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Abstract 

Cancer metastasis accounts for the majority of deaths by cancer. Detection of cancer metastasis at its 

early stage is important for the management and prediction of cancer progression. Urine, which is not 

regulated by homeostatic mechanisms, reflects systemic changes in the whole body and can potentially 

be used for the early detection of cancer metastasis. In this study, a lung metastasis of a Walker-256 rat 

model was established by tail-vein injection of Walker-256 cells. Urine samples were collected at days 

2, 4, 6 and 9 after injection, and the urinary proteomes were profiled using liquid chromatography 

coupled with tandem mass spectrometry (LC-MS/MS). The urinary protein patterns changed 

significantly with the development of Walker-256 lung metastasis. On the fourth day, lung metastasis 

nodules appeared. On the sixth day, clinical symptoms started. On days 2, 4, 6 and 9, 11, 25, 34 and 44 

differential proteins were identified in 7 lung metastatic rats by LC-MS/MS. Seventeen of these 62 

differential proteins were identified on the second day, and 18 of them were identified on the fourth 

day. The differential urinary proteins changed significantly two days before lung metastasis nodules 

appeared. Differential urinary proteins differed in Walker-256 lung metastasis rat models and 

Walker-256 subcutaneous rat models. A total of 9 differential proteins (NHRF1, CLIC1, EZRI, AMPN, 

ACY1A, HSP7C, BTD, NID2, and CFAD) were identified in 7 lung metastatic rats at one or more 

common time points, and these 9 differential proteins were not identified in the subcutaneous rat model. 

Seven of these 9 differential proteins were associated with both breast cancer and lung cancer, eight of 
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the nine were identified on the second day, and 8 of the nine can be identified on the fourth day; these 

early changes in urine were also identified with differential abundances at late stages of lung metastasis. 

Our results indicate that (1) the urine proteome changed significantly, even on the second day after 

tail-vein injection of Walker-256 cells and that (2) the urinary differential proteins were different in 

Walker-256 lung metastatic tumors and Walker-256 subcutaneous tumors. Our results provide the 

potential to detect early breast cancer lung metastasis, monitor its progression and differentiate it from 

the same cancer cells grown at other locations.  

Keywords: cancer biomarkers, urine proteome, breast cancer metastasis, early detection 

 

Introduction 

Cancer metastasis is a process in which cancer cells are disseminated from primary tumor tissue to 

different sites through blood vessels and lymphatic vessels. Lung, brain, bone and liver are the 

common metastatic organs in cancer patients[1]. Distant organ metastasis accounts for most cancer 

morbidity and mortality and nearly 90% of cancer death[2] and is usually accompanied by a poor 

5-year survival rate as well as limited treatment strategies[3]. Due to special lung-specific 

immunoregulatory mechanisms, tumor colonization occurs more readily in an immunologically 

permissive environment[4]. Therefore, many cancer metastases such those of as breast cancer and 

malignant melanoma occur more easily in lung. The early detection of cancer metastasis is still elusive, 

as finding and predicting specific distant metastatic organs is difficult, especially in early-stage cancer 

without clinical symptoms. Therefore, the early detection of cancer metastasis can significantly 

improve the survival rate and effective therapies of cancer patients and also helps in monitoring cancer 

metastasis progression in time. 

Biomarkers are measurable changes associated with the physiological or pathophysiological processes 

of disease and usually derive from tissue, blood and tumor cells [5]. Because of the homeostatic 

mechanisms in the internal environment, the levels of important factors in blood tend to be stable to 

protect the stability of the internal environment[6]. In addition, without the control of homeostatic 

mechanisms, urine can accumulate systemic changes from the whole body and thus has the potential to 

reflect the small pathophysiological changes of disease[7]. Therefore, urine has the potential to reflect 
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early changes in disease. However, whether time-course analyses of urine proteins can reveal reliable 

cancer metastasis biomarkers at different stages of cancer metastasis is unclear, as urinary proteins are 

easily affected by complicated factors such as medicine and diet, especially in human samples. 

Therefore, using a small number of animal models can help to determine the direct relationship 

between urine protein changes and related diseases such as cancer metastasis because the genetic and 

environmental factors are minimized [8]. In addition, determining an exact description of cancer 

metastasis is very helpful for the identification of cancer metastasis biomarkers, especially in early 

stages. 

Various studies have applied urinary proteomics to discover cancer biomarkers for the early diagnosis 

and monitoring of cancer[9-11]. However, most of these studies used clinical urine samples from breast 

cancer patients who had already had distant metastases to viscera or bone[10]. It is difficult to 

clinically collect the exact early stages of breast cancer lung metastasis samples. Using animal models 

renders the exact starting point of cancer lung metastasis available, which is very helpful in the 

identification of biomarkers in the early stage of cancer lung metastasis.  

Walker-256 cells are mammary gland carcinoma cells[12], and the Walker-256 lung carcinoma 

metastasis rat model is a well-known cancer lung metastasis rat model for studies of lung metastasis 

progression, such as evaluating the effects of some drugs on the development of Walker-256 lung 

metastases [13]. In this study, the Walker-256 lung carcinoma metastasis rat model was established by 

tail-vein injection of Walker-256 tumor cells. Urine samples were collected from lung metastasis rat 

models on days 2, 4, 6, and 9 for further urine proteome analysis. By comparing the differential 

proteins of Walker-256 lung carcinoma metastasis rats and subcutaneous rats[9], early lung metastasis 

associated urine biomarkers was identified. The workflow of this research is presented in Figure 1.  
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Figure 1. Workflow of urinary proteomic discovery in this study. Urine samples were collected on days 2, 4, 

6, and 9. 

