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Abstract 

Using data from 697,828 research participants from 23andMe and UK Biobank, we identified 

351 loci associated with being a morning person, a behavioural indicator of a person’s 

underlying circadian rhythm. These loci were validated in 85,760 individuals with activity-

monitor derived measures of sleep timing: the mean sleep timing of the 5% of individuals 

carrying the most “morningness” alleles was 25.1 minutes (95% CI: 22.5, 27.6) earlier than 

the 5% carrying the fewest. The loci were enriched for genes involved in circadian rhythm 

and insulin pathways, and those expressed in the retina, hindbrain, hypothalamus, and 

pituitary (all FDR<1%). We provide some evidence that being a morning person was 

causally associated with reduced risk of schizophrenia (OR: 0.89; 95% CI: 0.82, 0.96), 

depression (OR: 0.94; 95% CI: 0.91, 0.98) and a lower age at last childbirth in women (β: -

0.046 years; 95% CI: -0.067, -0.025), but was not associated with BMI (β: -4.6x10-4; 95% CI: 

-0.044, 0.043) or type 2 diabetes (OR: 1.00; 95% CI: 0.91, 1.1). This study offers new 

insights into the biology of circadian rhythms and disease links in humans. 
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Introduction 

Circadian rhythms are fundamental cyclical processes that occur in most living organisms, 

including humans. These daily cycles affect a wide range of molecular and behavioural 

processes, including hormone levels, core body temperature and sleep-wake patterns1. 

Chronotype, often referred to as circadian preference, describes an individual’s proclivity for 

earlier or later sleep timing and is a physical and behavioural manifestation of the coupling 

between internal circadian cycles and the need for sleep, driven by sleep homeostasis. 

Significant natural variation exists amongst the human population with chronotype often 

measured on a continuous scale2, though individuals are traditionally separated into 

“morning people” (or “larks”) who prefer going to bed and waking earlier, “evening people” 

(or “owls”) who perform best with a later bedtime and later rising time, and “intermediates” 

who lie between the two extremes3,4. Age and gender, as well as environmental light levels 

explain a substantial proportion of variation in chronotype, but genetic variation is also an 

important contributor 5,6,7,8. 

 

There is evidence that alterations to circadian timing are linked to disease development, 

particularly metabolic and psychiatric disorders9,10. Animal model studies have shown that 

mutations in, and altered expression of, key circadian rhythm genes can cause obesity, 

hyperglycaemia and defective beta-cell function leading to diabetes11–13. In humans, there 

are many reported associations between disrupted circadian rhythms and disease14,15, but 

the evidence for a causal role of chronotype on disease is limited16. For example, evening 

people have an increased frequency of obesity17, type 2 diabetes18 and depression19 

independent of sleep disturbance, and studies of shift workers show an increased risk of 

diabetes, depression and other diseases20. However, these associations could be explained 

by reverse causality (diseases affecting sleep patterns or dictating job options) or 

confounding (common risk factors influencing both chronotype and disease). Genetic 

analyses identifying variants robustly associated with putative risk factors, such as 

chronotype, can improve causal understanding by providing genetic instruments for use in 

Mendelian Randomization (MR) analyses, which minimise the effect of both reverse 

causality and bias caused by confounding. Identifying genetic variants associated with 

chronotype and sleep timing will also provide new insights into the biological processes 

underlying circadian rhythms and sleep homeostasis. 

 

Three previous genome-wide association studies (GWAS)21–23, using a maximum of 128,286 

individuals, identified a total of 22 variants associated with self-report chronotype. In this 

study, we performed a GWAS meta-analysis of a substantially expanded set of 697,828 

individuals, including 248,098 participants from 23andMe Inc., a personal genetics company 
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and 449,734 participants from UK Biobank. We were able to validate self-report chronotype 

genetic associations using estimates of sleep midpoint derived from activity monitors worn 

continuously for up to 7 days by 85,760 UK Biobank participants. We offer new insights into 

the genetics behind natural variation in chronotype and identify causal relationships between 

variation in human circadian rhythms and multiple traits and diseases. 

 

Results 

351 loci associated with morning chronotype from a GWAS meta-analysis including 
697,828 individuals. We performed a GWAS of self-report chronotype using 11,977,111 

imputed variants in 449,734 individuals of European ancestry from the UK Biobank and 

11,947,421 variants in 248,098 European-ancestry 23andMe research participants. We 

identified 351 independent loci at P<5x10-8, of which 258 reached P<6x10-9, a correction for 

the significance threshold based on permutation testing (Supplementary Methods). The 

meta-analysis and individual study results are shown in Figure 1 and Supplementary Table 

1. Conditional analysis identified 49 loci with multiple independent signals (Supplementary 

Table 2). A sensitivity analysis was performed in the UK Biobank data alone, excluding shift 

workers and those either on medication or with disorders affecting sleep (see the Methods 

section and Supplementary Methods for details). Effect sizes were similar to those in the 

full UK Biobank GWAS (Supplementary Table 1 and Supplementary Figure 1). 

