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Abstract 

Assembly of reference-quality genomes from next-generation sequencing data is a key challenge in genomics. 
Recently, we and others have shown that Hi-C data can be used to address several outstanding challenges in the 
field of genome assembly. This principle has since been developed in academia and industry, and has been used in 
the assembly of several major genomes. In this paper, we explore the central principles underlying Hi-C-based 
assembly approaches, by quantitatively defining and characterizing three invariant Hi-C interaction patterns on 
which these approaches can build: Intrachromosomal interaction enrichment, distance-dependent interaction decay 
and local interaction smoothness. Specifically, we evaluate to what degree each invariant pattern holds on a single 
locus level in different species, cell types and Hi-C map resolutions. We find that these patterns are generally 
consistent across species and cell types but are affected by sequencing depth, and that matrix balancing improves 
consistency of loci with all three invariant patterns. Finally, we overview current Hi-C-based assembly approaches in 
light of these invariant patterns and demonstrate how local interaction smoothness can be used to easily detect 
scaffolding errors in extremely sparse Hi-C maps. We suggest that simultaneously considering all three invariant 
patterns may lead to better Hi-C-based genome assembly methods. 
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1. Introduction 

Since the publication of the draft human genome sequence, advances in DNA sequencing technology have 
transformed modern biological research [1]. High throughput next-generation sequencing (NGS) technology, based 
on short reads, has allowed to obtain massive amounts of genomic sequences. In spite of this, standard short read 
NGS technology alone is not sufficient to produce reference-quality genomes[2,3]. Ironically, the substantial ease of 
NGS compared to traditional low-throughput methods (e.g. involving cloning), has led to a stark decrease in the 
quality of published genomes, when compared to traditionally-sequenced genomes such as that of human and 
mouse. 

To understand the problems associated with standard short-read NGS assembly, let us briefly overview how NGS is 
typically used for de novo genome assembly. First, genomic DNA is fragmented and sequenced. Resulting reads that 
contain unique overlapping sequences are then stitched together to create longer contiguous sequences called 
contigs. Due to the repetitive nature of genomes and their size relative to the read size, many overlaps will be non-
unique, resulting in a huge number of contigs (on the order of 105-106 contigs for a human-sized genome). Next, 
contigs are grouped and positioned relative to each other in a process called scaffolding. Typically, long-insert 
libraries are used for scaffolding. This consists of genome fragmentation, size-selection to a predetermined size 
range and paired-end sequencing. Molecules that uniquely map to two different contigs can then be used to 
estimate the distance between the contigs and position them relative to one another. Each resulting set of 
associated contigs (including gaps in between) is called a scaffold. Ideally, one would like to obtain a single scaffold 
for each chromosome. However, even with high coverage and multiple-sized long-insert libraries, a human-sized 
genome may end up having ~104-105 scaffolds. While these highly fragmented genomes may be useful for some 
applications, they have limited utility for the study of long-range phenomena, including large-scale genome 
evolution, comparative genomics, gene regulation, haplotyping and 3D genome organization. Furthermore, short 
read NGS cannot accurately reconstruct complex polyploid and rearranged genomes – including cancer genomes. 
Thus, these limitations seriously hinder our genomic view of many critical biological systems. 

Importantly, the dramatic decrease of cost per read produced by NGS will not help alleviate problems associated 
with non-uniqueness due to read length. The recent development of long-read sequencing technologies, has helped 
mitigate some of the problems associated with short reads and can reduce the number of scaffolds by one or two 
orders of magnitude, but is generally expensive and limited in achieving chromosome-scale scaffolds [4,5]. 
Alternatively, non-sequencing based technologies exist, ranging from classical cloning to newer techniques such as 
optical mapping [6,7]. Thus, the development of novel simple techniques that can take advantage of short read 
sequencing remains an important challenge. 

Hi-C is a molecular biology technique which measures spatial physical proximity between pairs of DNA loci genome-
wide [8,9]. Hi-C is based on proximity ligation, such that DNA sequences that are in physical proximity are ligated to 
each other, and are then measured with NGS technology. By sequencing hundreds of millions of these chimeric 
molecules, data can be aggregated to construct an interaction matrix which provides an interaction frequency for 
every pair of genomic loci. Interaction patterns observed in the interaction map are then interpreted and used to 
extract biological knowledge. Hi-C and similar techniques [10,11], all of which are derivatives of Chromosome 
Conformation Capture (3C) [12], has been used extensively to study genome 3D organization and led to key biological 
insights in several different species, including bacteria [13], yeast [14,15], plants [16], worms [17], insects [18]  and 
mammals [8,19–22]. Although in this paper we focus on Hi-C, most of this work is relevant for other genome-wide 
3C derivatives. 