Materials and methods 

Experimental animals  

Male Wistar rats (150 ± 20 g) and Sprague-Dawley (SD) rats (70 ± 20 g) were purchased from the 

Beijing Vital River Laboratory Animal Technology Co, Ltd. All animals were housed with free access 

to a standard laboratory diet and water with controlled indoor temperature (22 ± 1°C) and humidity (65 

~ 70%) and a 12 h/12 h light-dark cycle. All animal protocols governing the experiments in this study 

were approved by the Institute of Basic Medical Sciences Animal Ethics Committee, Peking Union 

Medical College (Approved ID: ACUC-A02-2014-008). The study was performed according to the 

guidelines developed by the Institutional Animal Care and Use Committee of Peking Union Medical 

College. All efforts were made to minimize suffering. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 22, 2018. ; https://doi.org/10.1101/306050doi: bioRxiv preprint 

https://doi.org/10.1101/306050


Rat model establishment 

The Walker-256 lung carcinoma metastasis rat model was established as reported previously[13]. The 

Walker-256 carcinosarcoma cells were purchased from the Cell Culture Center of the Chinese 

Academy of Medical Sciences (Beijing, China). Briefly, male SD rats were used for ascitic tumor cell 

cultivation. After two cell passages, the Walker-256 tumor cells were collected, centrifuged, and 

resuspended in phosphate-buffered saline (PBS) for the following establishment of rat models. The cell 

viability was assessed by the trypan blue exclusion test. Walker-256 cells were stained with 0.4% 

trypan blue solution and then counted using a hemocytometer. Their viability was approximately 95% 

before the tail-vein injection.  

Male Wistar rats were randomly divided into two groups: the Walker-256 lung carcinoma metastasis 

group (n = 10) and the control group (n = 4). The Walker-256 lung carcinoma metastasis group was 

injected with 2×10
6 

viable Walker-256 cells in 100 μL of PBS by tail-vein injection. The control group 

was tail-vein injected with the same volume of PBS. The animals were anesthetized with sodium 

pentobarbital solution (4 mg/kg) before the tail-vein injection.   

Lung histopathology  

For histopathology, rats were sacrificed on days 2, 4, 6, and 9 by using an overdose of sodium 

pentobarbital anesthetic. The whole lung tissue was fixed in 4% formalin fixative and embedded in 

paraffin. 

Then, the paraffin sections (4-μm thick) were stained with hematoxylin and eosin (HE) to reveal the 

metastatic nodules.  

Urine collection and protein extraction 

First, the rats were accommodated in metabolic cages for 2-3 days for urine sample colleting. Then, the 

urine samples were collected from each rat (from either the lung metastasis group or the control group) 

on days 2, 4, 6, and 9 after Walker-256 cell or PBS tail-vein injection. Each rat was placed in metabolic 

cages with free access to water and without food to avoid contamination overnight for the collection of 

the urine samples in the following 12 h.  
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Urine samples were centrifuged at 12,000 g for 30 min at 4°C immediately to remove cell debris. Then, 

the supernatants were precipitated with three volumes of ethanol at -20°C for 2 h. After centrifugation 

at 12,000 g for 30 min, the pellets were resuspended in lysis buffer (8 mol/L urea, 2 mol/L thiourea, 50 

mmol/L Tris, and 25 mmol/L DTT) at 4°C for 2 h. Finally, after centrifugation at 4°C and 12, 000 g for 

30 min, the supernatants of each sample were measured by using the Bradford assay. The protein 

samples were stored at -80°C for later use.  

SDS-PAGE analysis  

After Walker-256 cell tail-vein injection, 25 μg of protein from each sample on days 2, 4, 6, and 9 and 

the control group on day 2 was added to loading buffer (50 mmol/L Tris-HCl, pH 6.8, 50 mol/L DTT, 

0.5% SDS, and 10% glycerol). Then, all these protein samples were incubated at 98°C for 10 min. The 

urine protein samples from randomly selected Walker-256 lung carcinoma metastasis rats were 

resolved by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  

Protein digestion and peptide preparation  

Urine protein samples of Walker-256 lung carcinoma metastasis rats on days 2, 4, 6, and 9 and the 

control group on day 2 were randomly selected for proteomic analysis. Proteins were digested with 

trypsin (Trypsin Gold, Mass Spec Grade, Promega, Fitchburg, Wisconsin, USA) by using filter-aided 

sample preparation methods, as reported previously[14]. Briefly, 100 μg of proteins were loaded onto 

10-kD cutoff filter devices (Pall, Port Washington, NY) and washed with UA (8 M urea in 0.1 M 

Tris-HCl, pH 8.5) at 14,000 g for 40 min at 18°C twice. Then, 25 mmol/L NH4HCO3 was added to 

wash the protein. Each urinary protein was subsequently denatured with 20 mM DTT at 37°C for 1 h 

and then alkylated with 50 mM iodoacetamide (IAA) for 40 min in the dark. After being washed twice 

with UA and 3 times with 25 mmol/L NH4HCO3, the denatured proteins were resuspended with 25 

mmol/L NH4HCO3 and digested with trypsin (enzyme to protein ratio of 1:50) at 37°C for 12-16 h. 

Finally, the collected peptide mixtures were desalted using Oasis HLB cartridges (Waters, Milford, 

MA) and then dried by vacuum evaporation (Thermo Fisher Scientific, Bremen, Germany). 

LC-MS/MS analysis  
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Digested peptides were re-dissolved in 0.1% formic acid to a concentration of 0.5 μg/μL. Then, 2 μg of 

each sample was transferred to a reversed-phase microcapillary column using a Waters 

ultra-performance liquid chromatography (UPLC) system, and peptides were separated on a 10-cm 

fused silica column. The elution from the fused silica column was performed in 60 min with a gradient 

of 5%–28% buffer B (0.1% formic acid and 99.9% acetonitrile (ACN); flow rate, 0.3 μL/min). The 

peptides were analyzed using an AB SCIEX (Framingham, MA, US) Triple TOF 5600 mass 

spectrometry (MS) system. Samples from four Walker-256 lung carcinoma metastasis rats at 4 time 

points and four control rats were randomly chosen for this study. Each sample was analyzed twice.  

