed a reference dataset of best-guess genotypes from 20,275 unrelated UK Biobank samples 

(equivalent to 5% of the unrelated sample). We converted imputed dosages of SNPs with info score > 0.3 

and MAF > 0.001% to best-guess genotypes using PLINK (version 1.9),29,30 and a conversion threshold (--

hard-call-threshold) of 0.1 (Supplementary Information). SNPs with missingness > 5% after conversion 

or Hardy-Weinberg equilibrium p < 1 x 10-7 were removed.  

 

We then used the PLINK ‘clumping’ algorithm to select top-associated SNPs (p < 5 x 10-9) and identify all 

SNPs in LD (r2 > 0.05) with the top associated SNP and ±5Mb away. We determined the genomic span of 

each LD-based clump and added 1kb up- and downstream as buffer to the region. If any of these windows 

overlapped, we merged them together into a single (larger) locus. As a sensitivity analysis, we ran 

clumping also using a smaller genomic window to calculate LD (±2Mb); the results were effectively 

unchanged, as <5 loci appeared independent using the ±2Mb window but were found to correlate using 

±5Mb windows. Therefore we report loci using the ±5Mb window. 

 

Proximal conditional and joint testing  

 

To identify index and secondary signals within each of the clumping-based loci, we ran proximal joint 

and conditional analysis as implemented in the Genome-wide Complex Trait Analysis (GCTA) software30. 

We ran this model (--cojo-slct) using the summary-level data within each locus, the LD reference panel 

constructed from UK Biobank data and also used for the locus ‘clumping,’ and setting genome-wide 

significance with p < 5 x 10-9. 

 

Collider bias analysis 

 

Given that we had conditioned WHR on the BMI phenotype for analysis (and BMI and WHR are correlated; 

r = 0.433 in the UK Biobank data; Supplementary Fig 16 ), we tested all index signals found in the 

WHRadjBMI analysis for evidence of collider bias.15,31 To do this, we ran meta-analyses of BMI and WHR 

using the UK Biobank samples and pre-existing summary-level data from GIANT5,23 (Supplementary 

Methods). We performed these meta-analyses using identical methods to the meta-analysis of 

WHRadjBMI.  

 

Then, for each index SNP from the WHRadjBMI meta-analyses (combined as well as sex-specific) we 

extracted the association results from the BMI and WHR meta-analyses (Supplementary Fig 4). 

WHRadjBMI-associated SNPs with a stronger association for BMI than WHR show evidence of collider bias 

or pleiotropy. We additionally looked at the effect size and direction of effect in BMI and WHR, but 

whether the effects are from collider bias or pleiotropy cannot be determined from this data.    
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Identification of sex-dimorphic signals 

 

We performed sex-specific GWAS in UK Biobank and meta-analyzed the results with publicly-available 

sex-specific data from the GIANT consortium. We identified the primary and secondary signals from these 

meta-analyses using methods identical to those performed in the combined analysis. We tested each 

primary and secondary signal for a sex-dimorphic effect by estimating the t-statistic: 

 

𝑡 =
𝑓𝑒𝑚𝑎𝑙𝑒𝑠  − 𝑚𝑎𝑙𝑒𝑠 

√𝑆𝐸𝑓𝑒𝑚𝑎𝑙𝑒𝑠  + 𝑆𝐸𝑚𝑎𝑙𝑒𝑠  + (2𝑟 × 𝑆𝐸𝑓𝑒𝑚𝑎𝑙𝑒𝑠  × 𝑆𝐸𝑚𝑎𝑙𝑒𝑠 )
      (1) 

 

where r is the genome-wide correlation between SNP effects in females and males. We estimated the t-

statistic and the resulting so-called pdiff
16 (P-value from a t-distribution with one degree of freedom) as 

implemented in the EasyStrata software.32 We tested a total of 2,162 different index SNPs for sex-

dimorphism; we tested all of the secondary signals as well, but these signals are by definition in linkage 

disequilibrium with the index SNPs (and therefore not independent). Given that we tested for sex-

dimorphism at index SNPs in not only WHRadjBMI but WHR and BMI as well, we performed a test at 1,502 

distinct genomic loci. Therefore, we set significance for sex-dimorphism at a Bonferroni-corrected p = 

0.05/1,502 = 3.3 x 10-5. 

 

SNPs were determined to have a stronger effect in women if they fell into one of the following categories 

(abs: absolute value): 

  

(a) betafemales ≤ 0 and betamales ≤ 0 and abs(betafemales) > abs(betamales) 

(b) betafemales ≥ 0 and betamales ≥ 0 and abs(betafemales) > abs(betamales) 

(c) betafemales ≤ 0 and betamales ≥ 0 and pfemales < pmales and abs(betafemales) > abs(betamales), or  

(d) betafemales ≥ 0 and betamales ≤ 0 and pfemales < pmales and abs(betafemales) > abs(betamales) 

 

Heritability calculations 

 

SNP-based heritability calculations 

 

We implemented all heritability calculations in BOLT-LMM.10 We used the same genetic relationship 

matrix (GRM) to estimate SNP-based heritability as we did to run our GWAS (see Genome-wide association 

analyses). This GRM included 790,000 SNPs. Heritability was estimated using only the UK Biobank 

samples, for which we had individual level data; these estimates are likely more accurate than those 

resulting from only summary-level data. We used Restricted Maximum Likelihood Estimation, 

implemented as --reml in BOLT.  

 

To test the impact of including lower-frequency SNPs in the heritability estimates, we constructed an 

additional GRM identically as we had for association testing, but including no minor allele frequency 

threshold. This GRM included ~1.7M SNPs. Heritability analyses were calculated identically using this GRM 

and --reml in BOLT. 