Recently, we and others have proposed that Hi-C measurements can be used to solve outstanding challenges related 
to genome assembly [23–33]. This is based on the notion that all Hi-C interaction maps share common features 
which relate 3D interaction frequencies to the 1D ordering of the genome. For example, loci which are nearby in the 
genomic sequence tend, on average, to interact more frequently than loci that are located far away on the 
chromosome, which in turn interact more frequently than loci that are located on different chromosomes [23,34]. 
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Thus, given a set of contigs and Hi-C measurements on a new genome, we can build on these shared principles, 
consolidating interaction frequencies between contigs to estimate the relative positions of contigs and scaffold 
them. Advantages of this approach include robustness to very large gaps, relatively low sequencing coverage 
requirement and applicability to any species. Additionally, a major feature of this approach is that it is based on 
short-read technology, and can thus directly benefit from the rapid increase in short-read sequencing power. Since 
the initial proposal of this notion [23,24], Hi-C has been used to scaffold several major genomes including the frog 
[35], quinoa [36], goat [37], mosquito [29], barley [38], house spider [39], alligator [40], durian [41], lettuce [42] and 
cassava [42] genomes. Still, Hi-C is typically used for scaffolding in conjunction with intermediate techniques, such 
as long-read sequencing. 

Hi-C is also useful for addressing other challenges related to genome assembly. (1) Haplotype phasing: Large-scale 
haplotype phasing is difficult with short reads, since Single Nucleotide Polymorphisms (SNPs) may be sparse and only 
reads that map to two SNPs are useful. Due to the physical separation of homologous chromosomes in the nucleus, 
the probability of observing intrachromosomal interactions is much higher than observing interchromosomal 
interactions. Thus, Hi-C can be used to reconstruct chromosome-scale scaffolds by providing SNP linkage information 
over large distances that are not spanned by normal reads [31,43]. (2) Metagenome deconvolution: In metagenome 
and microbiome samples, sequencing typically results in a set of contigs and the challenge is to group contigs that 
come from the same species. Hi-C provides long-distance linkage information and can thus be used to connect 
contigs, while the problem of observing genomic interactions between cells is extremely low [26–28]. Hi-C can also 
be used to associate plasmids with their respective genomes. (3) Cancer genomes: Cancer genomes are often highly 
rearranged and thus pose a major challenge to assemble de novo. Large structural variations are especially difficult 
to measure with short reads, since the rearrangement will only be reflected in a small fraction of the reads (i.e. those 
that map to the edges of the rearranged region). In Hi-C, structural variations can be detected since they appear to 
deviate from standard Hi-C patterns [32,33]. 

2. Invariant Hi-C patterns 

Since the 3D organization of a genome reflects its functional state, it is not surprising that 3D genome organization 
differs between species. In fact, 3D genome organization varies between cell-types [8,20], along different stages of 
the cell-cycle [44–46], and even within homogenous populations of synchronized cells [46].  Despite this, certain 
aspects of 3D genome organization, as measured by Hi-C, are universal [23,34]. We refer to these as invariant 
patterns, since they have been observed across species, cell types and conditions. These patterns have even 
observed in single-cell interaction maps [46,47]. Importantly, other biological patterns, which are specific to the 
biological system at hand, will lead to local deviations from these general rules, but by large the invariant patterns 
are dominant in Hi-C data. In fact, these patterns are so robust and ubiquitous that they are used to evaluate the 
quality of Hi-C experiments and check for experimental artifacts [34]. Importantly, these patterns have previously 
been studied quantitatively mainly at the level of genome averages, but less at the level of individual loci. In this 
paper, we set out to explore the central principles underlying Hi-C-based assembly, by quantitatively defining and 
characterizing three invariant Hi-C interaction patterns on which these approaches can build: Intrachromosomal 
interaction enrichment, distance-dependent interaction decay and local interaction smoothness. Specifically, we 
evaluate to what degree each invariant pattern holds on a single locus level in different species, cell types and Hi-C 
map resolutions/sequencing depths. Evaluation at the single-locus level is important since loci which deviate from 
these patterns may lead to assembly errors. We note that a general limitation of these analyses is that Hi-C does not 
directly measure interaction probabilities, meaning that due to the random sampling and sequencing-depth 
limitation inherent to the experiment, the estimation of small interaction probabilities will be unreliable. 

In our analyses we use Hi-C maps from human (Hap1 [48], IMR90 [19], HESC [19]), mouse (MESC [19], cortex [19]), 
worm (C. elegans [17]) and bacteria (C. crescentus [13]). All maps were processed using the Dekker lab Hi-C pipeline 
and balanced unless specified otherwise [49,50]. All code required to reproduce the results in this paper is available 
at https://github.com/KaplanLab/Invariants. 
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2.1 Invariant pattern I: Intrachromosomal interaction enrichment 

The first invariant pattern is intrachromosomal interaction enrichment. In Hi-C interaction maps, this is observed as 
a tendency of loci to interact more frequently with loci within the same chromosome (cis-interactions) than with loci 
on different chromosomes (trans-interactions). Two major components underlie this pattern. The first component 
is a phenomenon known as chromosome territories, in which chromosomes occupy distinct volumes throughout cell 
cycle, leading to physical separation between chromosomes [51]. The second component is the random positioning 
of chromosomes in the nucleus. Although some chromosomes show a tendency to be located near the center of the 
nucleus while others tend to be located more peripherally (this is known as radial positioning), the relative positions 
of chromosomes with respect to each other is largely random [52]. This may be due to the inability of relative 
chromosome positioning to be inherited through cell-cycle, which could lead to such variation in a cell population 
[53]. Thus, on a population average, as measured in a standard Hi-C experiment, the probability of any specific pair 
of chromosomes to interact over the entire population is low. Notably, this phenomenon may not hold in a single-
cell Hi-C interaction map, but chromosome territories will be present in single-cell interaction maps[46,47]. The 
combination of these two components yields a strong bias towards intrachromosomal interactions in Hi-C 
interaction maps.  