Digested peptides were re-dissolved in 0.1% formic acid to a concentration of 0.5 μg/μL. For analysis, 

1 μg of each peptide from an individual sample was loaded onto a trap column and separated on a 

reverse-phase C18 column (50 μm × 150 mm, 2 μm) using the EASY-nLC 1200 HPLC system 

(Thermo Fisher Scientific, Waltham, MA). The elution for the analytical column lasted 120 min at a 

flow rate of 300 nL/min. Then, the peptides were analyzed with an Orbitrap Fusion Lumos Tribrid 

mass spectrometer (Thermo Fisher Scientific, Waltham, MA). MS data were acquired in 

high-sensitivity mode using the following parameters: data-dependent MS/MS scans per full scan with 

top-speed mode (3 s), MS scans at a resolution of 120,000 and MS/MS scans at a resolution of 30,000 

in the Orbitrap, 30% HCD collision energy, charge-state screening (+2 to +7), dynamic exclusion 

(exclusion duration 30 s), and a maximum injection time of 45 ms.  

Database searching and label-free quantitation 

The MS/MS data of Walker-256 lung metastasis rat samples were searched using Mascot software 

(version 2.4.1, Matrix Science, London, UK) against the SwissProt rat database (released in February 

2017, containing 7992 sequences). For Triple TOF 5600TM, the parameters were set as follows: the 

fragment ion mass tolerance was set to 0.05 Da, and the parent ion tolerance was set to 0.05 Da. The 

search allowed two missed cleavage sites in the trypsin digestion. The carbamidomethylation of 

cysteines was considered a fixed modification, and the oxidation of methionine and deamidation of 

asparagine were considered variable modifications. For the Orbitrap Fusion Lumos, the parent ion 

tolerance was set to 10 ppm, and the fragment ion mass tolerance was set to 0.02 Da. 

Carbamidomethylation of cysteine was set as a fixed modification, and the oxidation of methionine 
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was considered a variable modification. The specificity of trypsin digestion was set for cleavage after 

K or R, and two missed trypsin cleavage sites were allowed.  

Peptide and protein identification was further validated by Progenesis LC-MS/MS software (version 

4.1, Nonlinear, Newcastle upon Tyne, UK) and Scaffold (version 4.7.5, Proteome Software Inc., 

Portland, OR). For Progenesis, the acquired data from the MS scans were transformed and stored in 

peak lists using a proprietary algorithm. Features with only one charge or more than five charges were 

excluded from the analyses. Protein abundance was calculated from the sum of all unique peptide ion 

abundances for a specific protein in each run. The normalization of abundances was required to allow 

comparisons across different sample runs by this software. For further quantitation, all peptides of an 

identified protein were included. Proteins identified by more than one peptide were retained. For 

Scaffold, peptide identifications were accepted at a false discovery rate (FDR) of less than 1.0% by the 

Scaffold Local FDR algorithm, and protein identifications were accepted at an FDR less than 1.0% 

with at least two unique peptides. Comparisons across different samples were performed after 

normalization of total spectra using Scaffold software. Spectral counting was used to compare protein 

abundances at different time points according to a previously described procedure.   

Gene ontology and ingenuity pathway analysis  

All proteins identified to be differentially expressed between the control and lung carcinoma metastasis 

rats were assigned a gene symbol using DAVID [15] and analyzed by Gene Ontology (GO) based on 

biological process, cellular component and molecular function categories. The biological pathway 

analysis of differential proteins analyzed at four time points were performed by IPA software 

(Ingenuity Systems, Mountain View, CA, USA) 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism version 7.0 (GraphPad, San Diego, CA). 

Comparisons between data from samples of four time points were conducted using repeated-measures 

one-way ANOVA followed by multiple comparison analysis with the least significant difference (LSD) 

test. Group differences resulting in P < 0.05 were considered statistically significant.  

Results and discussion  
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Body weight changes of Walker-256 lung carcinoma metastasis rat model 

From 6 days after the tail-vein injection of Walker-256 cells, the average body weight of lung 

carcinoma metastasis rats was lower than that of the control rats (Figure 2), and reduced food intake 

was also observed in lung carcinoma metastasis rats. On day 9 after the tail-vein injection of 

Walker-256 cells, the body weight of lung carcinoma metastasis rats was significantly lower than that 

of the control group. Therefore, we believed that days 2 and 4 were early time points during 

Walker-256 lung metastasis.  

 

Figure 2. The body weight changes of Walker-256 lung carcinoma metastasis rats. 

Pathological changes in Walker-256 lung metastasis rat model 

The pathological changes in the Walker-256 lung carcinoma metastasis rats at different time points are 

shown in Figure 3. The lung metastasis nodules appeared on day 4, and their number and volumes 

increased in Walker-256 lung carcinoma metastasis rats during lung metastasis progression. In addition, 

the metastatic Walker-256 cells arranged closely in lung metastatic rats, and the majority of cells 

showed round or elliptic morphologies accompanied by poor differentiation, while their nuclei were 

large, irregular, and hyperchromatic. More importantly, the lung metastasis nodules were scattered 

throughout the lung parenchyma, while the invasion of Walker-256 cells destroyed the lung tissue 

structure and the alveolar structure. 
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Figure 3. Pathological changes in Walker-256 lung metastatic rats. The magnification was 100× for the 

images of H&E staining. 

SDS-PAGE of Walker-256 lung metastasis rat model 

Urine samples collected at different time points from Walker-256 lung carcinoma metastasis rats were 

separated by 12% SDS-PAGE. As shown in Figure 4, the patterns in urine sample proteins from a 

representative Walker-256 lung metastasis rat changed significantly during lung metastatic progression 

(days 1, 2, 4, 6, 9, 11, 13 and 16). Similar patterns were observed in another 6 rats, suggesting 

consistent lung metastatic progression in the chosen rats. It can be seen in Figure 4 that on days 6 and 9, 

the protein band intensities increased significantly, which is consistent with the times at which the body 

weight changed. 
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Figure 4. Dynamic protein patterns in the urine of Walker-256 lung carcinoma metastasis rats. 

