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The spatial organisation of interphase chromosomes is known to affect genomic func-
tion, yet the principles behind such organisation remain elusive. Here, we first compare
and then combine two well-known biophysical models, the transcription factor (TF)
and loop extrusion (LE) models, and dissect their respective roles in organising the
genome. Our results suggest that extrusion and transcription factors play complemen-
tary roles in folding the genome: the former are necessary to compact gene deserts
or “inert chromatin” regions, the latter are sufficient to explain most of the structure
found in transcriptionally active or repressed domains. Finally, we find that to re-
produce interaction patterns found in HiC experiments we do not need to postulate
an explicit motor activity of cohesin (or other extruding factors): a model where co-
hesin molecules behave as molecular slip-links sliding diffusively along chromatin works
equally well.

Interphase chromosomal organisation is intimately
linked to gene regulation and cellular integrity [1–3]. Dis-
tinct genomic architectures can be found in cells undergo-
ing differentiation and ageing or in those affected by dis-
ease [4, 5]. Recent years have seen major developments
in a number of techniques to investigate the 3-D con-
formation assumed by interphase [6–9] and mitotic chro-
mosomes [10]. The most widely employed technique to
date is “HiC” – a high-throughput, genome-wide version
of “chromosome conformation capture” whose natural out-
put is a map quantifying the probability of interaction be-
tween different genomic loci within a population of cells [6–
9, 11]. These maps, constructed for different organisms
and cell types [7], naturally lend themselves to compari-
son with those predicted by “bottom-up” computational
models based on polymer physics principles [12–14].

Two main classes of biophysical models are currently
popular in the field: the “transcription factor” (TF)
model [12, 15–17] (also known as the “strings-and-binders”
model [18]); and the “loop extrusion” (LE) [13, 19, 20]
model. The former postulates that multivalent chromatin-
binding proteins mediate chromatin-chromatin interac-
tions, creating loops and driving 3-D folding. Examples
of proteins that play key roles within this framework are
transcription factors associated with active chromatin [21],
as well as polycomb group [22] and HP1 [23] proteins.
This model naturally explains the large-scale (micro)phase
separation of the genome into active and inactive (also
known as A and B) compartments [12] and the forma-
tion of nuclear bodies [24], both driven by a mechanism
known as the “bridging-induced attraction” [16]. The
second model posits that the SMC complex cohesin and
the CCCTC-binding factor (CTCF) are the master or-

ganisers of the genome, suggesting that cohesin acts as
a loop extruding factor [25] which actively creates ex-
panding loops, but halts when it meets a bound CTCF.
This model can account for the striking bias in favour
of convergent CTCF loops [9] and it can also rationalise
the “topologically-associated-domain” (TAD) patterns ob-
served in HiC maps [13]. However, a motor activity has
yet to been observed in experiments probing the motion
of DNA-bound cohesin in vitro [26–28] and the convergent
loop bias can also be explained by a model of diffusive
loop extrusion (dLE) where cohesin slides diffusively along
the chromatin rather than actively moving unidirection-
ally [29]. A third possibility is that the diffusive motion
is enhanced by ATP consumption resulting in an active
bidirectional motion.

The TF and (d)LE models each explain different aspects
of genome organisation. While the TF model describes a
functional level of genome organisation, intimately linked
to the local transcriptional activity and chromatin state,
the LE model describes a level of organisation indepen-
dent of these. The reality may well be a combination of
the two, in which case one would expect that disrupting ei-
ther transcription factor or cohesin binding would give rise
to distinct changes in chromosomal architecture. Indeed,
very high resolution conformation studies of the globin loci
using Capture C [17, 31] revealed completely different con-
formations in erythroid cells, where these genes are very ac-
tive, and stem cells, where they are inactive – i.e. changes
in protein binding sites result in changes in conformation.
Likewise, cohesin or CTCF knock-outs result in the disrup-
tion of the observed loops and loop-domains [25, 32–34],
but appear to leave the underlying chromatin states mostly
unchanged [34].
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Figure 1: Two models for genome organization. (a) In the TF model, multivalent complexes of chromatin binding proteins
organize the chromatin by forming molecular bridges between their different binding sites. In simulations, diffusing beads represent
three species of TF complex and a bead-and-spring polymer represents the chromosome section. Binding sites are inferred from
histone modifications, (i), and the polymer beads are “coloured” accordingly (histone modification ChIP-seq data for a human
lymphoblastoid cell line GM12878 are obtained from the ENCODE project [30]). Euchromatin binding proteins (representing
e.g. PolII/TF complexes) strongly bind chromatin regions with histone modifications associated with active enhancers and pro-
moters, and weakly bind modifications associated with transcription. Two types of repressive TF bind marks associated with
heterochromatin and polycomb repression respectively (e.g. representing HP1 or PRC2). (b) In the LE model, extruding factors
(e.g. representing the cohesin complex) bind and unbind chromatin with rates kon and koff respectively; while bound, the factors
move actively (or diffusively – see Suppl. Methods and [13] for details) along the chromatin, extruding a loop. LEs stop moving
if they reach a CTCF site where the binding motif is orientated towards its direction of motion, or if they encounter another
extruder. ChIP-seq data for CTCF binding in GM12878 cells, (ii), are also obtained from ENCODE (see Suppl. Methods for
details on motif identification). In simulations, the chromosome is represented by a bead-and-spring polymer, and extruders are
realized by adding extra springs, starting from adjacent beads and progressively moving forward in time.

In this computer simulation study, we first compare the
TF and (d)LE models in terms of their ability to predict
chromosome organisation. We focus our attention on a
30 Mbp section of human chromosome 7, which includes
large gene deserts (regions of “inert chromatin”, where
transcriptional activity is sparse and which is void of active
or repressive histone modifications), as well as facultative
and constitutive heterochromatin, and active regions. We
find that neither the TF nor the LE model can, by itself,
give a satisfactory account of the observed folding of the

entire chromosome segment. The (d)LE model accurately
predicts the domain pattern locally, but fails to capture
larger-scale interactions. On the contrary, the TF model
poorly predicts the fine detail of local interactions (espe-
cially within gene deserts/inert chromatin), but captures
long-range contacts more faithfully.