This invariant is explicitly used to evaluate the quality of Hi-C libraries. Typically the ratio between intrachromosomal 
(cis) and interchromosomal (trans) is used as a quality metric for Hi-C, but, depending on how it is calculated, may 
be genome-specific as it can depend on the number and sizes of chromosomes.  The underlying logic is that general 
random noise (such as that caused by background ligation) will affect the interaction matrix uniformly, and thus 
cause cis and trans to be similar [49]. 

Formally, we can characterize this invariant pattern as: 

𝑐ℎ𝑟(𝑖) = 𝑐ℎ𝑟(𝑗), 𝑐ℎ𝑟(𝑖) ≠ 𝑐ℎ𝑟(𝑘) ⇒ 𝑝 (𝑖, 𝑗) > 𝑝 (𝑖, 𝑘) 

Where 𝑐ℎ𝑟(𝑖) is the chromosome of locus 𝑖, and 𝑝 (𝑖, 𝑗) is the interaction probability of loci 𝑖, 𝑗. In other words, if 
𝑗 is on the same chromosome as 𝑖 but 𝑘 is not, 𝑖 will interact more frequently with 𝑗 than with 𝑘. 

To quantify the extent to which invariant I holds, we used the following scheme. For each genomic locus (i.e. bin) 𝑖 
in a Hi-C matrix, we considered all pairs of loci 𝑗, 𝑘 such that 𝑗 is on the same chromosome and 𝑘 is on a different 
chromosome. We then calculated in what fraction of pairs 𝑗 interacts more frequently with 𝑖 than 𝑘  does and refer 
to this as the consistency of locus 𝑖 with invariant I (marked 𝐶 (𝑖)). Similarly, we calculated in what fraction of pairs 
𝑗 interacts less frequently with 𝑖 than 𝑘  does and refer to this as the inconsistency of locus 𝑖 with invariant I (marked 
𝐶 (𝑖)). 

We then tested the distribution of consistency and inconsistency with invariant I genome-wide in various Hi-C map 
resolutions, cell types, species and with/without map balancing (Figure 1). We find high median 𝐶  values of ~0.99 
in 1Mb resolution Hi-C maps across multiple cell types in human (Hap1, HESC, IMR90) and mouse (cortex, MESC). 
We noted that loci with low consistency are often located near telomeres or centromeres, possibly due to 
telomere/centromere interchromosomal interactions, low interaction probability at large genomics distances, or 
errors related to sequence complexity in these regions. For 100Kb maps, we observe that their low read coverage 
(on average 100 times less reads per matrix entry relative to the 1Mb maps) reduces the median 𝐶  0.76-0.78. We 
also observe that Hi-C matrix balancing [49,50] improves the median 𝐶  (0.99/0.96 for balanced/unbalanced Hap1 
1Mb; 0.76/0.69 for balanced/unbalanced Hap1 100Kb). Finally, we observe slightly lower median 𝐶  values of 0.80 
(50Kb bins) and 0.50 (10 Kb bins) for C. elegans Hi-C, which we attribute to both lower sequencing depth and 
relatively low quality (high noise) of this Hi-C map. In summary, we find that invariant I consistency is high across 
species and cell types, but can be reduced by low read coverage per bin or by avoiding map balancing. 
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Figure 1. Genome-wide analysis of invariant pattern I (intrachromosomal interaction enrichment). The resolution (bin-size) of 
each Hi-C map is specified along with the number of valid read-pairs per bin and per matrix entry in parentheses. (a) Genome-
wide consistency (𝐶  in red, see text for details) and inconsistency (𝐶  in blue) with invariant I for Hap1 1Mb and 100Kb Hi-C 
interaction maps. (b) Violin plots showing the genome-wide distribution of 𝐶  and 𝐶  in various Hi-C interaction maps. 
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2.2 Invariant pattern II: Distance-dependent interaction decay 

The second invariant pattern is distance-dependent interaction decay. In Hi-C interaction maps, this is observed as 
a general tendency of interaction frequency to decrease with genomic distance, such that a locus interacts more 
frequently with loci which are nearby in the genomic sequence than with far away loci. This type of distance-
dependent decay is an inherent feature of many polymer physics models, which are inherently stochastic, simply 
because loci which are nearby in the genomic sequence will interact frequently by random. Thus, we expect this 
invariant to hold simply due to the stochastic nature of the DNA polymer. In fact, the exact details of the distance 
dependence can be used to suggest properties of the underlying polymer and it may thus also hold biological 
relevance, such as in the case of mitotic chromosome organization [45]. 

