












Collectively, these results indicated that in the mouse brain, CiNs acquired electrophysiological 

functions and formed synaptic connections. 

 

Because the integration of compensatory neurons into the host neural circuitry is crucial for 

functional rescue (17), we further examined the connectivity of CiNs by a retrograde transsynaptic 

tracing system (18). We used a pseudotyped rabies virus (PRV) that specifically infected neurons 

expressing avian tumor virus receptor A (TVA). Subsequently, PRV assembled into infectious 

particles to cross one synapse where the rabies virus glycoprotein (RVG) was present. To achieve 

this, two Cre-dependent FLEX-AAV vectors encoding TVA, histone-EGFP and RVG were 

injected into the cortex of mGfap-Cre mice, resulting in their expressions restricted in astrocytes 

(Fig. 4A and fig. S4-5). After chemical induction, we injected PRV-carrying DsRed (PRV-DsRed) 

at 7 wpi into the same site to label the CiNs as DsRed+/EGFP+ cells and to trace endogenous host 

neurons that made synaptic contact with CiNs as DsRed single-positive cells (Fig. 4A). Besides, 

we found that after TVA injection, cortical astrocytes were specifically labeled while with minor 

specificity within the corpus callosum of the striatum. Therefore, we did transsynaptic experiments 

in the cortex. 

 

At 8 wpi, we observed DsRed+/EGFP+ CiNs (22 ± 2 cells in total) at the injection site in the cortex 

of the chemical induction group (Fig. 4, B and C). Meanwhile, DsRed single-positive cells were 

detected in the area surrounding the injection site (Fig. 4, B and D). The presence of both 

DsRed+/EGFP+ and DsRed single-positive cells in the chemical treated group indicated that the 

CiNs were able to be innervated by host neurons (Fig. 4, E and F). In contrast, there were no 

DsRed+/EGFP+ cells observed in the vehicle group (Fig. 4C, n = 4). We also observed direct 

neurite connections between DsRed+/EGFP+ CiNs and DsRed single-positive cells, suggesting 

that synapses formed between CiNs and host neurons (Fig. 4, E and F). These data suggest that 

in situ converted CiNs could timely receive synaptic signals from the local neurons in the adult 

brain. 

 

Our study is the first to demonstrate that defined combinations of small molecules can induce the 

in vivo chemical reprogramming of astrocytes into functional mature neurons with 

electrophysiological characteristics. Importantly, these in situ-generated CiNs could functionally 
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interact with resident neurons in the brain. Astrocytes serve as a latent plastic cell type for 

neurogenesis (19-21), and our work suggests a new strategy of in situ chemical reprogramming 

for the endogenous repair of brain injuries and neurodegenerative diseases. Future studies with 

disease models are needed to investigate the neuronal subtype-specific functions of these CiNs and 

to develop safety chemical delivery systems to different regions of the CNS. In vivo chemical 

reprogramming avoids the shortcomings of cell transplantation, including immunorejection, stem 

cell mutagenesis, inadequate cell survival and native tissue integration difficulties (22, 23). 

Moreover, small molecule-induced in situ lineage conversion is non-immunogenic and transgene 

free, which is eventually preferable for in vivo therapeutic strategies(24-28). Our finding may also 

offer a general strategy for in vivo chemical reprogramming to produce cells of other lineages. In 

vivo chemical reprogramming would open a novel path for regenerative medicine. 
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