A combination of the TF and (d)LE models reproduces
many of the HiC features, suggesting that TFs and cohesin
(or other LE factors) indeed have complementary roles in
genome organisation. We show that LEs are required to
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create TADs within inert chromatin, while our simulations
suggest that TFs are sufficient to organise active/inactive
domains, where cohesin-mediated loops play a more minor
role.

Intriguingly, however, a näıve superposition of the stan-
dard TF and (d)LE models still leaves some key qualita-
tive discrepancies between simulated and HiC interaction
maps; for example the simulations tend to show too high a
signal for medium to long range interactions. Qualitative
agreement improves when the TF model is enhanced by
including a non-equilibrium “switching” mechanism [24].
This switching-TF (sTF) model encodes a dynamic level
of control on TFs; it might represent post-translational
modification of the proteins affecting their binding affin-
ity to chromatin [35]. The combined model with switch-
ing TFs is also consistent with single-molecule microscopy
experiments on the dynamics of active/inactive chromatin
domains, chromatin loops and protein clusters [36–38], and
it correctly predicts the main observations of recent knock-
out experiments [34].

METHODS

Following our previous work [12, 17, 24, 29, 39–41], we
employ a simulation scheme based on polymer physics:
the chromatin fibre is represented as a chain of “beads”
connected by springs. Details are shown schematically in
Figure 1. Beads are “coloured” according to the underly-
ing chromatin state based on histone modifications (ChIP-
seq data are obtained from the ENCODE project [30], see
Suppl. Methods bellow). In this way our chromatin be-
comes a co-polymer whose segments interact with freely
diffusing beads mimicking explicit bridge-forming protein
complexes. In our TF model, we consider three species
of bridge proteins, representing transcription factors asso-
ciated with euchromatin, HP1, and polycomb repressive
complexes (PRC) respectively. Thus, during the course of
a simulation, these proteins can bind and form bridges be-
tween chromatin beads bearing the associated epigenetic
marks (see Fig. 1). Loop extruding factors, which might
represent the cohesin complex, or a pair of cohesin rings,
are represented as additional transient springs between
non-adjacent beads (see Fig. 1 and Suppl. Methods bellow
for more details).

RESULTS

In this paper we focus on the first 30 Mbp of human chro-
mosome 7 in a human lymphoblastoid cell line GM12878,
for which high-resolution HiC data are available [9]. We
chose this region as it contains both active and repressed
regions, as well as large regions devoid of most histone
modifications, which we call gene deserts or inert chro-
matin. Inert chromatin is AT-rich and gene-poor, so that

it bears some of the signatures of heterochromatin, though
it is not characterised by an enrichment of either the
H3K27me3 or H3K9me3 histone modifications. Below we
describe the results we obtain by applying the TF and
(d)LE models, either independently or in combination.

Neither the TF, nor the LE model alone can
satisfactorily predict the observed HiC map

By applying the TF model (see Methods) we obtain the
contact map shown in Figure 2(a). One way to measure
how well the simulated map predicts the HiC data is to
simply count the number of correctly predicted domain
boundaries. From our previous work, we expect that the
formation of domains which bear different epigenetic marks
will be well captured by the TF model: they phase separate
into distinct 3-D compartments, and clusters of like pro-
teins form [16]. [Such clusters are visible in Figure 2(a) (see
also Suppl. Movie 1) – they resemble liquid-like clusters
formed by heterochromatin [23, 42] and transcription fac-
tories self-assembled within euchomatin [21].] Indeed the
model does correctly capture a large fraction of boundaries
in active and inactive regions (see, e.g., the 20 − 30 Mbp
segment in Fig. 2(a)), as well as the pattern of longer-
range interactions between segments bearing similar hi-
stone marks. These features are a natural consequence
of the spatial segregation (or more precisely “microphase
separation”, i.e. phase separation into domains with self-
limiting size [24]) between active and inactive chromatin,
which leads to A/B compartmentalisation (see Fig. S1 bel-
low). As well as boundaries between regions in different
compartments, alternating binding and non-binding chro-
matin regions can also give rise to boundaries even between
two adjacent active (or inactive) domains – which is why
in more active regions, such as in chromosome 19, the TF
model correctly predicts an even larger fraction of bound-
aries [12]. However, the TF model clearly fails to capture
the folding of the inert chromatin regions (which is why
the total fraction of correctly predicted boundaries is only
∼ 36%).

Compared to the TF model, the LE model gives a bet-
ter prediction of local TAD formation, especially within
inert chromatin (where 82% of domain boundaries are cor-
rectly predicted), but it performs less well in capturing
the higher-order organisation of active and inactive re-
gions. Although a similar number of boundaries (83%)
are correctly predicted in those regions, the contact maps
obtained with the LE model distinctly lack the long-range
interactions between domains, which are associated with
compartmentalisation.

The LE model also clearly cannot capture enhancer-
promoter interactions within domains unless there are
CTCF sites in the vicinity of those regulatory elements.
To highlight this, we considered a virtual 4C experiment
by selecting HiC interactions for a locus corresponding to a
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promoter, and compared the interaction patterns predicted
by the TF and LE models. The results clearly show that
the LE model fails to capture the pattern qualitatively (see
Fig. S2): the correlation between the virtual 4C interac-
tion profiles for the simulated and HiC data is −0.003 for
the LE models, compared to 0.27 for the TF model.

A näıve combination of TF and LE models improves
the qualitative agreement with HiC, yet some issues

remain

Since each of the models captures different features of
chromosome folding, one expects that a combination of
the two should perform much better than either on its
own. Indeed we find that the combined TF+LE model (see
Methods for implementation details) yields an improve-
ment, as now both inert and active/inactive regions are in
fair qualitative agreement with HiC (Fig. 2(c)); however
some discrepancies remain – these are discussed in more
detail below.

An important result is that, within our simulations,
extruders are not necessary for local folding within re-
gions that display well-defined patterns of histone modi-
fication – their organisation is mainly driven by TF bridg-
ing (Fig. 2(c)). For instance, the simulated contact maps
for the TF and TF+LE model in the 20− 30 Mbp region,
which is rich in active and inactive domains, are highly cor-
related (Pearson’s correlation r = 0.76). The main reason
for this is that when bridges bind they tend to compact a
whole stretch of chromatin, creating many more contacts
compared to extruders, each of which only forms a single
loop.