Due to the dominance of this invariant, it is often normalized out of the data in order to detect subtler biological 
patterns such as genomic compartments [8,49,50]. 

Formally, we can characterize this invariant pattern as: 

|𝑖 − 𝑗| < |𝑖 − 𝑘| ⇒ 𝑝 (𝑖, 𝑗) > 𝑝 (𝑖, 𝑘) 

Where 𝑝 (𝑖, 𝑗) is the interaction probability of loci 𝑖, 𝑗. In other words, if 𝑗 is closer (in genomic distance) to 𝑖 than 
𝑘 is, 𝑖 will interact more frequently with 𝑗. Note that while their underlying mechanisms may be different, invariant 
II implies invariant I if we define that being on a different chromosome is equivalent to being infinitely far in genomic 
sequence. 

To quantify the extent to which invariant II holds, we used the following scheme. For each genomic locus (i.e. bin) 𝑖 
in a Hi-C matrix, we considered all pairs of loci 𝑗, 𝑘 such that 𝑗 is closer to 𝑖 in genomic distance than 𝑘 is. We then 
calculated in what fraction of pairs 𝑗 interacts more frequently with 𝑖 than 𝑘  does and refer to this as the consistency 
of locus 𝑖 with invariant II (marked 𝐶 (𝑖)). Similarly, we calculated in what fraction of pairs 𝑗 interacts less frequently 
with 𝑖 than 𝑘 does and refer to this as the inconsistency of locus 𝑖 with invariant II (marked 𝐶 (𝑖)). 

Next, we tested the distribution of consistency and inconsistency with invariant II genome-wide in various Hi-C map 
resolutions, cell types, species and with/without map balancing (Figure 2). We find median 𝐶  values in the range of 
0.79-0.88 in 1Mb resolution Hi-C maps across multiple cell types in human (Hap1, HESC, IMR90) and mouse (cortex, 
MESC). In contrast to invariant I, here we find variation which is not necessarily associated with read coverage (e.g. 
median 𝐶  0.88 vs 0.79 for mouse ESC vs cortex with roughly similar amount of read coverage). Once again, we 
noted that loci with low consistency are often located near telomeres or centromeres, likely due to the problematic 
nature of these regions. For 100Kb maps, we observe lower median 𝐶  values in the range of 0.63-0.74. We also 
observe that Hi-C matrix balancing improves the median 𝐶  (0.85/0.80 for balanced/unbalanced Hap1 1Mb; 
0.73/0.65 for balanced/unbalanced Hap1 100Kb). We observe median 𝐶  values of 0.82 (50Kb bins) and 0.56 (10 Kb 
bins) for C. elegans Hi-C, values which are comparable to the mammalian Hi-C maps when controlling for read 
coverage. Finally, we tested a bacterial (C. crescentus; 10Kb) Hi-C map and found a bimodal 𝐶  distribution (𝐶  peak 
centers at 0.53 and 0.82), reflecting the circular nature of the chromosome and highlighting the potential difficulty 
in applying this principle to circular chromosomes.  In summary, we find that invariant II consistency is high, but can 
vary, across cell types and species, and can be reduced by low read coverage per bin or by avoiding map balancing. 

2.3 Invariant pattern III: Local interaction smoothness 

The third invariant is local interaction smoothness. In Hi-C interaction maps, this is observed as a tendency of nearby 
loci to share similar interactions (e.g. adjacent rows will tend to be similar). The physical basis of this invariant is 
intuitive: given the set of interactions of a genomic locus A, if we consider a locus B that is sufficiently close to A it 
will also be close to the neighbors of A simply due to physical constraints such as the triangle inequality and 
chromatin persistence length. This invariant is informally used to assess experimental artifacts in Hi-C experiments,  
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Figure 2. Genome-wide analysis of invariant pattern II (distance dependent interaction decay). (a) Genome-wide consistency (𝐶  
in red, see text for details) and inconsistency (𝐶  in blue) with invariant II for Hap1 1Mb and 100Kb Hi-C interaction maps. (b) 
Violin plots showing the genome-wide distribution of 𝐶  and 𝐶  in various Hi-C interaction maps. 
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and one of the criteria for successful removal of biases (e.g. by matrix balancing) is the visual smoothness of the 
resulting matrix [49,50]. 

Formally, we can characterize this invariant pattern as: 

|𝑖 − 𝑗| < |𝑖 − 𝑘| ⇒ |𝑝 (𝑖, 𝑡) − 𝑝 (𝑗, 𝑡)| < |𝑝 (𝑖, 𝑡) − 𝑝 (𝑘, 𝑡)| 

Where 𝑝 (𝑖, 𝑗) is the interaction probability of loci 𝑖, 𝑗. In other words, if 𝑗 is closer to 𝑖 than 𝑘 is, we expect the 
interaction probability of (𝑗, 𝑡) to be closer to that of (𝑖, 𝑡) than the interaction probability of (𝑘, 𝑡) is to that of (𝑖, 𝑡). 
We expect this to be mostly a local effect, so that it would hold only for 𝑗 which is relatively close to 𝑖. 