 

Validation of chronotype associated variants in 85,760 individuals with activity 
monitor data. Self-report assessments of sleep and chronotype can be subject to reporting 

bias24–27. To validate the self-report chronotype associations using activity monitor data 

available in UK Biobank, we tested the association of the chronotype-associated variants 

with derived estimates of sleep timing, duration and quality and estimates of circadian 

activity rhythms. Derived phenotypes included sleep efficiency, sleep duration and timings of 

sleep midpoint, midpoint of the least active 5 hours of the day (L5 timing) and midpoint of the 

most active 10 hours of the day (M10 timing). Summary statistics of these derived 

phenotypes and their associations with self-report morningness are presented in 

Supplementary Table 3, and their associations with the newly identified chronotype SNPs 

are provided in Supplementary Table 4. To avoid inflation of associations with our GRS, we 

performed an additional meta-analysis excluding all UK Biobank individuals with activity 

monitor data. Of the 292 lead chronotype variants reaching P<5x10-8 from this meta-analysis 

that were available in the UK Biobank imputed genotype data, 258 had a consistent direction 

of effect for sleep midpoint (two-sided binomial test P=8.8x10-44), 262 with L5 timing 

(P=2.1x10-47) and 260 with M10 timing (P=1.5x10-45). A genetic risk score (GRS) of these 

292 variants was associated with earlier sleep midpoint, L5 timing and M10 timing (P=4x10-
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128, P=1x10-182 and P=7x10-130 respectively). There was little evidence of association 

between the chronotype GRS and the activity monitor sleep phenotypes that estimate sleep 

duration and fragmentation (Supplementary Table 5), indicating a specific effect of the 

chronotype SNPs on sleep timing and circadian metrics. As further validation, the 109 lead 

variants identified from the independent 23andMe morningness GWAS, which are also 

represented in the UK Biobank, showed the same directional consistency pattern for sleep 

midpoint (100/109; binomial P=1.4x10-20), L5 timing (100/109; P=1.4x10-20) and M10 timing 

(96/109; P=8.3x10-17), with a GRS derived using these variants also being strongly 

associated with earlier sleep midpoint (P=3.3x10-72), L5 timing (P=2x10-100) and M10 timing 

(P=4.9x10-69) and not with the other measures (Supplementary Table 5). Using the activity-

monitor derived estimates of sleeping timing, the 5% of individuals carrying the most 

“morningness” alleles at the 292 associated loci (and weighted by self-reported effect size) 

had L5 timing shifted, on average, by 25.1 minutes (95% CI: 22.5, 27.6) compared to the 5% 

carrying the fewest morningness alleles: a mean L5 time of 03:06 rather than 03:32. A 

similar effect of 26.1 minutes (95% CI: 23.1, 29.2) was seen for M10 timing, corresponding 

to a peak of activity at 13:29 for the 5% of people carrying the most morningness alleles as 

opposed to 13:55 for those carrying the least. 
 

Variants associated with circadian rhythms, obesity and insulin secretion are 
amongst the associated loci. Well-documented circadian rhythm genes were among the 

most strongly associated loci (Supplementary Table 1). These genes included the 

previously reported loci containing RGS16, PER2, PER3, PIGK/AK5, INADL, HCRTR2 and 

HTR621–23, and newly associated loci containing known circadian rhythm genes PER1, CRY1 

and ARNTL (Supplementary Figure 2). Additional associations were identified within 

MEIS1, BTBD9 and PTPRD, three of four genes currently implicated in restless legs 

syndrome (RLS)28 though the reported lead RLS variants did not reach genome-wide 

significance. At the PER3 locus, two highly correlated low frequency missense variants 

(rs150812083 and rs139315125, MAF=0.5%), previously reported to be a monogenic cause 

of familial advanced sleep phase syndrome29, were associated with self-reported 

morningness (OR=1.44 for minor allele; P=2x10-38) but with a lower magnitude of effect on 

sleep timing than expected in the activity-monitor derived measures of chronotype, 

advancing sleep timing by only 8 minutes (95% CI: 4, 13, P=4.3x10-4) as opposed to the 4.2 

hours reported in the previous study29. The allele in FTO (rs1558902) previously associated 

with higher BMI30,31 was also associated with being a morning person (OR=1.04, P= 4.9x10-

32). A missense variant in the MADD gene (rs35233100) previously associated with lower 

proinsulin levels32 (but not type 2 diabetes) was strongly associated with eveningness (OR= 

1.05, P=4.4x10-12). 
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Circadian rhythm, insulin pathway and brain and pituitary expressed genes are 
strongly enriched at the associated loci. We next used MAGMA33,34, PASCAL35, 

MAGENTA36 and DEPICT37 to identify biological pathways and tissues enriched for genes at 

the associated loci (Supplementary Tables 6-11). We identified strong enrichment of the 

circadian rhythm and insulin-regulation pathways (FDR<5%), as well as G protein signalling 

and activation, (Figures 2 and 3) and enrichment of genes expressed in tissues of the brain, 

pituitary and retina, amongst the associated loci (Figure 4, Supplementary Tables 7 and 

11). 