Notwithstanding the improved agreement with HiC, a
visual inspection of the contact maps in Figure 2 reveals
that there are some remaining qualitative discrepancies.
Most notably, there are substantially more interdomain in-
teractions far from the diagonal in the simulated contact
maps, whereas these features are much weaker in the HiC
map (see Fig. 2(c), bottom zoom, between 20− 30 Mbp).

A model with switchable TFs shows qualitatively
better agreement with HiC and fluorescence

microscopy experiments

We now consider a variation of the TF model which gives
improved qualitative agreement with HiC experiments [9].
In the model discussed above, active and inactive factors
interact with chromatin beads thermodynamically – i.e.,
there is an attractive binding interaction between the TF
and respective chromatin beads. A TF can bind chromatin
when it diffuses into contact, and then unbinds due to the
thermal motion in the system. The residence time depends
on the interaction strength (see Suppl. Methods) and it
is strongly modulated by emergent behaviour such as the

bridging-induced attraction [16]. More specifically, once
a multivalent factor reaches a configuration where it can
form multiple chromatin interactions, it remains bound for
a time which increases exponentially with number of in-
teractions. This is because unbinding requires climbing
over a potential energy barrier whose height increases lin-
early with the number of interactions. Within our base-
line model, typical residence times can encompass the total
simulation time, thus the model fails to capture the rapid
turn-over of TFs observed in vivo (typically of the order of
minutes – see below and Refs. [37, 43]).

Many TFs and other proteins which are relevant to our
modelling are observed in stable foci which also exhibit
rapid protein turnover. These two features are difficult to
reconcile, but possible explanations are that there is on-
going post-translational modification which affects bind-
ing affinities (e.g. phosphorylation [35, 44]), that there is
active protein degradation, or, in the case of PolII, that
transcription-termination signals lead to unbinding [1]. A
generic way to model these non-equilibrium processes is to
consider TFs that switch between an “on” (binding) and
an “off” (non-binding) state at rate kswitch (see Fig. 3(a)).
We have recently shown [24] that this switching-TF (sTF)
model gives rise to the formation of dynamic protein clus-
ters, reminiscent of nuclear bodies [45], and can affect chro-
matin interaction patterns.

Figure 3(b) shows the qualitative effect of TF switching
on the contact maps for different values of the switching
rate kswitch. The most striking difference between the com-
bined TF+LE models with and without switching is that
switching markedly attenuates long-range inter-domain,
but not intra-domain, interactions: active domains which
are far apart along the genome are less likely to interact.
This reduces the intensity of the off-diagonal features in
our predicted contact maps, rendering them qualitatively
more similar to the HiC. This is also shown by the decrease
in the ratio of non-local to local contacts with an increasing
kswitch (see Fig. 3(c)): the TF+LE model with switching
is needed to predict the correct balance between long- and
short-range interactions.

The sTF+LE model also conforms much better with
observations from live-cell fluorescence microscopy experi-
ments which probe dynamical information inaccessible to
HiC. In the absence of switching, the TF dynamics in
our model is slow and glassy, whereas it is much more
rapid with switching (Fig. 4, and Suppl. Movies 1, 2).
Whilst high-throughput experiments showing the dynam-
ics of chromatin interactions over time are not yet possible,
the more dynamical picture emergent from the switching
model is consistent with fluorescence recovery after photo-
bleaching (FRAP, see above and [24]) and single-molecule
imaging experiments, which suggest that TF binding is
short-lived and lasts for not more than minutes [37, 43].
The differences are clear if we examine the trajectories of
individual TFs (Fig. 4(a)): without switching, a TF dif-
fuses until it joins a cluster (of like proteins and binding
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Figure 2: The different models and their combination predict HiC interaction maps. Plots show interaction maps for
(a) the TF model, (b) the LE model, and (c) their combination (TF+LE model). In each case the upper left triangle shows the
simulation data, and the bottom right the corresponding HiC map. Top plots show the full simulated chromosome section (human
chr7:1-30,000,000), with zooms on two regions shown below. Underneath each map the data used in the simulations is indicated:
red, pink, grey and blue bars represent regions with H3K4me1/H3K4me3, H3K36me3, H3k9me3 and H3K27me3 respectively. TFs
predict the formation of A/B compartments in regions enriched with histone modification marks, but fail to predict the folding
of chromatin in inert regions. On the contrary, LEs correctly predict the formation of TADs in regions devoid of marks, but are
unable to generate interactions between domains bearing the same histone modifications. The bottom panels show snapshots of the
simulation for each model. For clarity TFs are not shown. The colour of the polymer segments follows the same colour scheme as
their respective histone modifications, with white segments corresponding to unmodified regions. Extruded loops are highlighted
by larger beads, for visualisation purposes.
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sites), where it tends to stay for the remainder of the simu-
lations; with switching a TF joins a cluster for a short time,
then undergoes a period of free diffusion, before joining an-
other cluster. This hopping between clusters manifests as
a long tail in the distribution of mean squared displace-
ment for a given time interval (Fig. 4(b)). Supplementary
Movies 1 and 2 also show that the macroscopic dynamics of
liquid-like domains formed by non-switching and switching
proteins are profoundly different: in the latter case, we ob-
serve many more events corresponding to clusters splitting
and reforming, and also the clusters are smaller.

A quantitative analysis confirms that the sTF+LE
model gives the best agreement with HiC

We now turn to a more quantitative analysis of the
agreement between HiC and the set of models considered.
For this we consider a series of parameters.

First, we compare the model performance in domain
boundary generation. For the sTF+LE model, we find that
across the whole simulated region, ∼ 84% of boundaries
are correctly predicted (see Fig. 5(c)). This performance
is similar to that of the LE and TF+LE models (∼ 83%
and ∼ 82% respectively), but substantially better than the
TF model (∼ 36%). Previous studies with only TFs [12],
or only extruders [13] found similarly high values, however
neither focused on chromosome regions containing both in-
ert and active/inactive regions, as we have done here.