To quantify the extent to which invariant III holds, we used the following scheme. For each genomic locus (i.e. bin) 𝑖 
in a Hi-C matrix, we considered positions 𝑗 = 𝑖 + 1, 𝑘 = 𝑖 + 10 (units are bins) as well as every same-chromosome 
locus 𝑡. We calculated for which fraction of 𝑡 the interaction of (𝑗, 𝑡) is closer (absolute value of the difference) to 
that of (𝑖, 𝑡) than the interaction of (𝑘, 𝑡) is to that of (𝑖, 𝑡). We refer to this as the consistency of locus 𝑖 with invariant 
III (marked 𝐶 (𝑖)). Similarly, we calculated for which fraction of 𝑡 the interaction of (𝑘, 𝑡) is closer (absolute value 
of the difference) to that of (𝑖, 𝑡) than the interaction of (𝑗, 𝑡) is to that of (𝑖, 𝑡), and refer to this as the inconsistency 
of locus 𝑖 with invariant II (marked 𝐶 (𝑖)). We excluded the main diagonal from this analysis. 

We tested the distribution of consistency and inconsistency with invariant III genome-wide in various Hi-C map 
resolutions, cell types, species and with/without map balancing (Figure 3). We find median 𝐶  values in the range 
of 0.75-0.79 in 1Mb resolution Hi-C maps across multiple cell types in human (Hap1, HESC, IMR90) and mouse 
(cortex, MESC). For 100Kb maps, we observe low median 𝐶  values of 0.49. For Hap1 40Kb we observed a very low 
median 𝐶  value of 0.27 which is only slightly higher than the median 𝐶  value of 0.25. We find that balancing 
improves the median 𝐶  (0.79/0.73 for balanced/unbalanced Hap1 1Mb; 0.49/0.38 for balanced/unbalanced Hap1 
100Kb. For the bacterial Hi-C map, we observe a high level of consistency (median 𝐶  0.95 for 40Kb bins and 0.73 
for 10Kb bins), suggesting this invariant may alleviate some of the issues associated with circular chromosomes and 
invariant II.  In summary, we find that invariant III consistency is high and consistent across cell types and species, is 
improved by balancing, but can be dramatically reduced at low read coverage. 

While the consistency with invariant III seemed to be low and potentially useless in low read coverage maps, we 
hypothesized that it may be useful to consider not only whether individual loci are consistent but also to what 
degree. To this end, we defined the smoothness of a locus as: 

𝑠(𝑖) =
1

|𝑇|
|𝑝 (𝑖, 𝑡) − 𝑝 (𝑘, 𝑡)| − |𝑝 (𝑖, 𝑡) − 𝑝 (𝑗, 𝑡)| 

Where 𝑝 (𝑖, 𝑗) is the interaction probability of loci 𝑖, 𝑗. Thus, a positive value of 𝑠(𝑖) would indicate the 
intrachromosomal interactions of 𝑗 are closer to those of 𝑖 than the interactions of 𝑘 are to those of 𝑖. We then 
calculated 𝑠 genome-wide on a Hap1 40Kb resolution map, assuming positions 𝑗 = 𝑖 + 1, 𝑘 = 𝑖 + 10 (units are bins) 
and that 𝑡 are same-chromosome loci. Remarkably, we find that 𝑠 values are overwhelmingly positive (0.999 of the 
bins are positive), in contrast to 𝐶  values. We suggest this difference is due to many inconsistent bins having low 
interaction probabilities. In light of these results, we suggest using 𝑠 for practical applications such as detecting 
assembly errors and structural variation (see Evaluation section for an example of application in normal and 
extremely low-coverage interaction maps). 

3. Hi-C-based scaffolding 

Genome scaffolding is a sub-problem of genome assembly, which arises due to the inability to assemble the entire 
genome sequence during initial contig assembly. Genome scaffolding can be partitioned into 4 tasks: (1) Karyotyping: 
grouping contigs into chromosomes; (2) Contig ordering: determining the genomic order of contigs within each 
chromosome; (3) Contig positioning: determining the absolute position, or alternatively the gap size between contigs  
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Figure 3. Genome-wide analysis of invariant pattern III (local interaction smoothness). (a) Genome-wide consistency (𝐶  in red, 
see text for details) and inconsistency (𝐶  in blue) with invariant III for Hap1 Hi-C interaction map. (b) Violin plots showing the 
genome-wide distribution of 𝐶  and 𝐶  in various Hi-C interaction maps. (c) Genome-wide smoothness (𝑠 in red, see text for 
details) for Hap1 40K Hi-C interaction map. Cyan line indicates zero. 
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within each chromosome; (4) Contig orientation: determining the orientation of each contig with respect to other 
contigs within each chromosome. All Hi-C-based scaffolding methods use one or more of the invariant patterns. 
Invariant pattern I can indicate which contigs belong to the same chromosome, and can thus be used in karyotyping. 
Invariant pattern II can indicate which contigs within the same chromosome are closer than others, and can thus be 
used in contig ordering. By estimating the actual global distance decay interaction pattern, invariant pattern II can 
be used for contig positioning. Additionally, we can apply invariant pattern II to contigs that contain multiple 
restriction fragments and thus estimate contig orientation. Invariant pattern III indicates which contigs are near each 
other, but is less relevant to long-distance interactions. Invariant III can be useful for contig ordering and orientation, 
as well as error-detection (see Evaluation section). 