 

To calculate whether heritability estimates in men and women were sex-dimorphic, we used the 

following equation to generate a z-score: 
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𝑧 =
h𝑓𝑒𝑚𝑎𝑙𝑒𝑠
2  −  ℎ𝑚𝑎𝑙𝑒𝑠

2

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑓𝑒𝑚𝑎𝑙𝑒𝑠  + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑎𝑙𝑒𝑠  
 

     (2) 

 

We then converted the z-scores to P-values using the following formula in the statistical programming 

language and software suite R (version 3.4): 

 

𝑃 = 2 ∗ 𝑝𝑛𝑜𝑟𝑚(−𝑎𝑏𝑠(z)) 

                      (3) 

 

Validation in an independent dataset 

 

We used an independent dataset EXTEND (7,721 individuals of white European descent collected from 

South West England, Supplementary Table 14) to validate our findings. We extracted the index SNPs 

from the HRC imputed genotypes. To generate the WHRadjBMI variable, we regressed WHR on BMI, age, 

age-squared, sex and principal components 1-5. We then performed rank based inverse normalization on 

the resulting residuals. We validated the findings in 3 steps:  

 

(1) Directional consistency. We checked for directional consistency between the effect of index SNPs on 

WHRadjBMI from the main meta-analysis and EXTEND. We performed linear regression of WHRadjBMI on 

each individual SNP. We ensured all alleles were aligned to the WHRadjBMI increasing allele in the original 

meta-analysis. We compared directions between all 346 index SNPs and then split these into novel and 

known signals to determine the number of novel signals showing consistent directionality.  

 

(2) Variance explained. We evaluated the proportion of variance explained by including all the index 

SNPs into a linear regression model and calculated the adjusted R2. We performed these analyses using 

the  lm() function in R. 

  

(3) Polygenic scores. We created a weighted polygenic score based on the 346 index SNPs associated with 

WHRadjBMI. The weighted polygenic score was calculated by summing the dosage of the WHRadjBMI-

increasing alleles (weighted by the effect size on WHRadjBMI from the meta-analysis). We then 

performed linear regression to test the association between WHRadjBMI and the GRS in our independent 

dataset.   

 

To determine how likely 5% of individuals carrying the most number of WHRadjBMI increasing alleles were 

to meet the World Health Organization (WHO) WHR threshold for metabolic syndrome13 comparing to 5% 

carrying the least, we used the WHR reference levels of > 0.9 in men and > 0.85 in women to define 

cases and WHR < 0.9 in men and < 0.85 in women to define controls. We excluded all individuals with 

missing data leaving a sample size of 7,513. We took 5% of individuals (7,513 x 0.05 = 376) from the two 

ends of weighted GRS and coded them as 1 or 2 respectively. We tested for the likelihood of the top 5% 

meeting the WHR threshold for metabolic syndrome (WHO criteria) compared to the bottom 5% using a 

binomial logistic regression model adjusting for age, age-squared, sex and principal components 1-5.  

 

Comparison of WHRadjBMI-associated SNPs in other fat distribution phenotypes 

 

Comparison with body fat percentage 
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Similarly to Shungin et al5, we carried out analysis on the 346 index SNPs and their association with BF%. 

We obtained association statistics for the 346 SNPs with BF% from a GWAS of 443,001 unrelated, 

European-ancestry UK Biobank individuals. We aligned all results to the WHRadjBMI increasing allele and 

used a Bonferroni-corrected P-value (0.05/346 = 1..44 X 10-4) to determine if a SNP was also associated 

with BF%. To determine whether sex-specific WHRadjBMI index SNPs have an adiposity phenotype, we 

took the 97 (female-specific) and 8 (male-specific) SNPs and independently compared their effects on 

WHR and BF% in men and women. To identify which sex-dimorphic SNPs were strongly associated with 

BF% in men and women separately, we used a Bonferroni-corrected P-value of 0.05/105 (4.8 x 10-4) 

(Supplementary Fig 8 and Supplementary Table 9). We obtained Pearson’s r correlations using the cor() 

function in R for each comparison.  

 

Comparison with genome-wide analysis of depot-specific traits 

 

Recently, Chu et al20 performed a genome-wide association study of subcutaneous and ectopic fat depots, 

as measured by CT and MRI imaging, in a multi-ancestry sample. Since the meta-analysis results are 

publicly-available (https://grasp.nhlbi.nih.gov/FullResults.aspx and Supplementary Information for 

further details), we took the index SNPs from our WHRadjBMI meta-analyses (combined sample as well 

as sex-specific), checked for allele consistency, aligned effects to the reference allele, and tested for 

associations with the imaging based measures of subcutaneous and ectopic fat. We repeated these 

analyses in men and women separately. The depots investigated in the imaging-based GWAS were: 

pericardial tissue (PAT), PAT adjusted for height and weight (PATadjHtWt), subcutaneous adipose tissue 

(SAT) ,SAT Hounsfield units as measured by MRI (SATHU), visceral adipose tissue (VAT), VAT Hounsfield 

units (VATHU), ratio of VAT to SAT (VAT/SAT), and VAT adjusted for BMI (VATadjBMI).  

 

We calculated Pearson’s r correlations between z-scores in WHRadjBMI (calculated by dividing the SNP 

beta by the standard error) and SNP z-scores reported in Chu et al.20 We evaluated significance of the 

correlation by performing a t-test (implemented as cor.test() in R). Correlations were considered 

significant if P-value < 0.05/3 sample groups/9 phenotypes = 1.9 x 10-3.  
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