Second, we consider a measure of the long range active-
active, inactive-inactive, and active-inactive interactions to
assess how well each model captures compartmentalisation
and formation of promoter-enhancer hubs [21]. To do this
we label each chromatin bead as active or inactive accord-
ing to whether it binds to active or inactive TFs (which
is in turn based on histone modification data); we label
beads which can bind to both as “mixed”, and which bind
neither as “inert”. Figure 5(a) shows the fraction of active,
inactive and mixed beads which each chromatin bead in-
teracts with, for each of the models. In the HiC data there
is an enrichment of active-active and inactive-inactive con-
tacts, which is associated with compartmentalisation. This
is captured by models with TFs (where there is a high cor-
relation with the HiC – see Fig. 5(b)), but not by the LE
model (which shows essentially no correlation). A Spear-
man correlation test shows that the combined model with
switching performs better than the combined model with-
out switching (although it is not significantly better than
the TF only model). A similar conclusion is reached by
inspection of virtual 4C interaction profiles for promot-
ers/enhancers (see example in Fig. S2).

Third, we assess the relative balance between local and
non-local contacts in the various models and in experi-
ments (Fig. 5(d)). This further supports the idea that the
TF and LE model separately cannot fully account for HiC
data, and also shows that to capture the right decay of

the non-local to local fraction a model with switching is
required (see also Fig. 3(c)).

An active extrusion mechanism is not necessary to
create domains and CTCF loops

Having noted that CTCF and extrusion appear to be
fundamental to the creation of domain boundaries, espe-
cially in inert chromatin, we now ask whether active ex-
trusion (where LEs move unidirectionally due to some mo-
tor effect as in Refs. [13, 20]) is necessarily required, or
whether diffusive extruders (dLE) behave similarly. This
is currently a relevant question as single molecule experi-
ments on cohesin loaded onto DNA or reconstituted chro-
matin [26–28] have not yet found evidence of a direct mo-
tor activity. [Indirect motor activity, e.g. by a transcribing
polymerase, is a distinct and plausible alternative, and has
been suggested on the basis of simulations [46]; however it
is difficult to find direct evidence for this in vivo.]

Simulating large chromosome regions with a dLE model
in 3-D requires using either infeasibly long simulation
times, or using substantially coarser resolution. Therefore
we first studied a 1-D model of dLE (see Suppl. Meth-
ods). CTCF sites were positioned as in the 3-D simula-
tions with active LEs, and, like before, we assume that
the diffusing LEs interact strongly and directionally with
CTCFs (see Methods for more details). Contact maps can
be computed within this 1-D model by assuming a HiC
interaction between the position of each pair of monomers
in a diffusing loop extruder (cohesin dimer). The result-
ing interaction maps are plotted in Figure 6(a), together
with maps from active LE simulations, computed in the
same “1-D fashion” (see Suppl. Methods). Results show
that dLE is essentially indistinguishable from active LE,
both visually and quantitatively: 83% of the HiC domain
boundaries were correctly predicted by the 1-D dLE model.

We also performed 3-D simulations of dLE in the region
between 10 and 20 Mbp, with 25 kbp resolution per chro-
matin bead – this lower resolution allows sufficiently long
simulations for the dLE maps to reach steady state. Re-
sults confirm that dLE does reproduce most of the bound-
aries and peaks shown in HiC (see Fig. 6(b); for this case,
simulations also include a non-specific attraction between
all beads to qualitatively account for the effect of macro-
molecular crowding [20]).

The combined sTF-LE model correctly predicts the
effects of various protein knock-outs

We next use our combined sTF+LE model to simulate
the effect of cohesin removal and targeted CTCF degra-
dation, which were both recently explored experimentally.
We find that simulations qualitatively reproduce the ex-
perimental observations.
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Figure 3: TF switching improves agreement with HiC data. (a) TFs switch between an “on” (binding) and an “off”
(non-binding) state at rate kswitch. This leads to the formation of dynamic, rather than static, protein clusters. (b) i. interaction
maps comparing sTF+LE simulations (top left triangles) with HiC data (bottom right). From top to bottom the switching rate
kswitch is increased from 0 to 100×10−6 τ−1 (where τ is the simulation time unit – see Suppl. Methods for how this can be mapped
to a real time). Left and right maps show different regions of the simulated chromosome section. Higher switching rates yield less
inter-domain interactions. ii. Zooms on different regions of the simulated section with kswitch = 2 × 10−6 τ−1 (corresponding to
40 × 10−6s−1). Bellow and to the left of the maps the positions of domain boundaries are indicated – see Suppl. Methods for
details on boundary detection. The sTF+LE correctly predicts 84% of the HiC domain boundaries. (c) Plot showing the ratio of
non-local to local interactions for HiC and simulation maps, for varying kswitch values. Instead of fixing a threshold for locality,
we plot the ratio as a function of the threshold for each case. The TF+LE model without switching predicts too high a ratio of
non-local to local interactions, when comparing with the HiC curve.
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Figure 4: Dynamics of protein structures in the sTF
model. (a) Trajectories in 3-D for a single protein without
(left) and with (right) switching. Without switching, the TF
quickly gets “stuck” in a cluster, after which point its dynamics
are constrained. With switching, the TF stays in a cluster for a
short time, before unbinding and diffusing freely, and later join-
ing a different cluster. (b) Protein dynamics are characterized
by the mean squared displacement (MSD) of TFs for a fixed
time interval of 103τ ; the distribution of the MSD is shown, for
two values of kswitch.

Cohesin removal in the simulations leads to loss of fold-
ing in inert chromatin regions, leaving little structure in the
contact maps (Fig. 7(a)i). This mirrors observations from
experiments that knocked out NIPBL, which is required for
cohesin loading in mammalian cells [25, 32]. On the other
hand, domains organised by active and inactive switch-
ing factors are only subtly affected in our model. This is
qualitatively consistent with the results of Ref. [25], which
found some residual structure in active/inactive compart-
ments (but not inert ones) following cohesin removal in
mouse liver cells (see Suppl. Fig. 5 in Ref. [25]). More
specific to our work, we show in Figure S3 HiC data for
an active region in a similar chromosome region as consid-
ered here: it can be seen that some peaks and the over-
all contact pattern remain in the NIPBL knock-out. Like
in the experiments, the simulated interaction map reveals
stronger compartmentalisation upon cohesin removal, with
a decrease in the number of interactions between domains
with different epigenetic marks, and an enhancement of
the interactions between like domains (see Fig. S4(a)).