Five Hi-C-based scaffolding methods have been developed previously: DNA Triangulation [23], LACHESIS [24], GRAAL 
[25], HiRise [40] and 3D DNA [29]. In general, current Hi-C-based scaffolding methods mainly use invariant patterns 
I and II, and use either probabilistic modelling approaches or graph-based approaches. Notably, the problem 
formulations suggested by all current methods do not admit optimal solution, and thus rely on heuristics. Of these, 
only DNA Triangulation, GRAAL and 3D DNA are actively maintained. All methods are provided via GitHub code 
repositories. Finally, we note that most methods do not try to resolve complex ploidy and repetitive regions. 

Note that Hi-C-based scaffolding methods can either be applied directly to contigs or to mini-scaffolds produced by 
alternative technologies (e.g. long-insert libraries). To avoid confusion between input mini-scaffolds and the 
scaffolds constructed by Hi-C, we will refer to input contigs and mini-scaffolds simply as contigs since they are largely 
equivalent for the application of Hi-C-based assembly. In general, patterns in Hi-C become more pronounced with 
higher sequencing coverage and allow higher resolution, meaning large contigs will accumulate more reads and can 
be better positioned. In light of this, it is beneficial to aim for relatively large contigs in the input set (depends on the 
Hi-C coverage, but for current methods 100kb is a reasonable size to aim for). Finally, as we have observed that 
balancing improves consistency with all three invariant patterns, we recommend balancing Hi-C data prior to its 
usage in scaffolding. 

In addition to the invariant Hi-C patterns, other interaction patterns appear in Hi-C maps. These patterns may be 
specific to the species, cell-type or cellular condition. These patterns include genomic compartments, TADs, point 
interactions, circular chromosomes and telomere/centromere clustering. While these patterns are typically not as 
strong as the invariant patterns, they can cause distortions and complicate Hi-C-based scaffolding. Indeed, in our 
analysis of invariant patterns we observe cell-type specific differences in some cases, as well as possible effects of 
circular chromosomes and telomere/centromere interactions. This potential link between errors in genome 
assembly and biological Hi-C patterns is important to keep in mind if the Hi-C is used to interpret 3D genome 
organization. For example, an assembly error in which a genomic region is left out may appear as if it is a TAD 
boundary, and vice versa, an actual TAD boundary may lead to prediction of a gap in the genome assembly. Thus, 
we recommend that biological features of 3D genome organization that are observed in Hi-C-scaffolded genomes 
should be interpreted cautiously (ideally, validated by orthogonal methods). An interesting notion is to try to 
experimentally eliminate the biological patterns leading to deviations from the invariant patterns. Indeed, this is the 
logic underlying Dovetail Genomics’ Chicago technology, which is based on extracting DNA and reconstituting it into 
chromatin before applying Hi-C[40]. However, it seems that this technique may have been replaced by standard Hi-
C, possibly due to the loss of long-range interaction information due to DNA extraction. 

4. DNA Triangulation 

In the following section we overview our published Hi-C-based assembly method and provide practical guidelines 
for using it. DNA Triangulation [23] is maintained at https://github.com/KaplanLab/dna-triangulation. 

4.1 General workflow 

We recommend the following general workflow: (1) assemble initial set of contigs; (2) map Hi-C data to contigs; (3) 
partition contigs into bins (sub-contigs) of a set size, allowing for identification of problematic contigs, intrinsic  
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evaluation of scaffolding, and contig orientation; (4) remove problematic bins and perform Hi-C correction using any 
available correction method (e.g. matrix balancing); (5) if chromosome number is unknown, estimate chromosome 
number using DNA Triangulation bootstrapped clustering method; (6) after chromosome number is chosen, partition 
contigs into chromosomes using clustering; (7) identify and remove problematic contigs based on clustering results; 
(8) scaffold each chromosome separately using probabilistic model; (9) remove problematic contigs; (10) evaluate 
results using orthogonal data and the invariant patterns. We next provide details on key points of this workflow. 

4.2 Karyotyping 

Karyotyping, including estimation of chromosome number, builds on invariant I and is performed using a 
bootstrapped variant of average-linkage hierarchical clustering. In order to estimate the number of clusters, we use 
an intrinsic property of the clustering process - clustering step length. We define a clustering step as the merging of 
two clusters in the clustering process. Each clustering step is associated with a merging distance, which is the 
distance between the two clusters which were merged. We then define the clustering step length as the difference 
between the merging distances of two consecutive steps. The clustering step length can be indicative of a stable 
partitioning [54]. Since hierarchical clustering in general, and the clustering step length in particular, may be sensitive 
to noise, we use a bootstrapped form of clustering by clustering a random fraction of the data and calculating the 
step length for each clustering run. Finally, we consider the average clustering step length over all runs, and find the 
maximal average cluster step. We estimate the number of chromosomes to be the number of clusters remaining at 
this point. In order to obtain the final partition into clusters, we finally cluster the entire dataset and partition by the 
number of clusters estimated from the bootstrapping. 