 

Integration of GWAS data with RNAi data highlights potentially causal genes at 
associated loci. We next assessed the overlap of genes at the chronotype associated loci 

with 343 putative clock genes identified from RNAi knockdown experiments in a human 

cellular clock model38. Of 353 genes mapped to the chronotype-associated loci at P<0.05 by 

DEPICT, there was no enrichment of the genes identified in the RNAi screen, with only 6 of 

the 353 genes overlapping (P=0.16). However, the overlapping genes included FBXL3, 

known to have a role in circadian oscillations through ubiquitination and degradation of 

CRY1 and CRY2, as well as GFAP, encoding a filament protein important in the 

development of astrocytes in the central nervous system (Supplementary Table 12). 
 

Chronotype is heritable and demonstrates strong genetic correlation with several 
metabolic and psychiatric traits. Using LD score regression, we estimated the heritability 

of chronotype to be 0.106 (0.003) in the meta-analysis. This compares to the heritability of 

0.135 (0.001) estimated by BOLT-LMM in the UK Biobank data alone. We also performed 

LD-score regression analyses against a range of other diseases and traits where GWAS 

summary statistics are publicly available (Supplementary Table 13). The most genetically 

correlated trait was subjective well-being, which was positively correlated with being a 

morning person (rG=0.17, P=6x10-9). Psychiatric traits schizophrenia (rG=-0.11, P=1x10-7), 

depressive symptoms (rG=-0.16; P=2x10-6), major depressive disorder (rG=-0.19; P=3x10-5) 

and intelligence (rG=-0.11; P=8x10-6) were all negatively correlated with the morning 

chronotype. Metabolic traits fasting insulin (rG=-0.09, P=0.03) and HOMA-IR (rG=-0.12, 

P=0.009) were nominally negatively correlated with being a morning person. BMI (rG=0.007, 

P=0.74) and T2D (rG=0.02, P=0.60) were not genetically correlated. 

 
Mendelian randomisation (MR) analyses provide evidence for a causal link between 
chronotype and mental health and fecundity. Altered sleep patterns are associated with 

many disease and health outcomes in observational studies but there is limited evidence for 
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causality. To test for a causal effect of chronotype on disease and related outcomes we 

performed Mendelian randomization analyses against 367 metabolic, psychiatric and other 

phenotypes in the UK Biobank and with external GWAS datasets using MR Base39 and the 

corresponding R package TwoSampleMR40. We used 109 (of the total 115) variants 

identified at P<5x10-8 in the 23andMe study alone (Supplementary Table 14) for the UK 

Biobank MR analyses. For most traits, even those with strong observational associations, we 

did not find evidence of a causal effect of genetically influenced chronotype. For example, 

there was no evidence that morningness or eveningness leads to higher BMI (P=0.94 in UK 

Biobank) or risk of Type 2 diabetes (P=0.83) (Supplementary Figures 3 and 4 and 

Supplementary Table 15). A small number of Mendelian randomisation tests survived 

correction for multiple testing, including morningness leading to a younger age at which 

women had their last child: a genetically-determined unit log-odds increase in morningness 

(equivalent to a morningess odds ratio of ~2.7) was associated with a 16.8-day (95% CI: 

12.8, 24.5) younger age of last child birth (IVW P=3x10-5) (Supplementary Figure 5). There 

was nominal evidence that morningness causally decreases risk of schizophrenia, 

depression and multiple pregnancy loss: a genetically-determined unit log-odds increase in 

morningness was associated with odds ratios of 0.89 (0.82, 0.96; IVW P=0.004), 0.94 (0.91, 

0.98; IVW P=0.002) and 0.91 (0.86, 0.96; IVW P=0.002) respectively (Supplementary 

Figures 6-8, Supplementary Tables 15 and 16). 

 
Nominal evidence that type 2 diabetes, insulin secretion and BMI causally influence 
chronotype. We next used Mendelian randomisation to test whether or not disease related 

traits could alter chronotype (Supplementary Table 17). We selected 40 traits where large-

scale GWAS had identified multiple robustly associated SNPs and where the traits have 

been associated with chronotype in the literature or were observationally associated in the 

UK Biobank study. We found only nominal evidence that diseases and related traits alter 

chronotype: a genetically determined 1 unit log odds increase in type 2 diabetes, 1 SD 

increase in favourable adiposity41 (increased subcutaneous-to-visceral adiposity but lower 

insulin levels), 1 SD increase in insulin secretion and 1 SD increase in BMI were associated 

with morningness odds ratios of 1.02 (95%CI: 1.00, 1.04; IVW P=0.01), 0.86 (0.76, 0.97; 

IVW P=0.02), 1.10 (1.01, 1.20; IVW P=0.04) and 1.06 (1.00, 1.13; IVW P=0.05) respectively. 