The urine proteome was significantly different in the Walker-256 lung metastasis rat model  

A total of 263 urinary proteins were identified with at least two peptides by using a Triple TOF 5600TM 

mass spectrometer, and 839 urinary proteins were identified with <1% FDR at the protein level with at 

least two peptides by using Orbitrap Fusion Lumos. The differential proteins were screened by the 

following criteria: fold change ≥1.5 or ≤ 0.67, confidence score ≥ 200, P < 0.05 for differences in the 

protein level between the metastasis rat model and the control group, protein spectral counts or the 

normalized abundance from every rat in the high-abundance group greater than those in the 

low-abundance group, and the average spectral count in the high-abundance group ≥ 4. By using these 

screening criteria, 102 differential proteins were identified by using the Triple TOF 5600TM mass 

spectrometer, and 171 differential proteins were identified by using the Orbitrap Fusion Lumos.  

The overlap of differential proteins identified at different stages in 7 lung metastatic rats is shown by a 

Venn diagram (Figure 5). There were 85, 81, 142, and 133 differential proteins on days 2, 4, 6, and 9 

after tail-vein injection of Walker-256 cells, respectively. In addition, 11, 25, 34, and 44 proteins that 

were differentially expressed in all 7 lung metastatic rats were identified by two mass spectrometers on 

days 2, 4, 6, and 9, respectively. There were 62 differential proteins that differed at one or more of the 

same time points and were identified by using two mass spectrometers. Among these 62 differential 

proteins, the levels of 29 differential urinary proteins changed significantly on the second day and 

before lung metastasis nodules appeared, indicating their potential roles in the early detection of lung 

cancer metastasis (Table 1). A data processing flowchart is presented in Figure 6.  
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Figure 5. Evaluation of the overlap of differential proteins identified at different metastatic phases in 7 lung 

metastatic rats. 

 

 

Figure 6. Steps for processing the data from 7 lung metastatic rats. 

 

Some of these 29 differential proteins have been reported to be clinical lung cancer biomarkers and 

also associated with breast cancer metastasis. For example, (1) galectin-3-binding protein (LG3BP) is a 

candidate biomarker for the diagnosis of large-cell neuroendocrine lung carcinoma[16], and it can also 

induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the 
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bloodstream during the metastasis [17]. As another example, (2) neutrophil gelatinase-associated 

lipocalin (NGAL) is a potential biomarker for early stages of lung tumorigenesis[18]. Additionally, the 

stroma-secreted NGAL promotes breast cancer metastasis in vitro and in vivo, thereby contributing to 

tumor progression[19]. (3) The baseline soluble intercellular adhesion molecule 1 (ICAM-1) levels in 

serum were evaluated as an additional prognostic factor in patients with small cell lung cancer (SCLC). 

In addition, the soluble protein ICAM-1 may also be a predictive marker for an objective response 

during chemotherapy for patients with extensive disease (p = 0.001)[20]. In breast cancer, ICAM-1 can 

also activate intracellular signaling pathways in cancer cells, leading to enhanced cell motility, invasion 

and metastasis[21]. (4) In advanced non-small cell lung cancer (NSCLC) patients, the pretreatment 

serum C-reactive protein (CRP) was associated with a poor outcome of treatment with pemetrexed[22]. 

In addition, a positive association between pre-diagnostic high-sensitivity CRP (hs-CRP) was reported 

with breast cancer risk[23]. (5) Apolipoprotein E (ApoE) levels significantly increased in the pleural 

effusion of patients with NSCLC, which serves as a potential marker for the diagnosis of malignant 

pleural effusions (MPEs) as well as the differential diagnosis of MPE in NSCLC[24]. Additionally, 

apolipoprotein E expression promoted lung adenocarcinoma proliferation and migration, which can be 

a potential survival marker in lung cancer[25]. In breast cancer, the serum level of apolipoprotein E 

was also reported to correlate with disease progression and poor prognosis[26]. Other differential 

proteins are annotated in Table 1.  

According to our results, we suggest that it is more appropriate to use a protein panel for a biomarker, 

as the specificities of single protein biomarkers are not significant enough.   
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Table 1. The differential proteins identified at days 2 and 4 in 7 lung metastatic rats by using two mass spectrometers 

Accession Protein names 
ANOVA P 

Trend 
5600 fold change Lumos fold change 

Lung cancer Breast cancer 
5600 Lumos D2 D4 D6 D9 D2 D4 D6 D9 

LG3BP_RAT 
Galectin-3-binding 

protein 
0 0.0079 ↑ 14.58 9.55 3.24 2.69 4.41 3.75 2.02 1.90 [16, 27, 28] [17, 29, 30] 

EZRI_RAT Ezrin 6.43187E-09 0.12 ↑ 2.40 3.00 2.83 2.77 3.04 4.28 3.19 3.74 [31-33] [34, 35] 

GGT1_RAT 
Gamma-glutamyltranspe

ptidase 1 
4.01137E-06 0.00081 ↑ 2.62 2.30 - 1.96 2 2.00 - 2 - [36] 

CLIC1_RAT 
Chloride intracellular 

channel protein 1 
1.55997E-10 0.12 ↑ 7.71 11.55 6.61 10.41 - 6.72 4.22 3.78 [37] [38] 

MOES_RAT Moesin 5.54445E-13 0.3 ↑ 7.26 10.54 6.27 20.80 - 4.80 3.70 4.16 [39] [40-42] 