With regards to estimation of chromosome number, we note that the default bootstrapping parameter of sampling 
80% of the contigs can be adjusted when appropriate. For example, if it is suspected that there are small 
chromosomes containing few contigs, sampling 80% of the data may leave out significant portions of a chromosome 
and may thus cause underestimation of chromosome number. If this may be the case, we suggest increasing the 
portion of contigs sampled. In general, we suggest that it is better to overestimate the number of chromosomes in 
order to avoid chromosome misjoining. As long as there is some point in the clustering tree where the clusters are 
highly accurate, any clustering up to that stage would also be accurate, so even if we overestimate the number of 
chromosomes it should not affect cluster quality. Finally, we suggest using common sense when examining the 
average clustering step length profile – strong peaks may occasionally occur indicating a very low (2-3) or very high 
chromosome number (~1000). These can be excluded based on prior knowledge, and we suggest always considering 
secondary peaks in the relevant range. We recommend bootstrapping at least 100 times. 

4.3 Chromosome scaffolding 

Chromosome scaffolding is performed using a probabilistic model of a Hi-C interaction map assuming exponential 
distance decay. This method builds on invariant II, and in fact even makes a stronger assumption by specifying a 
parametric decay function. We then treat the positions of contigs and the decay slope as model parameters, and 
estimate these parameters using a maximum likelihood approach. Unfortunately, this optimization problem is non-
convex (due to technical reasons we pose this as a minimization problem rather than a maximization problem) and 
cannot be solved optimally. Rather, we randomly initialize contig positions and gradually improve these using the L-
BFGS algorithm until reaching a local optimum. This process is repeated several times (we recommend at least 
10000) and the best (lowest) scoring solution is selected. 

The predicted positions are given as numbers between zero and one, since we do not know in advance the size of 
the chromosome. However, by using the known distances between bins that belong to the same contig it is possible 
to infer the correct scale of the chromosome. This process is currently not automated in our code. 
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4.4 Contig partitioning 

As detailed in the proposed workflow, contigs are partitioned into bins (sub-contigs) of a specified size (Figure 4). 
This is easy to perform, as most Hi-C matrices are binned by default. These bins are then scaffolded independently, 
without using the information regarding which contig they came from. This strategy has a few advantages: 

1. Contig and bin filtering: Before karyotyping, after karyotyping, and after scaffolding, we can use the 
additional resolution provided by contig partitioning in order to evaluate the quality of the initial contigs. 
For example, if two bins belonging to the same contig are assigned to different chromosomes, this could 
potentially indicate an erroneous contig that could be filtered out or corrected. Additionally, misbehaving 
bins within a contig can be filtered out. 

2. Scaffolding evaluation: If contigs are high quality, mis-assignment of bins that belong to the same contig 
may indicate a scaffolding error. In order to distinguish between the two scenarios, we recommend 
evaluating whether the invariants hold in each such inconsistency between contig assignment and 
scaffolding (see Evaluation section). 

3. Orientation inference: In all Hi-C-based scaffolding methods, inference of contig orientation is based on the 
fact that contigs may contain several restriction fragments. Because the effective resolution of the 
experiment is higher than the contig size, it allows to use invariant II at sub-contig resolution, such that we 
expect the ends of contigs which are adjacent to interact strongly, and thus infer their orientation with 
respect to each other. This suggests an implicit approach to infer contig orientation using any Hi-C-based 
scaffolding method, by simply partitioning contigs into bins. 

The main disadvantage of contig partitioning is that predicting the positions of bins may be more difficult than the 
whole contigs, because each bin has fewer reads. 

 

Figure 4. Contig partitioning. 

 

4.5 Parallelization 

DNA Triangulation allows to massively parallelize the scaffolding process. For estimation of chromosome number, 
clustering is run several times on a random subset of data, providing robustness to outliers. This can be executed in 
a multithreaded mode (number of CPUs can be specified) in order to run these clusterings in parallel. The more 
computationally intensive task is the scaffolding of each chromosome, as it involves solving a non-convex 
optimization problem by gradually improving random starting positions. Thus, running more random initializations 
will likely improve the solution, so the major limitation is computational resources. Two parallelization options are 
provided for chromosome scaffolding: multithreading and HPCC, and these can act jointly. The number of random 
initializations and processors to use can be specified for each scaffolding run, and several such jobs can be run in 
parallel on a computation cluster. By keeping track of the optimization score of each job, we can finally select contig 
positions associated with the best (lowest) score. 
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5. Evaluation 

An important aspect of any predictive algorithm in general and genome assembly methods in particular is being able 
to estimate the quality of the proposed solution without knowing what the correct solution is. In the case of Hi-C-
based scaffolding, we propose a number of methods that can be used to evaluate solutions: 

1. Orthogonal data: The first and most obvious way of validating a proposed Hi-C based scaffold is by using an 
independent technology, such as optical mapping or long-reads. Measurements made for validation 
purposes can be of relatively small scale, based on the principle that evaluating random parts of the 
proposed solution would give a reasonable estimate of the overall quality. However, these methods are 
costly and require the measurement of new data. Additionally, they mainly give an overview of solution 
quality rather than comprehensively detecting potential scaffolding errors. 