To better access the qualitative agreement with experi-
ments, we extracted from the interaction maps the ratio of
non-local to local interactions as a function of the genomic

separation threshold for “locality”. Figure. 7(a)ii shows the
plots comparing KO and WT cases, for the simulated and
HiC maps, obtained from mouse liver cell experiments [25].
There are two distinct regimes: for thresholds below the
TAD range (∼ 700 − 800 kbp) there is a loss in non-local
interactions upon cohesin removal, and above the TAD
range there is a loss in local interactions. Our model cap-
tures these features up to a threshold ∼ 1100 kbp. Above
that the simulation predictions deviate from the experi-
mental observations – our WT model yields a higher ra-
tio of non-local to local interactions. This is due to the
choice of low concentrations in our model (which avoids
non-physical confinement effects), which allows the poly-
mer to change its conformation faster, meaning that loop
extrusion will in fact favour a more compact structure and
therefore more non-local interactions (see simulation snap-
shots in Fig. 2).

Experiments also reported the formation of superen-
hancer hubs following cohesin removal [32]. Superen-
hancers are genomic regions containing a high linear den-
sity of enhancer elements and high levels of the associated
H3K27ac histone modification. Interactions between su-
perenhancers – including interchromosomal interactions –
were found to increase after cohesin removal, and exami-
nation of HiC ligation events revealed a higher instance of
triplets of these loci appearing together [47] (i.e. three of
these loci were in close proximity at the same time). To
assess whether extruders qualitatively affect the network of
active chromatin contacts in our simulations, we show in
Figure 7(a)iii circos diagrams for enhancer/promoter chro-
matin beads only, for the KO and WT simulations. The
chromatin beads are ordered according to their genomic
position along the outer circumference in the clock-wise
direction. Upon cohesin KO there is an 18% increase in
the number of non-local interactions (genomic separation
> 2 Mbp). This is further supported by analysing clusters
of TFs binding active euchromatin, formed through the
bridging-induced attraction. These indeed involve more
non-local interactions between binding sites after LE re-
moval: the mean genomic separation of chromatin beads
associated with such clusters raises by over 10% from 837
kbp to 948 kbp. It is therefore tempting to associate these
active protein clusters with the superenhancer hubs found
experimentally. Our simulations also show that cohesin
loss results in a minor decrease in the sizes of TF clusters
(however the change is not statistically significant accord-
ing to a Kolmogorov-Smirnov test).

CTCF removal leads to a loss of “hot-spots” in the con-
tact map, which in wild-type nuclei correspond to conver-
gent CTCF loops (Fig. 7(b)i). Domains and boundaries
become much less well-defined within the inert chromatin
region, but are relatively unaffected elsewhere (see Venn di-
agrams for identified boundaries in Fig. S4(b)). The spatial
distribution of cohesin on the chromosomes is also strongly
affected (see Fig. 7(b)ii). These findings are in agreement
with experiments knocking out CTCF [33, 34] in mouse
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Figure 5: A quantitative comparison of the various models. (a) Plots show, for each chromatin bead across the simulated
region, the level of interaction with active (red), inactive (grey) or mixed (blue) beads. For each bead the number of interactions
with each type is normalised so that the total number of interactions sums to 1. The labelling of each bead is indicated below the
plots. (b) Bar plot showing the Spearman rank correlation coefficient for comparison of each curve in (a) with the corresponding
HiC data. The LE model yields long-range interaction patterns that essentially do not correlate with HiC. In general, models with
TFs give a good correlation with the HiC profiles. (c) Venn diagrams showing the overlap between called domain boundaries in
the HiC and simulated contact maps. The Jaccard index gives a measure of the degree of overlap, ranging from 0 (no boundaries
match) to 1 (exact match between simulation and data) – see Suppl. Methods for more details. Since boundaries are related with
the fine domain structure near the interaction map’s diagonal, models with LEs give in general a good prediction. (d) Plot showing
the ratio of non-local to local interactions for HiC and simulation maps, for the different models, as a function of the threshold.
The sTF+LE model gives the best prediction of the HiC curve (see also Fig. 3(c)).

embryonic stem cells. In the wild-type simulations, cohesin
localises mostly at CTCF sites, consistent with ChIP-seq
data [48]. In the CTCF knock-out simulations, cohesin
is distributed uniformly across the chromosome segment.
In experiments, cohesin instead accumulates at transcrip-
tion start-sites upon CTCF loss. One possible reason for
this discrepancy is that cohesin might have preferred load-
ing sites on the chromatin (some preferential binding of

NIPBL, required for loading, has been observed at tran-
scription start sites [48]). We have previously shown that
including preferred loading sites in simulations would, in
the absence of CTCF, leads to an enrichment of cohesin at
those sites [29].

We also compared the ratio of non-local to local inter-
actions as a function of the genomic separation threshold
for the KO and WT cases (see Fig. 7(b)iii), for the simu-
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Figure 6: Diffusive LEs give similar predictions to the
active LE model. (a) Plots comparing simulated HiC maps
generated by the active (bottom) and diffusive (top) LE model.
The active LE results are from the 3-D simulations as shown in
previous plots, whereas the dLE results are from a 1-D model
(see Suppl. Methods). In order to make a fair comparison, here
the interaction map for the 3-D simulations was calculated in a
“1-D fashion”, i. e., two chromatin beads are considered to be
in contact if they are bound by a LE. Three different regions of
the simulated chromosome section are shown. Note that due to
the way the interactions are defined it is not possible to generate
long-range contacts in the 1-D model. (b) Plot comparing the
simulated HiC map generated by the 3-D diffusive LE model
(top) and the in-situ HiC map from experiments (bottom). (see
Suppl. Methods for details on the 3-D dLE model)

lated and HiC maps, obtained from mouse embryonic stem
cell experiments [34]. CTCF removal has a minor effect
on these ratios, slightly favouring more non-local contacts.
Our simulations qualitatively agree with the experimental
observations for all analysed contact separation threshold
values.

DISCUSSION AND CONCLUSIONS

In this work we have studied chromosome folding by
using a combination of two popular and successful mod-
els for mammalian genome organisation: the transcription
factor [12, 15, 16, 18] and loop extrusion [13] models. The

TF model is motivated by the abundance of multivalent ar-
chitectural chromatin-binding proteins or complexes (e.g.,
HP1, PRC1, TF/PolII complexes etc.), which are known
to form loops within the genome, and organise it into ac-
tive and inactive regions. The TF model naturally explains
the observations of transcription factories [21] and nuclear
bodies [24] as multivalent TFs generically cluster through
the bridging-induced attraction [16]. The LE model is mo-
tivated by the evidence that cohesin mediates chromatin
looping between convergent CTCF sites in the genomes of
mammals [9].