NGAL_RAT 

Neutrophil 

gelatinase-associated 

lipocalin 

1.16041E-12 < 0.00010 ↑ - 2.12 91.74 60.14 - 3.43 12.43 12.45 [18, 43] [19] 

CO4_RAT Complement C4 6.63924E-08 0.0086 ↑ 2.05 1.97 3.31 2.0 - 3.29 3.81 2.391 [44-46] [47] 

A1AG_RAT 
Alpha-1-acid 

glycoprotein 
2.01394E-09 0.0019 ↑ - 2.65 6.10 10.09 - 2.01 2.04 3.84 [48-50] [51] 

NEP_RAT Neprilysin 0.000298879 0.074 ↑ 2.08 2.15 - - 2.32 2.53 1.90 1.96 - [52] 

ABHEB_RAT 

Alpha/beta hydrolase 

domain-containing 

protein 14B 

2.08722E-14 < 0.00010 ↑ 1.90 1.51 12.49 2.21 1.97 - 4.13 - - - 

NHRF1_RAT 

Na(+)/H(+) exchange 

regulatory cofactor 

NHE-RF1 

5.07818E-06 0.006 ↑ - 5.16 - 3.66 3.97 4.17 3.23 5.18 [53] [54-58] 
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PIGR_RAT 

Polymeric 

immunoglobulin 

receptor 

1.08377E-08 0.035 ↑ 2.143 1.67 1.74 1.58 - 1.55 - 1.76 [59, 60] - 

NHRF3_RAT 

Na(+)/H(+) exchange 

regulatory cofactor 

NHE-RF3 

2.93346E-06 0.12 ↑ - 4.02 - 
3.565564

55 
- 2.29 2.35 2.80 - - 

ROB1_RAT Protein RoBo-1 1.44534E-07 0.073 ↑ 2.16 2.44 2.98 2.81 - 1.97 - 2.29 - [61] 

HSP7C_RAT 
Cluster of heat shock 

cognate 71 kDa protein 
9.28777E-09 0.63 ↑ 2.41 2.34 1.81 2.18 - - 1.72 1.67 [62] [63] 

ICAM1_RAT 
Intercellular adhesion 

molecule 1 
6.86884E-12 0.55 ↑ - 1.69 2.53 1.63 - - 1.94 1.88 [20, 64] [21] 

ACY1A_RAT Aminoacylase-1A 1.31825E-07 0.3 ↑ 2.66 3.55 2.38 2.45 - - 2.99 2.72 [58] [65] 

AMPN_RAT Aminopeptidase N 1.12905E-07 0.2 ↑ 2.12 2.53 - 1.53 - 1.61 - - [66-69] [70-72] 

MTND_RAT 

1,2-Dihydroxy-3-keto-5

-methylthiopentene 

dioxygenase 

5.66214E-15 0.00012 ↑ 2.26 1.58 4.65 1.78 - - 4.08 - - - 

THIO_RAT Thioredoxin 7.78253E-09 0.00024 ↑ - - 17.86 - 2.22 2.15 6.37 2.12 [73] [74] 

GSTO1_RAT 
Glutathione 

S-transferase omega-1 
1.99611E-07 0.011 ↑ 3.06 2.96 11.98 3.88 - - 6.4 - [75] [76] 

CRP_RAT C-reactive protein 4.59968E-08 0.012 ↓ - 0.41 - 0.32 0.63 - 0.28 0.291 [22, 77] [23] 

CATC_RAT Dipeptidyl peptidase 1 0.002482636 0.0018 ↓ 0.62 0.62 0.57 - 0.33 0.30 0.33 0.30 - - 

APOE_RAT Apolipoprotein E 2.72005E-14 0.0014 ↓ 0.44 - 0.26 0.38 0.49 - 0.37 0.55 [24, 25, 78] [26] 

FETUB_RAT Fetuin-B 1.9689E-10 0.00019 ↓ - 0.17 0.14 0.07 - 0.59 0.36 0.39 - - 

EGF_RAT 
Pro-epidermal growth 

factor 
1.9762E-14 0.0073 ↓ 0.39 0.52 0.423 0.30 0.66 - - 0.58 - - 
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VTDB_RAT 
Vitamin D-binding 

protein 
1.43844E-06 0.0012 ↓ - 0.38 0.43 - 0.36 0.34 0.39 0.46 [79, 80] [81] 

ALBU_RAT Serum albumin 8.57146E-08 0.0015 ↓ - 0.35 - 0.33 0.58 0.53 0.63 0.67 [82, 83] [84] 

BTD_RAT Biotinidase 2.45435E-06 0.0049 ↓ - 0.60 0.53 0.49 0.60 0.53 - 0.37 - [85] 

CALB1_RAT Calbindin 1.34388E-10 0.064 ↓ - 0.47 0.43 0.21 - - 0.64 0.38 - - 

MXRA8_RAT 
Matrix-remodeling-asso

ciated protein 8 
5.70928E-05 0.11 ↓ 0.65 0.66 0.52 0.56 - - 0.58 0.62 - - 

NID2_RAT Nidogen-2 4.09459E-08 0.038 ↓ 0.47 - - - 0.44 - - - [86, 87] [88] 

KLK1_RAT Kallikrein-1 1.68021E-12 0.22 ↓ 0.40 0.36 0.33 0.32 - 0.62 - - - - 

CFAD_RAT Complement factor D 0.002928967 0.33 ↓ - 0.60 0.59 - - - 0.64 - [89] 
 

APOA4_RAT Apolipoprotein A-IV 4.0156E-08 < 0.00010 ↓ - - - 0.48 0.10 0.09 0 0.13 [90] [91] 
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Functional analysis of differential urine proteins in Walker-256 lung carcinoma metastasis rats  