2. Contig partitioning: As explained above, contig partitioning into bins can be used to evaluate scaffolding 
quality, by verifying that the bins belonging to the same contig are assigned to the same chromosome and 
that their predicted positions within the chromosome match their correct order. 

3. Invariants: A comprehensive way of evaluating a scaffolding solution and comprehensively detecting 
potential errors is by finding deviations from the invariant patterns. It may seem futile to search for 
deviations from the invariants given that Hi-C-based scaffolding methods try to find a solution that is most 
consistent with these invariants. However, since these methods generally cannot find the optimal solutions, 
their proposed solutions can still deviate significantly from the invariants. Furthermore, invariant III 
(smoothness) is often not used explicitly by these methods, and can thus be used to detect potential 
scaffolding errors. In our experience, scaffolding errors are often easy to detect by using these principles, 
both visually and computationally. The ability to use intrinsic metrics to easily evaluate the quality of a 
scaffold (including one that was assembled by a different technology), is an important feature of Hi-C-based 
approaches. 

To demonstrate the usefulness of invariant pattern III for error detection, we simulated a scaffolding error in human 
chromosome 4 in which two large genomic regions were misplaced (Figure 5a). We then calculated for both the 
original Hi-C map (Hap1 1Mb bins [48]) and the erroneous Hi-C the distance between every pair of adjacent bins. In 
line with our definition of smoothness, we define distance here as the mean absolute difference between the 
intrachromosomal interactions of bin 𝑖 and those of bin 𝑖 + 1. We then fitted a gaussian distribution to the adjacent 
bin distances, and used this distribution to calculate one-sided p-values for each bin to minimize noise and 
accentuate peaks. We observe that both the adjacent bin distance profile and the p-value profile of the mis-
scaffolded interaction map clearly show three peaks corresponding to the misjoined loci. Next, since sequencing 
depth and resolution are important factors in Hi-C-based assembly, we asked whether the misjoined loci can be 
detected with significantly less reads. We simulated an extremely low-coverage scenario by sampling 100,000 reads 
genome-wide (~0.0001 of the original number of reads) from the Hap1 1Mb matrix. For the sampling, Hap1 1Mb 
read counts were normalized into probabilities and reads were sampled with replacement according to these 
probabilities. We then repeated the adjacent bin distance and p-value analysis. Albeit more noisy, we observe clear 
peaks that coincide with the error loci. Our results suggest that sparse Hi-C can be used to identify scaffolding errors, 
or similarly structural variation, using very small amounts of sequencing reads. In light of this, it might be useful in 
some scenarios to use Hi-C for scaffolding error detection even if the scaffolding itself does not use Hi-C. 

6. Discussion  

High-quality genome sequences are central for understanding genome function on several levels. In spite of 
significant advances in genome assembly, there remains much room for improvement. De novo genome assembly, 
especially of large complex genomes, remains a major challenge. This is also the case for cancer genome assembly.  
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Figure 5. Detection of scaffolding errors or structural variation using invariant III. We simulated an incorrect scaffold by 
reorganizing a region of chromosome 4 (indicated by colors above Hi-C interaction maps). (a) Comparison of the correctly 
organized Hi-C map (Hap1 1Mb) with the incorrectly organized map. For each map we calculated the distance between every pair 
of adjacent bins. The incorrect map shows clear peaks at the error loci. We then fitted a gaussian distribution to the adjacent bin 
distances from the normal map, and used this distribution to calculate one-sided p-values for each bin as means of minimizing 
noise and accentuating peaks. P-values smaller than machine precision are. (b) In order to evaluate the performance of this metric 
in a highly sparse scenario, we used the Hap1 Hi-C map to sample 100,000 reads genome-wide (~0.0001 of the original number 
of reads) and repeated the analyses of (a). Albeit more noisy, we observe clear peaks that coincide with the error loci. 
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While significant effort has gone into computational assembly methods based on short reads and long reads, only a 
handful of initial methods have been proposed for Hi-C-based assembly. Thus, one motivation for this work is to put 
current methods in context and stress that the full potential of Hi-C-based assembly approaches is not yet realized. 
In this paper we have quantitatively analyzed three invariant Hi-C patterns, in an attempt to better characterize their 
usefulness for Hi-C-based assembly. We suggest that simultaneously considering all three invariant patterns may 
lead to better Hi-C-based genome assembly methods. Furthermore, there are many opportunities for innovative 
computational approaches, theoretical research and introduction of novel concepts. A rigorous comparison of Hi-C-
based approaches may also drive a newer generation of methods building on the respective strengths of individual 
techniques. Other challenges include incorporating Hi-C data in initial contig assembly, high-quality Hi-C-based 
assembly without intermediate technologies, hybrid Hi-C/long-read/long-insert scaffolding, and the identification of 
novel applications for Hi-C-based assembly. 
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