For BMI, the association did not remain after excluding the chronotype FTO variant which 

has a primary effect on BMI (OR = 1.02; 95%CI: 0.96, 1.08; IVW P=0.58) (Supplementary 

Figures 9-11).  
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Discussion 

We performed a GWAS of chronotype in 697,828 individuals from 23andMe and the UK 

Biobank study and increased the number of associated loci from 22 to 351. The variants 

associated with self-report chronotype were also associated with activity-monitor derived 

estimates of sleep timing but not measures of sleep quantity or quality. The validation using 

activity-based estimates of sleep timing was important because self-report traits may result 

in reporting biases. Our data suggests that self-report sleep measures strongly relate to an 

individual’s sleep timing and therefore provide valid instruments for MR and compelling 

insights into circadian biology. 

 

Chronotype-associated loci were strongly enriched for known circadian genes, as well as 

genes more distally involved in circadian processes. Variants at these loci included the low 

frequency (MAF=0.5%) coding variants (P415A/H417R) in PER3 previously identified as a 

cause of familial advanced sleep phase syndrome29. Although it had a large effect on 

chronotype (OR=1.44), we found that the minor allele of this variant was associated with an 

average earlier sleep timing of only 8 minutes, suggesting this is a low penetrance disease 

variant and not a monogenic cause of delayed sleep. By integrating information from tissue 

expression and previous RNAi experiments we identified additional genes likely to be 

involved in circadian timing, for example LSM7 which encodes core components of the 

spliceosomal U6 small nuclear ribonucleoprotein complex for which some previous studies 

have suggested a role in circadian timing38,42. 

 

Despite a substantial body of observational epidemiology literature on the association 

between circadian rhythm variation and disease, we found no convincing evidence for a 

causal effect of morningness on many of these disorders in our MR analyses. Of the traits 

we tested, we found some evidence that being a morning person may result in a younger 

age at last childbirth and a reduced risk of multiple pregnancy losses, schizophrenia and 

depression. Although these results need replication, there is existing evidence of the 

relationship between circadian rhythms and fertility in women43–45, and between circadian 

rhythms and mental health suggesting that this an area for further investigation. 

 

Previously reported observational associations of chronotype with metabolic diseases are 

particularly strong46,47, but we found no evidence for a causal effect of morningness on type 

2 diabetes or BMI and could exclude the observational association effect sizes. We found 

nominal evidence of effects in the opposite direction.  For example, MR analyses showed 

that there was nominal evidence of a causal role of higher T2D risk, and both higher insulin 

secretion and BMI, on being a morning person. This is exemplified by a missense variant in 
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the MADD gene (rs35233100) previously associated with lower proinsulin levels32 (but not 

type 2 diabetes) being associated with eveningness. The BMI association, however, appears 

to be driven by the obesity associated allele in FTO (rs1558902) previously associated with 

higher BMI30,31 being strongly associated with being a morning person. There is substantial 

evidence of a link between appetite, feeding and insulin pathways and circadian rhythms48,49 

supported by our pathway analyses which demonstrates an enrichment of insulin secretion 

regulation pathways; however, it is unclear why the causal association is not seen in the 

opposite direction. 

 

The response to UK Biobank participation was < 5% and this can result in bias, including in 

GWAS and MR50. Here GWAS results replicated those of 23andMe, a study that may also 

suffer from selection bias but of a different nature to UK Biobank, and our MR results in UK 

Biobank were consistent with those from using two-sample MR in publicly-available 

aggregated data, based on consortia of studies that had considerably greater response 

rates. 

 

In conclusion, we have identified hundreds of novel loci that regulate circadian rhythms and 

sleep timing in humans and provide new insights into the causal nature of the observational 

associations with disease. 
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Materials and Methods 

 

Data availability 
Summary statistics for the top 10,000 chronotype meta-analysis variants are provided in 

Supplementary Table 18 and the full set of UK Biobank-only chronotype and morning 

person GWAS summary statistics can be found at: http://www.t2diabetesgenes.org/data/. 

 

Ethics Statement 
Details of patient and public involvement in the UK Biobank are available online at 

www.ukbiobank.ac.uk/about-biobank-uk/ and https://www.ukbiobank.ac.uk/wp-

content/uploads/2011/07/Summary-EGF-consultation.pdf. Participants were not involved in 

setting research questions or any outcome measures, nor were they involved in planning, 

design, recruitment for or implementation of this study. Participants also had no involvement 

in analysing data, interpreting results or preparing this manuscript. There are no specific 

plans to disseminate the results of the research to study participants, though the UK Biobank 

disseminates key findings from projects on its website. 

 

Cohorts 
The UK Biobank is described in detail elsewhere51. We used data on 451,454 individuals 

from the full UK Biobank data release that we identified as White European and that had 

genetic data available. To define a set of White Europeans, we performed Principal 

Components Analysis (PCA) in the 1000 Genomes (1KG) reference panel using a subset of 

variants that were of a high quality in the UK Biobank. We projected these principal 

components into the set of related UK Biobank participants to avoid the relatedness 

confounding the principal components. We then adopted a k-means clustering approach to 

define a European cluster, initializing the ethnic centres defined by the population-specific 

means of the first four 1KG principal components. This analysis was performed only within 

individuals self-reporting as “British”, “Irish”, “White” or “Any other white background. 