The functional annotation of differential proteins was performed by using DAVID[15]. Differential 

proteins at different metastatic time points were classified into biological process, molecular function, 

and molecular components (Figure 7). In the biological processes, epithelial cell differentiation, the 

regulation of immune system processes, and classical complement activation pathway were 

overrepresented on days 2, 4, 6 and 9. The ERK1 and ERK2 cascade was overrepresented on days 2, 4 

and 6. The innate immune response and transport were overrepresented on days 4, 6 and 9. The cell 

adhesion was overrepresented on days 6 and 9. Interestingly, proteins representing the B cell receptor 

signaling pathway, the defense response to bacteria and the positive regulation of B cell activation 

appeared on day 9 (Figure 7A). The majority of these biological processes were reported to be 

associated with breast cancer metastasis or lung cancer. For example, the increasing levels of ERK1 

and ERK2 were associated with breast cancer initiation, growth, and metastasis[92]. The persistent 

complement activation was reported for tumor cells in breast cancer, which consistent with the timing 

of its overrepresentation in this study[93]. The transport and cell adhesion processes were both 

overrepresented on days 6 and 9, which indicated the severe metastasis during lung tumor progression. 

Interestingly, on day 9, proteins representing the B cell activation process became differentially 

expressed, indicating that a candidate antibody may be produced in this period. However, it may be too 

late for these antibodies to overcome Walker-256 cells and to stop the metastasis.  

The majority of differential proteins in the cellular component category came from extracellular 

exosomes, the extracellular space, the cellular region, and vesicles. Only a small number of differential 

proteins were derived from organelles, such as the Golgi apparatus (Figure 7B). This result is 

consistent with the source of normal urine. In the molecular function category, receptor binding and 

serine-type endopeptidase inhibitor activity were overrepresented at all time points, while identical 

protein binding, protein complex binding were overrepresented on days 4, 6, and 9. The transporter 

activity and cell adhesion molecule binding were both overrepresented on day 6, which is consistent 

with the cell adhesion and transport process protein differential expression on day 6. On day 9, 

immunoglobulin receptor binding was overrepresented, but its representation was still consistent with 
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that of the B cell receptor signaling pathway and the positive regulation of B cell activation on day 9 

(Figure 7C). It is noteworthy that this molecular function did not appear before day 9.  

To identify the major biological pathways involved with the differential urine proteins, we used IPA 

for canonical pathway enrichment analysis. FXR/RXR activation, LXR/RXR activation, actin 

cytoskeleton signaling, acute-phase response signaling, IL-12 signaling and production in macrophages, 

the production of nitric oxide and reactive oxygen species in macrophages, and the complement system 

were significantly enriched during the whole metastatic progression (Figure 7D). This result indicated 

that the differential proteins were indeed associated with lung metastatic development.  
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Figure 7. Functional analysis of differential proteins during Walker-256 lung metastatic development. (A) 

Biological process. (B) Cellular component. (C) Molecular function. (D) Pathways 

Comparison of differential urine proteins in Walker-256 lung carcinoma metastasis rats and 

Walker-256 subcutaneous rats  

There were 15 differential proteins identified specifically when these 62 differential proteins common 

to 7 lung metastatic rats at one or more of the same time points were compared with Walker-256 

subcutaneous model data that our laboratory published before[9]. The comparison procedure is 

presented in Figure 8. Nine of these 15 differential proteins (NHRF1, CLIC1, EZRI, AMPN, ACY1A, 

HSP7C, BTD, NID2, and CFAD) were identified at the early stages (day 2 or 4) of lung metastatic 

development to have homologous human proteins, and their levels continued to change during later 

lung metastatic stages, suggesting that these proteins have indeed participated in cancer lung metastasis 

development (Table 2). In addition, eight of these nine differential proteins have been reported to be 

associated with breast cancer, especially metastasis, while seven of the nine (NHRF1, CLIC1, EZRI, 

AMPN, ACY1A, HSP7C, and NID2) have been referenced in lung cancer, indicating their roles in the 

early detection of breast cancer lung metastasis.  
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Figure 8. The procedure comparing urine proteins differentially expressed in Walker-256 lung carcinoma 

metastasis rats and Walker-256 subcutaneous rats 

Seven of these nine differential proteins were associated with both lung cancer and breast cancer, while 

two of them (BTD and CFAD) were reported in lung or breast cancer. (1) The high expression of 

Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHRF1) is a potential marker of aggressiveness 

in NSCLC[53]. In addition, the loss of nuclear NHERF1 expression is associated with reduced survival 

and may serve as a prognostic marker for the routine clinical management of breast cancer patients[54]. 

Additionally, the expression of NHRF1 can define an immunophenotype of grade 2 invasive breast 

cancer associated with poor prognosis[57]. (2) Chloride intracellular channel protein 1 (CLIC1) is 

closely associated with the occurrence and development of lung adenocarcinoma and may thus be used 

as an effective marker for predicting the prognosis of lung adenocarcinoma[37]. In addition, CLIC1 

was also reported to be a potential serological marker for the early detection of breast cancer[38]. (3) 

Ezrin is an early biomarker for the early diagnosis of lung cancer[33] and a potential prognostic marker 

of progression in NSCLC[94-96]. In addition, tumor-associated macrophages (TAMs) promote the 

ezrin phosphorylation-mediated epithelial-mesenchymal transition (EMT) in lung adenocarcinoma 

through FUT4/LeY-mediated fucosylation[97]. In breast cancer, ezrin regulates focal adhesion and 

invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion and 

metastasis[98]. Additionally, ezrin is correlated with cortactin, which facilitates the EMT in breast 

cancer metastases[35]. (4) The expression of aminopeptidase N (AMPN)/CD13 was reported as a 
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potential unfavorable factor in predicting the efficacy and prognosis of post‐operative chemotherapy in 

NSCLC patients, especially in lung adenocarcinoma patients[66, 67]. Additionally, a high level of 

circulating AMPN/CD13 was reported to be an independent prognostic factor in patients with 