Our simulation results suggest that TFs and cohesin play
complementary roles in genome organisation. On the one
hand, cohesin is necessary to organise and compact regions
of inert chromatin (gene deserts) where depletion of most
histone marks is consistent with minimal TF binding. Ac-
cordingly, cohesin is required to account for many of the
TAD boundaries in the region of human chromosome 7
we focussed on here (which contains a large gene desert).
On the other hand, activating and repressive TF factors
are sufficient to organise active and repressed regions re-
spectively, as knocking out extrusion leaves largely similar
contact patterns (Fig. 7).

Importantly, we find that an active mechanism for ex-
trusion is not the only model which can generate TADs
within inert chromatin: a similar number of HiC bound-
aries are correctly predicted by a diffusive LE model where
cohesin slides along chromatin with no preferred direction
(Fig. 6). This conclusion is robust, and applies to different
genomic regions, for instance we analysed the folding of
the segment between 20.3 and 22.6 Mbp in chromosome 4,
which was considered in Ref. [20]: results (see Fig. S5) con-
firm that diffusive and active LE give very similar contact
patterns. That the diffusive loop extrusion model works
well for TAD formation is of interest since to date there is
no direct evidence of unidirectional motion of cohesin on
chromatin [26–28].

We found the best concordance between simulations and
the available experimental evidence for a model which in-
cludes a biochemical “switching” reaction for TFs. This
on↔off switching drives the system away from thermody-
namic equilibrium, and allows TFs both to bind strongly,
and yet be able to dissociate frequently. The switching
model gives a better prediction of long-range contacts,
which would otherwise decay too slowly. More impor-
tantly, switching is necessary to reconcile simulations with
fluorescence microscopy experiments which measure fast
dynamics for both transcription factors [37, 43, 49, 50] and
other protein clusters [24].

Our combined sTF+LE model reproduces qualitatively
the effect of recent knock-out experiments. Cohesin degra-
dation leads to unfolding and the disappearance of do-
main boundaries in inert chromatin regions, but results
in smaller changes within active/inactive chromatin [25].
CTCF knock-out also mainly affects inert chromatin re-
gions, and homogenises the distribution of cohesin along
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Figure 7: The sTF+LE model predicts the effect of cohesin and CTCF knock-out. (a) A cohesin knock-out simulation
is performed by removing LEs. i. Interation maps where the knock-out (top left triangle) is compared with a wild type (WT)
simulation (bottom right). The leftmost map shows the entire simulated region, with two zooms shown to the right. ii. Plots
showing the ratio of non-local to local interactions as a function of the threshold for the KO and WT cases: on the left results are
from experiments in mouse liver cells and on the right from simulations. iii. Circos plots showing the interaction network between
chromatin beads corresponding to regions with H3K4me1 and H3k4me3 marks, for the simulated KO and WT cases. In the outer
circumference chromatin beads are displayed ordered by their genomic position in the clock-wise direction. Interactions are drawn
as lines connecting interacting beads – only interactions with probability > 0.1 are displayed for better visualisation. (b) A CTCF
knock-out simulation is performed by omitting CTCF binding sites. LEs move until they unbind, or are blocked by other LEs. i.
Similar interaction maps to the above for the entire simulated region (left) and two zooms. ii. 1-D representation of LE contacts
for the simulated CTCF KO and WT cases. The arc ends correspond to chromatin beads bound by a LE, and the arc length is
proportional to the beads’ genomic separation. CTCF binding sites are indicated bellow. iii. Similar plots showing the ratio of
non-local to local interactions for the CTCF KO and WT cases: on the left, results are from experiments in mouse embryonic stem
cells and on the right from simulations.
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the chromatin fibre [33, 34].
We note that a limitation of the current work is that

its methodology relies on previous knowledge of the TFs
responsible for folding. A recent approach [51], has in-
troduced a possible way to circumvent this problem, by
using polymer physics and machine learning to infer the
optimal, minimal number and type of TFs required to re-
produce the HiC matrix within a given accuracy. Unlike
the current work, though, this approach requires the HiC
data as an input.

We also highlight here a recent simulation work [52],
where the loop extrusion model was combined with a block
copolymer model [53], which postulates a weak direct at-
tractive interaction between all inactive regions (B com-
partments). Whilst this related work also found that both
components of the model are required to get good agree-
ment with HiC data, it was suggested there that extrusion
may compete against compartmentalisation – e.g., if a con-
vergent CTCF loop spans domains belonging to different
compartments. This interference mechanism is appealing
because it is consistent with the observation that cohesin
or CTCF removal leads to an enhancement of non-local
A/B compartmentalisation [25]. In the present work we
did not find evidence of significant competition between
chromatin-state and cohesin-mediated folding at a local
level. For example, there is little difference between the
TF and TF+LE models in the 20–30 Mbp region – the
LEs do not interfere with the ability of TFs to organize
active/repressed regions. Similarly there is no significant
change in the LE loop length distribution between the LE
and TF+LE models in either inert or active/repressed re-
gions – the TFs do not interfere with extrusion. Our simu-
lations are still fully consistent with experimental results,
and the TFs and LEs do have an effect on each other with
respect to longer-ranged interactions. For instance, ex-
periments showed that cohesin loss leads to the formation
of hubs of superenhancers involving very long-range con-
tacts [32], which is associated with the increase in compart-
mentalisation. This result sits well within our model, as
we find that protein-mediated interactions between active
chromatin beads associated with promoter or enhancers
become longer-range in the LE knockout.