Because association analyses are performed using linear mixed-model (LMM) method, we 

included related individuals. 

 

We used summary statistics from a morning chronotype GWAS performed by 23andMe of 

248,100 (Ncase=120,478; Ncontrol=127,622) participants with a minimum of 97% European 

ancestry. GWAS analysis was performed in a maximal set of unrelated participants, where 

pairs of individuals were considered related if they shared 700cM IBD of genomic segments, 

roughly corresponding to first cousins in an outbred population. The 23andMe cohort is 

described in more detail elsewhere21. 
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Activity Monitor Data 
A subset of the UK Biobank cohort was invited to wear a wrist-worn activity monitor for a 

period of one week. Individuals were mailed the device and asked to wear it continuously for 

seven days, including while bathing, showering and sleeping. In total, 103,720 participants 

returned their activity monitor devices with data covering at least three complete 24-hour 

periods. We downloaded the raw activity monitor data (data-field 90001) for these 

individuals, in the form of binary Continuous Wave Accelerometer (cwa) files. Further 

information, along with details of centrally-derived variables, is available elsewhere52. 

Detailed protocol information can be found online at 

http://biobank.ctsu.ox.ac.uk/crystal/docs/PhysicalActivityMonitor.pdf and a sample instruction 

letter at http://biobank.ctsu.ox.ac.uk/crystal/images/activity_invite.png (UKB Resources 

131600 and 141141, respectively; both accessed January 30th 2018). We converted the 

.cwa files to .wav format using the open-source software “omconvert”, recommended by the 

activity monitor manufacturers Axivity, which is available online (see 

https://github.com/digitalinteraction/openmovement/tree/master/Software/AX3/omconvert). 

To process the raw accelerometer data, we used the freely available R package “GGIR” 

(v1.5-12)53,54. The list of our GGIR settings is provided in the Supplementary File and the 

full list of variables produced by GGIR can be found in the CRAN GGIR reference manual 

(see https://cran.r-project.org/web/packages/GGIR/GGIR.pdf). 

 

Genotyping and quality control 
The 23andMe cohort was genotyped on one of four custom arrays: the first two were 

variants of the Illumina HumanHap550+ BeadChip (Ncase=4,966; Ncontrol=5,564), the third a 

variant of the Illumina OmniExpress+ BeadChip (Ncase=53,747; Ncontrol=61,637) and the fourth 

a fully custom array (Ncase=61,765; Ncontrol=60,421). Successive arrays contained substantial 

overlap with previous chips. These genotypes were imputed to ~15.6M variants using the 

September 2013 release of the 1000 Genomes phase 1 reference panel. For analyses, we 

used ~11.9M imputed variants with imputation r2 ≥ 0.3, MAF ≥ 0.001 (0.1%) and that showed 

no sign of batch effects. 
 

The UK Biobank cohort was genotyped on two almost identical arrays. The first ~50,000 

samples were genotyped on the UK BiLEVE array and the remaining ~450,000 samples 

were genotyped on the UK Biobank Axiom array in two groups (interim and full release). A 

total of 805,426 directly-genotyped variants were made available in the full release. These 

variants were centrally imputed to ~93M autosomal variants using two reference panels: a 

combined UK10K and 1000 Genomes panel and the Haplotype Reference Consortium 
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(HRC) panel. For all analyses, we used ~12.0M Haplotype Reference Consortium (HRC) 

imputed variants with an imputation r2 ≥ 0.3, MAF ≥ 0.001 (0.1%) and with a Hardy–

Weinberg equilibrium P>1x10-12. We excluded non-HRC imputed variants on advice from the 

UK Biobank imputation team. Further details on the UK Biobank genotyping, quality control 

and imputation procedures can be found elsewhere55. 

 
Self-Reported Phenotypes 

Chronotype (UK Biobank) 

The UK Biobank collected a single self-reported measure of Chronotype (“Morning/evening 

person (chronotype)”; data-field 1180). Participants were prompted to answer the question 

"Do you consider yourself to be?" with one of six possible answers: “Definitely a ‘morning’ 

person”, “More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’ 

person”, “Definitely an ‘evening’ person”, “Do not know” or “Prefer not to answer”, which we 

coded as 2, 1, -1, -2, 0 and missing respectively. Prior to association testing, we adjusted the 

phenotype for age, gender and study centre (categorical). Of the 451,454 white European 

participants with genetic data, 449,734 were included in the GWAS (had non-missing 

phenotype and covariates). 

 

Morning Person (UK Biobank) 

In order to provide interpretable odds ratios for our genome-wide significant variants, we also 

defined a binary phenotype using the same data-field as for Chronotype. Participants 

answering “Definitely an ‘evening’ person” and “More an ‘evening’ than a ‘morning’ person” 

were coded as 0 (controls) and those answering “Definitely a ‘morning’ person” and “More a 

‘morning’ than ‘evening’ person” were coded as 1 (cases). Participants answering “Do not 

know” or “Prefer not to answer” were coded as missing. A total of 403,195 participants were 

included in the GWAS (252,287 cases and 150,908 controls). 