NSCLC[69]. In breast cancer patients, the expression of APN/CD13 can serve as a poor prognostic 

factor in the evaluation of breast cancer prognosis[70]. (5) Aminoacylase-1A is not expressed in 

SCLC[58]. In addition, the expression level of aminoacylase-1A in human MCF-7 breast cancer cells 

was altered by 17β-estradiol (E2) treatment and so a might be potent target for treating breast cancer 

patients[65]. (6) The expression level of cluster of heat shock cognate 71 kDa protein was changed 

significantly when lung cancer cells were treated with periplocin, which revealed molecular 

mechanisms underlying the anti-cancer effects of periplocin on lung cancer cells[62]. In MCF-7 and 

MDA-MB-231 breast cancer cell lines, heat shock cognate 71 kDa protein was reported to be identified 

as specific phthalic acid-binding proteins [63]. (7) Loss of nidogen-2 significantly promotes lung 

metastasis of melanoma cells[86]. In human breast cancer specimens, expression of the extracellular 

protease ADAMTS1 (A disintegrin and metalloprotease with thrombospondin repeats 1) was 

downregulated, and nidogen proteolysis was partially inhibited, which has implications for vessel 

integrity[88]. (8) Complement factor D (CFD)/adipsin was overexpressed in BHGc7 cells cultured in 

conditioned medium, and BHGc7 cells were the first establishment of permanent circulating tumor cell 

(CTC) lines from blood samples of advanced stage SCLC patients[89]. (9) Biotinidase is a potential 

serological biomarker for the detection of breast cancer[85]. 

The presence of some other differential proteins, identified only by Triple TOF 5600TM or Orbitrap 

Fusion Lumos, cannot be ignored. When the metastasis model data were compared with the 

Walker-256 subcutaneous data, these differential proteins were screened by the following criteria: (1) 

only identified at early metastatic stages (days 2 and 4); (2) did not contain the differential proteins 

annotated in Table 2; (3) all these differential proteins had corresponding homologous proteins; and (4) 

all these differential proteins exhibited the same trend during the whole lung metastatic periods. The 

differential lung metastatic proteins only identified in these two mass spectrometers were annotated in 

Supplement Tables 1 and 2, respectively. There were 17 differential proteins identified by using Triple 

TOF 5600TM, and 13 of these 17 differential proteins have been reported to be associated with lung 
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cancer and breast cancer. Specifically, 10 of them were reported in both lung cancer and breast cancer, 

while 3 were associated with either lung cancer or breast cancer. There were 24 differential proteins 

identified by using the Orbitrap Fusion Lumos. Fifteen of these 24 differential proteins are associated 

with lung cancer and breast cancer. Specifically, 13 of them were reported in both lung cancer and 

breast cancer, while 2 were associated with either lung cancer or breast cancer. Interestingly, some 

identified differential proteins were associated with either lung cancer or breast cancer, indicating their 

novel potential roles as early candidate biomarkers in monitoring Walker-256 lung metastasis 

progression.  

However, in our study, we found that identifying differential proteins by two different mass 

spectrometers yielded differences. Therefore, we suggest that the use of different mass spectrometers 

should be considered when conducting clinical applications. Overall, this study was preliminary, and 

our results indicate that (1) the urine proteome changed significantly, even on the second day after the 

tail-vein injection of Walker-256 cells and that (2) the urinary differential proteins were different 

between Walker-256 lung metastatic tumors and Walker-256 subcutaneous tumors. Our results provide 

a potential possibility to detect early breast cancer lung metastasis, monitor its progression and 

differentiate it from the same cancer cells grown at other locations.  
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Table 2. Walker-256 lung metastasis differential proteins specifically identified on days 2 and 4  

Accession Protein name 
ANOVA P 

Trends 
5600 fold change Lumos fold change 

Lung cancer Breast cancer 
5600 Lumos D2 D4 D6 D9 D2 D4 D6 D9 

NHRF1_RAT 
Na(+)/H(+) exchange regulatory cofactor 

NHE-RF1 
5.08E-06 0.006 ↑ - 5.16 - 3.66 3.97 3.91 3.23 4.91 [53] [54, 57] 

CLIC1_RAT Chloride intracellular channel protein 1 1.56E-10 0.12 ↑ 7.71 11.55 6.61 10.41 - 6.29 4.00 3.71 [37] [38] 

EZRI_RAT Ezrin 6.43E-09 0.12 ↑ 2.40 3.00 2.83 2.77 3.10 4.32 3.39 3.95 [33, 94-97] [35, 98] 

AMPN_RAT Aminopeptidase N 1.13E-07 0.2 ↑ 2.12 2.53 - 1.53 - 1.57 - - [66, 67, 69] [70] 

ACY1A_RAT Aminoacylase-1A 1.32E-07 0.3 ↑ 2.66 3.55 2.38 2.45 - - 2.99 2.72 [58] [65] 

HSP7C_RAT Cluster of heat shock cognate 71 kDa protein 9.29E-09 0.63 ↑ 2.41 2.34 1.81 2.18 - - 1.72 1.67 [62] [63] 

BTD_RAT Biotinidase 2.45E-06 0.0049 ↓ 
 

0.60 0.53 0.49 0.56 0.53 - 0.37 - [85] 

NID2_RAT Nidogen-2 4.09E-08 0.038 ↓ 0.47 - - - 0.44 - - - [86] [88] 

CFAD_RAT Complement factor D 0.0029 0.33 ↓ - 0.60 0.59 - - - 0.64 - [89] - 
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Supplement Table 1. The lung metastasis differential proteins specifically identified with a Triple TOF 

5600TM  

Accession Protein description Trend 
ANOVA 

P 

Average fold change 
Lung cancer Breast cancer 

D2 D4 D6 D9 

ACTG_RAT Actin, cytoplasmic 2 ↑ 6.10E-08 2.54 3.18 1.79 3.35 [99-101] [102, 103] 