In summary, our results suggest that these transcription
factors and cohesin complexes provide two complemen-
tary mechanisms for chromosome organization, and that
they are more or less important in different regions of the
genome. The question of how this “division of labour”
is functionally relevant remains open: we speculate that
cohesin-mediated folding of inert chromatin may be useful
to facilitate the transition to mitosis, where (condensin-
associated) loops are likely much more abundant. We also
note that our work focuses on a single cell type during in-
terphase, where histone modification patterns are already
established. We do not consider, instead, how particular
patterns of chromatin state are set up during differenti-
ation, or re-established on exit from mitosis [40, 41]. It

remains possible that LEs and TFs may have a more com-
plex relationship in such situations, when the underlying
epigenetic landscape is dynamic, and we hope to address
this issue in the future.
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SUPPLEMENTARY METHODS

Generic Polymer Model for Chromatin

We model the first 30 Mbp of chromosome 7 of the hu-
man lymphoblastoid cell line GM12878 in the presence of
transcription factors and/or chromatin extrusion proteins
(cohesin) (see Fig. 1). The chromosome segment is mod-
elled at 3 kbp resolution as a linear self-avoiding polymer
composed of beads connected by spring bonds. Each bead,
with diameter σ = 30 nm, corresponds to 3 kbp of DNA,
hence the polymer is 10,000 beads long. The interaction
between beads is characterised by a potential with three
contributions. First, every two consecutive beads are con-
nected by a finitely extensible non-linear elastic (FENE)
spring given by the potential

UFENE(ri,i+1) = −KFENEr
2
0

2 ln
[

1−
(
ri,i+1

r0

)2
]
, (1)

where ri,i+1 is the distance between the i-th bead and its
nearest neighbour along the chain, r0 = 1.6σ is the max-
imal extent of the bond and KFENE = 30kBT/σ2 is the
bond energy (where kBT is the thermal energy, with kB
the Boltzmann constant and T the temperature). Second,
there is an excluded volume interaction between all beads,
that prevents bead overlapping and chain crossing, given
by the Weeks-Chandler-Andersen potential

UWCA(rij) = 4kBT
[(

dij
rij

)12
−
(
dij
rij

)6
]

+ kBT (2)

for rij < 21/6dij , and UWCA(rij) = 0 otherwise. Here rij is
the distance between the ith and jth beads and dij is the
mean of the diameters of the two interacting beads, i.e.,
dij = σ. Under this choice of FENE and WCA potentials,
the bond length is approximately equal to σ. Third, the
polymer bending rigidity is set by a Kratky-Porod poten-
tial for every three adjacent beads

UBEND(θ) = KBEND(1 + cos(θ)), (3)

where θ is the angle between the three consecutive beads
and KBEND the bending energy. The polymer flexibility
is set by the value of KBEND since this determines the
persistence length lp (in units of σ): lp = KBEND/kBT .
Chromatin can be viewed as a long flexible polymer [54],
therefore we use the persistence length lp = 3σ =90 nm.

A co-polymer represents chromatin regions having
different modification states

The polymer beads are “coloured” according to their un-
derlying epigenetic state based on histone modifications.
ChIP-seq data for H3K4me1, H3K4me3, H3K36me3,

H3K9me3 and H3K27me3 modifications in GM12878
cells were obtained from the ENCODE project [30]
(http://www.encodeproject.org [55]). We gratefully ac-
knowledge the ENCODE project and the Bernstein
Lab at the Broad Institute for generating these data
(GEO:GSE29611). Modified regions (shown in Fig. 1(a)
and Fig.S1) were identified either using the broad peak fea-
ture of the MACS2 peak calling software [56] (H3K4me1
and H3K4me3), or by peak calling with the Epic
Peaks software (SICER) [57] (H3K36me3, H3K9me3 and
H3K27me3; this algorithm is more suited to finding ex-
tended regions). Polymer beads were then annotated as
active (enhancers or promoters), transcribed, heterochro-
matic or polycomb depending on their overlap with the
called peaks (it is possible that some beads overlap mul-
tiple peaks, so these can have multiple annotations). Re-
gions of the genome that are not enriched in any particular
mark are defined as “inert”, and left unmarked.

Transcription Factors are Modelled as Multivalent
Chromatin-Binding Beads

Transcription factors are modelled, for simplicity, as
spheres of diameter σprot = σ. The interaction between
TFs is purely repulsive and described by the WCA po-
tential in Eq. (2). There are three types of TFs (see
Fig. 1(b)): (i) euchromatin-binding, that bind to pro-
moters, enhancers and transcriptionally active regions; (ii)
heterochromatin-binding; and (iii) polycomb-group pro-
teins. We consider a total number of ∼1400 proteins
[(i)∼250, (ii)∼300, (iii)∼850], meaning that for a cubic
simulation box of size L = 220σ the system’s particle
concentration is ∼0.1%. TFs bind to their cognate chro-
matin beads through an attractive interaction set by the
Lennard-Jones (LJ) potential

ULJshift(rij) =
{
ULJ(rij)− ULJ(rthr) rij < rthr

0 otherwise, (4)

where ULJ(r) = 4ε
[(

dij
r

)12
−
(
dij
r

)6
]
. (5)

The parameter ε controls the magnitude of the protein-
DNA interaction, dij = σ and rthr = 1.8σ is the range
of the interaction. Euchromatin-binding TFs interact
strongly, ε = 5.5kBT , with promoters and enhancers
and weakly, ε = 2kBT , with transcriptionally active re-
gions. Heterochromatin-binding TFs interact with moder-
ate strength, ε = 3kBT with heterochromatin and inter-
act weakly, ε = 2kBT , with polycomb regions. Finally,
polycomb-group proteins interact with moderate strength,
ε = 3kBT , with polycomb regions and interact weakly,
ε = 2kBT , with heterochromatin. The interaction between
TFs and non-cognate chromatin beads is purely repulsive
and given by the WCA potential in Eq. (2).
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Loop Extruders are modelled as transient bonds
between chromatin segments

Loop extruders are modelled, for simplicity, as har-
monic bonds that bring together two chromatin beads (see
Fig. 1(c)). The bond is described by the potential

ULE(rij) = KLE(rij − r0)2, (6)

where r0 = σ is the equilibrium bond length and KLE =
6kBT the bond strength. LE binding and unbinding is
modelled by creating and deleting LE bonds (see Fig. 1(c)).
Bonds are initially between i and i + 2 chromatin beads,
and a loop is extruded by “moving” the ends of the bond
along the polymer, i.e., by deleting the bond and creating
a new one that binds the next pair of chromatin beads. We
start by considering active extrusion, where the ends of the
bond move away from each other along the polymer, i.e.,
the bond moves to the next pair of chromatin beads that
corresponds to a higher genomic distance. We also perform
1-D and 3-D studies of “diffusive” extrusion (dLE), where
the ends of the bond move randomly in either direction
along the polymer (see details below).