 

Morning Person (23andMe) 

Responses to two identical questions were used to define the dichotomous morning person 

phenotype in the 23andMe cohort, with one question having a wider selection of neutral 

options. More details are given in Supplementary Table 2 of the 23andMe morning person 

GWAS21. Morning people were coded as 1 (cases; N=120,478) and evening people were 

coded as 0 (controls; N=127,622). 

 

Activity monitor Phenotypes 
Identifying the sleep period window 
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The software package GGIR54,56 produces quantitative and timing measures relating to both 

activity levels and sleep patterns, with a day-by-day breakdown, as well averages across the 

period of wear. A new algorithm, implemented in version 1.5-12 of the GGIR R package and 

validated using PSG in an external cohort57, allows for detection of sleep periods without the 

use of a sleep diary and with minimal bias. Briefly, for each individual, median values of the 

absolute change in z-angle (representing the dorsal-ventral direction when the wrist is in the 

anatomical position) across 5-minute rolling windows were calculated across a 24-hour 

period, chosen to make the algorithm insensitive to activity monitor orientation. The 10th 

percentile was incorporated into the threshold to distinguish movement from non-movement. 

Bouts of inactivity lasting ≥30 minutes are recorded as inactivity bouts. Inactivity bouts that 

are <60 minutes apart are combined to form inactivity blocks. The start and end of longest 

block defines the start and end of the sleep period time-window (SPT-window). 

 

Activity monitor exclusions and adjustments 

The UK Biobank made multiple activity monitor data-quality variables available. From our 

activity monitor phenotypes, we excluded 4,925 samples with a non-zero or missing value in 

data field 90002 (“Data problem indicator”). We then excluded any individuals with the “good 

wear time” flag (field 90015) set to 0 (No), “good calibration” flag (field 90016) set to 0 (No), 

“calibrated on own data” flag (field 90017) set to 0 (No), “data recording errors” (field 90182) 

> 788 (Q3 + 1.5xIQR) or a non-zero count of “interrupted recording periods” (field 90180). 

Phenotypes determined using the SPT-window (all phenotypes except L5 and M10 timing) 

had additional exclusions based on short (<3 hours) and long (>12 hours) mean sleep 

duration and too low (<5) or too high (>30) mean number of sleep episodes per night (see 

below). These additional exclusions were to ensure that individuals with extreme (outlying), 

and likely incorrect, sleep characteristics were not included in any subsequent analyses. 

Prior to association testing, we adjusted all phenotypes for age activity monitor worn (derived 

from month and year of birth and date activity monitor worn), gender, season activity monitor 

worn (categorical; winter, spring, summer or autumn; derived from date activity monitor 

worn) and number of valid measurements (SPT-windows for sleep phenotypes, number of 

valid days for diurnal inactivity or number of L5 or M10 detections). 

 

L5 and M10 timing (UK Biobank) 

L5 and M10 refer to the least-active five and the most-active ten hours of each day, and are 

commonly studied measures relating to circadian activity and sleep. L5 (M10) defines a five-

hour (ten-hour) daily period of minimum (maximum) activity, as calculated by means of a 

moving average with a five-hour (ten-hour) window. We defined our L5 (M10) timing 

phenotype as the number of hours elapsed from the previous midnight to the L5 (M10) 
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midpoint, averaged over all valid wear days. Of the 103,711 participants with activity monitor 

data, there were 85,205 and 85,670 with valid L5 and M10 timing measures respectively, 

covariates and genetic data. Basic summaries of these and other raw activity monitor 

phenotypes are given in Supplementary Table 3. 

 

Sleep midpoint (UK Biobank) 

Sleep midpoint was calculated as the time directly between the start and end of the SPT-

window, and is defined as the number of hours elapsed since the previous midnight (e.g. 

02:30 = 26.5). Our sleep midpoint phenotype represented the average over all valid sleep 

periods. After exclusions and adjustments, 84,810 participants had valid sleep midpoint, 

covariates and genetic data. 

 

Sleep duration (UK Biobank) 

Sleep episodes within the SPT-window were defined as periods of at least 5 minutes with no 

change larger than 5° associated with the z-axis of the activity monitor, as described 

previously54. The summed duration of all sleep episodes provided the sleep duration for a 

given SPT-window. We took both the mean and standard deviation of sleep duration across 

all valid SPT-windows to provide a measure of average sleep quantity and a measure of 

variability. After exclusions and adjustments, we had 85,449 (84,441) participants with valid 

sleep duration mean (S.D.), covariates and genetic data. 

 

Sleep efficiency (UK Biobank) 

This was calculated as a ratio of sleep duration (defined above) to SPT-window duration. 

The phenotype represented the mean across all valid SPT-windows and after exclusions 

and adjustments, left us with 84,810 participants with valid sleep efficiency, covariates and 

genetic data. 