PRDX6_RAT Peroxiredoxin-6 ↑ 1.31E-08 3.30 - 17.61 7.25 [104, 105] [106] 

CK054_RAT 
Ester hydrolase 

C11orf54 homolog 
↑ 3.23E-09 3.29 - 6.95 10.07 - - 

IF6_RAT 
Eukaryotic translation 

initiation factor 6 
↑ 1.02E-08 2.23 - 6.56 2.57 [107] - 

CD14_RAT 

Monocyte 

differentiation antigen 

CD14 

↑ 3.30E-05 - 1.65 1.67 1.96 [108, 109] [110, 111] 

VDAC1_RAT 

Voltage-dependent 

anion-selective 

channel protein 1 

↑ 2.07E-08 - 30.97 24.51 18.64 [112] [113] 

F16P1_RAT 
Fructose-1,6-bisphosp

hatase 1 
↑ 3.51E-05 - 4.41 4.79 5.99 [114] [115, 116] 

ILEUA_RAT 
Leukocyte elastase 

inhibitor A 
↑ 4.59E-05 2.34 - 11.10 - [33] - 

MEP1B_RAT Meprin A subunit beta ↑ 1.04E-05 1.79 - - - - - 

ALDOB_RAT 
Fructose-bisphosphate 

aldolase B 
↑ 

0.000111

701 
- 2.14 - - [117] [118] 

EF1A1_RAT 
Elongation factor 

1-alpha 1 
↑ 

0.002499

31 
- 1.76 - - [119] [120, 121] 

AMPE_RAT 
Glutamyl 

aminopeptidase 
↑ 6.40E-06 - 1.93 - - - - 

PIP_RAT 
Prolactin-inducible 

protein homolog 
↓ 2.10E-06 0.47 0.53 0.29 0.26 - [122-124] 

GGH_RAT 
Gamma-glutamyl 

hydrolase 
↓ 2.07E-14 - 0.39 0.52 0.39 [125] [126] 

PRVA_RAT Parvalbumin alpha ↓ 
0.000182

114 
- 0.30 - 0.36 - - 

FETUA_RAT 
Alpha-2-HS-glycoprot

ein 
↓ 1.73E-08 - 0.48 - 0.35 [127, 128] [129-131] 

TRFE_RAT Serotransferrin ↓ 1.60E-05 - 0.36 - - [132, 133] [134, 135] 
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Supplement Table 2. The lung metastasis differential proteins specifically identified with an Orbitrap 

Fusion Lumos  

Accession Protein description Trend 
ANOVA 

P 

Average fold change 
Lung cancer Breast cancer 

D2 D4 D6 D9 

CLIC4_RAT 
Chloride intracellular 

channel protein 4 
↑ 0.12 23.5 20 22 - [136] [38, 137] 

PPIA_RAT 
Peptidyl-prolyl cis-trans 

isomerase A 
↑ 0.079 3.39 - 2.46 2.87 [138, 139] [140, 141] 

GP2_RAT 

Pancreatic secretory granule 

membrane major 

glycoprotein GP2 

↑ 0.046 4.76 - 3.18 4.66 - - 

NKG2D_RAT 
NKG2-D type II integral 

membrane protein 
↑ 0.016 - 7.89 8.33 8.11 - - 

ENOA_RAT Alpha-enolase ↑ 0.022 1.77 - 1.56 - [142, 143] [144] 

EF1A1_RAT Elongation factor 1-alpha 1 ↑ 0.12 3.03 - 4.31 - [119] [120, 121] 

ACTB_RAT Actin, cytoplasmic 1 ↑ 0.27 2.30 - 2.29 - [99, 101, 145] [102, 103] 

RHOA_RAT Transforming protein RhoA ↑ 0.26 7.25 - 5.42 - [146, 147] [148, 149] 

BASP1_RAT Brain acid soluble protein 1 ↑ 0.22 3.33 - - 4.46 - - 

ACY3_RAT 
N-acyl-aromatic-L-amino 

acid amidohydrolase 
↑ 0.24 - 4.30 - 3.43 - - 

HS90B_RAT 
Heat shock protein HSP 

90-beta 
↑ 0.38 8.27 - - - [150] [151] 

CYC_RAT Cytochrome c, somatic ↑ 0.052 3.27 - - - - - 

VDAC1_RAT 

Voltage-dependent 

anion-selective channel 

protein 1 

↑ 0.25 10.67 - - - [112] [113] 

GDIR1_RAT 
Rho GDP-dissociation 

inhibitor 1 
↑ 0.028 - 2.92 - - [152] [153] 

PRDX1_RAT Peroxiredoxin-1 ↑ 0.62 - 3.43 - - [154, 155] [156] 

GPC5C_RAT 
G-protein coupled receptor 

family C group 5 member C 
↑ 0.24 - 2.79 - - [157] - 

RET4_RAT Retinol-binding protein 4 ↓ 0.0015 0.28 0.31 0.28 0.31 [158] [159] 

PPT2_RAT Lysosomal thioesterase PPT2 ↓ 0.088 0.59 0.62 0.36 - - - 

APOH_RAT Beta-2-glycoprotein 1 ↓ 0.035 - 0.39 0.45 0.44 [160] [161, 162] 

NEUR1_RAT Sialidase-1 ↓ 
< 

0.00010 
0.60 - - 0.14 - - 

MINP1_RAT 
Multiple inositol 

polyphosphate phosphatase 1 
↓ 0.053 0.47 - - 0.23 - - 

PCOC1_RAT 
Procollagen C-endopeptidase 

enhancer 1 
↓ 0.025 0.40 - - 0.43 - - 

HRG_RAT Histidine-rich glycoprotein ↓ 0.42 - 0.33 0.42 - - [163] 
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PDIA1_RAT Protein disulfide-isomerase ↓ 0.1 0.45 - - - [164] [38, 165] 
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