 

Number of sleep episodes (UK Biobank) 

This is defined as the number of sleep episodes separated by last least 5 minutes of 

wakefulness within the SPT-window. The phenotype represents the mean across all SPT-

windows and can be interpreted as a measure of sleep disturbance or fragmentation. After 

exclusions and adjustments, we had 84,810 participants with valid sleep efficiency, 

covariates and genetic data. 

 

Diurnal inactivity duration (UK Biobank) 

The total daily duration of estimated bouts of inactivity that fall outside of the SPT-window. 

This includes both periods of inactivity and sleep (naps), as it is impossible to separate these 
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without detailed activity diaries. The phenotype is calculated as the mean across all valid 

days and, after exclusions and adjustments, we were left with 84,757 participants with a 

valid measure, covariates and genetic data. 

 
Genome-wide Association Analysis 

We performed all association test using BOLT-LMM58 v2.3, which applies a linear mixed 

model (LMM) to adjust for the effects of population structure and individual relatedness, and 

allowed us to include all related individuals in our white European subset, boosting our 

power to detect associations. This meant a sample size of up to 449,734 individuals, as 

opposed to the set of 379,768 unrelated individuals. BOLT-LMM approximates relatedness 

within a cohort by using LD blocks and avoids the requirement of building a genetic-

relationship matrix (GRM), with which calculations are intractable in cohorts of this size. 

From the ~805,000 directly-genotyped (non-imputed) variants available, we identified 

524,307 “good-quality” variants (bi-allelic SNPs; MAF≥1%; HWE P>1x10-6; non-missing in all 

genotype batches, total missingness<1.5% and not in a region of long-range LD59) for 

inclusion in BOLT-LMM’s mixed model, and we used the 1000 Genomes European LD-

Score table provided with the software for information on LD structure. We forced BOLT-

LMM to apply a non-infinitesimal model, which provides better effect size estimates for 

variants with moderate to large effect sizes, in exchange for increased computing time. Prior 

to association testing, continuous phenotypes were first adjusted for relevant covariates, as 

indicated above, and at runtime we included “release” (categorical; UKBiLEVE array, UKB 

Axiom array interim release and UKB Axiom array full release) as a further covariate. The 

binary morning person phenotype was adjusted at runtime for age, gender, study centre and 

release. 

 

In the 23andMe morning person GWAS, the summary statistics were generated through 

logistic regression (using an additive model) of the phenotype against the genotype, 

adjusting for age, gender, the first four principal components and a categorical variable 

representing genotyping platform. Genotyping batches in which particular variants failed to 

meet minimum quality control were not included in association testing for those variants, 

resulting in a range of sample sizes over the whole set of results. A !"# of 1.325 was 

reported for this GWAS. 

 

Sensitivity Analysis 
To avoid issues with stratification, we performed a sensitivity GWAS, in UK Biobank alone, 

to assess whether any of the associations were driven by a subset of the cohort with specific 

conditions. We excluded those reporting shift or night shift work at baseline, those taking 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/303941doi: bioRxiv preprint 

https://doi.org/10.1101/303941


medication for sleep or psychiatric disorders and those with either with a HES ICD10 or self-

reported diagnosis of depression, schizophrenia, bipolar disorder, anxiety disorders or mood 

disorder (see Supplementary Methods for further details). Results for the 341 lead 

chronotype variants available in the UK Biobank are provided in Supplementary Table 1 

alongside the main meta-analysis results. 

 
Meta-analysis of GWAS Results 
Meta-analysis was performed using the software package METAL60. To obtain the largest 

possible sample size, and thus maximising statistical power, we performed a sample-size 

meta-analysis, using the results from the UK Biobank chronotype GWAS and the 23andMe 

morning person GWAS. Genomic control was not performed on each set of summary 

statistics prior to meta-analysis but instead the meta-analysis chi-squared statistics were 

corrected using the LD score intercept (ILDSC = 1.0829), calculated by the software LDSC, as 

using λGC is considered overly conservative and the LD score intercept better captures 

inflation due to population stratification61. For interpretable results, we reported the odds ratio 

from a secondary effect size meta-analysis between our dichotomous UK Biobank morning 

person GWAS and the 23andMe morning person GWAS. The primary meta-analysis 

produced results for 15,880,618 variants in up to 697,828 individuals. 

 

Post-GWAS Analyses 
Pathway analysis and tissue-enrichment 

We used MAGENTA36, DEPICT37, PASCAL35 and MAGMA33. For MAGENTA and DEPICT, 

we included all variants from the meta-analysis, whereas for PASCAL, we included only 

those with an RSID as the software assigns variants to genes using their RSID. For the 

MAGENTA analysis, we used upstream and downstream limits of 110Kb and 40Kb to assign 

variants to genes by position, we excluded the HLA region from the analysis and set the 

number of permutations for gene-set enrichment analysis (GSEA) to 10,000. For DEPICT, 

we used the default settings and the annotation and mapping files provided with the 

software. 

 

Genetic correlation and heritability analyses 

We used the LD Score Regression (LDSC) software, available at 

https://github.com/bulik/ldsc/, to quantify the genetic overlap between the trait of interest and 

222 traits with publicly available GWA data. Details of methodology are available 

elsewhere62. We considered any correlation as statistically significant if it had a Bonferroni 

corrected P<0.05. 
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Mendelian Randomisation Analyses 

Given the large number of studies reporting multi-variable associations of chronotype and 

sleep traits with multiple health outcomes, we undertook MR analyses to explore both the 

effect of chronotype on different outcomes and the effect of different exposures on 

chronotype as an outcome. These two-sample MR analyses can be summarised by: 

1. Chronotype exposure using 109 variants and effect sizes discovered in 23andMe 

against 250 outcomes from unpublished parallel UK Biobank GWAS 

(Supplementary Table 15) 

2. Chronotype exposure using 351 variants and effect sizes discovered in the meta-

analysis against 671 outcomes from published studies (Supplementary Table 16) 

3. 39 exposures using variants from published studies against UK Biobank chronotype 

as an outcome (Supplementary Table 17). 

Analyses 1 and 3 were performed using a custom pipeline (designed to use only summary 

data of both exposure and outcome) in which we tested four MR methods: 

a. Inverse-variance weighting (IVW)63 

b. MR-Egger63 

c. Weighted median (WM)64 estimation 

d. Penalised weighted median (PWM)64 estimation 

Analysis 2 was performed using the R package TwoSampleMR using aggregated summary 

statistics available through the MR-Base platform39. We implemented the same four methods 

as with analyses 1 and 3, and also included the MR-Egger bootstrap to provide better 

estimates of the effect sizes and standard errors as compared to the MR-Egger method. 

Analyses 1 and 2 both investigated the effect of chronotype on different traits or diseases, 

yet they had different strengths. Analysis 1 took advantage of the availability of summary 

level data in ~39 million HRC-imputed positive-strand SNPs for multiple outcomes. This 

means that the statistical power of the MR tests was less variable from one phenotype to 

another, as the number of genetic chronotype instruments used was consistent across all 

outcomes. The caveat was that we had to use 109 variants (and effects) discovered in 

23andMe (and not UK Biobank) to avoid biasing our results away from the null, reducing the 

number of chronotype instruments and thus reducing our power to detect causal 

associations. As analysis 2 relied upon published summary statistics, we were able to use all 

351 variants discovered in the chronotype meta-analysis as genetic instruments (thus 

providing greater statistical power), though the number of these available in the summary 

statistics of published GWAS varied greatly, leading to a large heterogeneity in the statistical 
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power available to detect causal associations with the different outcomes. Consistent 

evidence of association for the same outcomes between analyses 1 and 2 would provide 

strong evidence for causality. 

We used the inverse variance weighted approach as our main analysis method and MR-

Egger, weighted median estimation and penalised weighted median estimation as sensitivity 

analyses in the event of unidentified pleiotropy of our genetic instruments. MR results may 

be biased by horizontal pleiotropy, i.e. where the genetic variants that are robustly related to 

the exposure of interest (here chronotype) independently influence the outcome, through 

association with another risk factor for the outcome. IVW assumes that there is either no 

horizontal pleiotropy (under a fixed effect model) or, if implemented under a random effects 

model after detecting heterogeneity amongst the causal estimates, that: 

i. The strength of association of the genetic instruments with the risk factor is not 

correlated with the magnitude of the pleiotropic effects 

ii. The pleiotropic effects have an average value of zero 

MR-Egger provides unbiased causal estimates if just the first condition above holds, by 

estimating and adjusting for non-zero mean pleiotropy. However, MR-Egger requires that the 

InSIDE (Instrument Strength Independent of Direct Effect) assumption65 holds, in that it 

needs the pleiotropy of the genetic instruments to be uncorrelated with the instruments’ 

effect on the exposure. The weighted median approach is valid if less than 50% of the 

weight in the analysis stems from variants that are pleiotropic (i.e. no single SNP that 

contributes 50% of the weight or a number of SNPs that together contribute 50% should be 

invalid because of horizontal pleiotropy). Given these different assumptions, if all methods 

are broadly consistent this strengthens our causal inference. 
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Figure 1. Manhattan plot of the chronotype meta-analysis GWAS. The solid and dashed black lines respectively indicate typical and our permutation-

testing genome-wide significance thresholds of P=5x10-8 and P=6x10-9. 
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Figure 2. Reactome gene sets overlapping Chronotype genes identified using positional and eQTL mapping (and not MAGMA) in FUMA’s 

GENE2FUNC process. Note that these results may differ to those produced by MAGMA. 

 

Figure 3. WikiPathways gene sets overlapping Chronotype genes identified using positional and eQTL mapping (and not MAGMA) in FUMA’s 

GENE2FUNC process. Note that these results may differ to those produced by MAGMA. 
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Figure 4. MAGMA tissue expression analysis using gene expression per tissue based on GTEx 

RNA-seq data for a) 30 general and b) 53 specific tissue types. 
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