An extruder comes to a halt either if it collides with
another extruder or if it reaches a correctly oriented CTCF
site [13]. Since the CTCF consensus binding motif is non-
palindromic, it has an orientation on the DNA. A pair of
CTCF sites can therefore have one of four arrangements:
the two motifs could point towards each other, away from
each other, or both point in the same direction. We model
extruders as sensitive to this motif: if a bond end reaches
a CTCF oriented in the opposite direction to its motion,
then it stops, otherwise it keeps on extruding. Therefore
extruders end up bringing together CTCFs with convergent
motifs, in line with experimental observations [9, 20].

An extrusion step occurs every 250τ , where τ is the char-
acteristic simulation time unit (see below for comparison
with real-time), meaning that the base line extrusion rate is
2 beads/250τ (though see below). The number of extrud-
ers bound to the polymer is kept at a constant value of 200:
a new LE binds every time one unbinds. Extruders bind at
randomly chosen positions along the simulated chromatin
section and unbind with a rate koff = 0.0167τ−1. In the
case of an extruder which brings together a pair CTCF
sites with convergent motifs, we reduce koff by a factor of
10: koff,convCTCFs = 0.00167τ−1.

A popular candidate for the loop extruding factor is the
cohesin complex [13, 20], and it is thought that a cohesin
ring, or a connected pair of cohesin rings in a “hand-cuff”
conformation, encircle two DNA segments, bringing them
together. As such, the complex would have a finite volume
and interact sterically with the surrounding chromatin and
proteins. Since within our simplistic model, extruders do
not occupy a finite volume (they are just transient bonds),
we explicitly account for their steric hindrance by imposing
a threshold on the maximum length between two beads

connected by a LE bond. Practically, if the bond becomes
longer than rij > 4σ, it is explicitly removed. This allows
us to partially account for the inability of cohesin to move
through a dense cluster of chromatin-bound to proteins,
and constitutes a weak coupling between LEs and the 3-
D conformation of the polymer and proteins. Note that
previous work on extrusion [13, 20, 52] does not include
this coupling.

CTCF ChIP-seq data and motif identification

ChIP-seq data for CTCF binding in GM12878
cells were obtained from the ENCODE project [30]
(http://www.encodeproject.org [55]). We gratefully ac-
knowledge the ENCODE project and the Stamatoy-
annopoulos Lab at the University of Washington for gen-
erating these data (GEO:GSE30263). Peaks were called
using the MACS2 peak calling software [56]; the genome
sequence under these peaks was then searched for CTCF
binding sites. The STORM software [58] was used to iden-
tify binding motifs based on the CTCF consensus motif
reported in Ref. [59]; the orientation of the peak was taken
to be that of the motif scoring highest against the consen-
sus. To account for the fact that there is a finite proba-
bility for CTCF binding at the identified sites, a binding
probability was assigned to each according to the called
peak height. To model cell-to-cell variability in CTCF oc-
cupancy, in each repeat simulation we populate a subset of
the CTCF sites based on these probabilities. The subset
of site positions were then overlayed onto our 3 kbp/bead
polymer; if more than one CTCF was present in a given
bead we assigned the orientation appearing most often.

Simulating switching TFs

Following our previous work [24] we model post-
translational modification of TFs by allowing them to
switch between an “on” and an “off” state. While in the
“on” state, TFs bind chromatin through a Lennard-Jones
potential as in Eq. (4) above; when in the “off” state the
interaction reverts to the non-attractive WCA potential
(Eq. (2)). Importantly, the transition between these two
states is controlled by an additional parameter (the switch-
ing rate kswitch) that is not related to the equilibrium tran-
scription factor unbinding time, ∼ τ exp {ε/kBT}. Thus,
the binding affinity ε and the switching time k−1

switch can
be tuned separately (e.g. we can have ε � kBT while
k−1

switch < τ). Since switching is independent of the 3-D con-
formation (and whether the TF is bound or not), it drives
the system away from equilibrium, allowing behaviour that
cannot be reproduced by a purely thermodynamic model
(as discussed in the Discussion and Conclusions section,
and see Ref. [24]).
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Simulation Details and Mapping to Real Units

We initialise the system from an ideal random walk for
the chromatin polymer, and a random distribution of TFs.
We evolve the system by performing Brownian Dynamics
(BD) simulations where the solvent is implicitly modelled.
Each particle (chromatin beads and transcription factors)
obeys the following Langevin equation

m
d2ri
dt2

= −∇iV − γ
dri
dt

+
√

2kBTγηi(t), (7)

where ri is the position of particle i, γ = m/ξ is the fric-
tion due to the solvent, where ξ is the velocity decorelation
time. Here we take ξ = τ , where τ is the simulation time
unit. Finally, ηi(t) is a vector representing random uncor-
related noise, such that

〈ηiα(t)〉 = 0,
〈ηiα(t)ηjβ(t′)〉 = δαβδ(t− t′)δij , (8)

where α and β indicate Cartesian components, δij is Kro-
necker’s delta, and δ(t− t′) denotes Dirac’s delta function.
Eq. (7) is integrated with a constant time step ∆t = 0.01τ ,
for at least 70× 106 time steps while the system’s temper-
ature is kept constant at a value T = 300 K. Eq. (7) is
evolved using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [60].

Loop extrusion and TF switching algorithms are imple-
mented using in-house codes coupled to LAMMPS. Specif-
ically, TF switching is performed by randomly selecting a
fraction of the TFs and changing their state from “on” to
“off” (or vice-versa), every 5τ .

In order to map simulation times to real units we match
the diffusional properties of the chromatin fibre. The mean
squared displacement (MSD) averaged over all simulated
chromatin beads is measured, and we use this to fit the
time unit to the experimentally measured MSD of fluo-
rescently labelled chromatin loci in yeast cells [61]. The
mapping varies slightly between the different models, but
for simplicity we fix the time unit to τ = 50 ms in all cases.

Using this mapping, cohesin extrudes 2 beads (60 nm)
in 250τ = 12.5 s, i.e. with a velocity of v ' 0.3 µm/min '
30 kbp/min. TF switching occurs at rates ranging between
0 and 0.002 s−1.

HiC data and boundary detection.

HiC data for the GM12878 cell line were obtained at
10 kbp bin resolution, using “square root” normalization,
from Ref. [9]. Simulated interaction maps were generated
by recording contacts between chromatin beads whose 3-
D separation is < 5σ = 150 nm. These maps were then
averaged over time (every 103τ for the last 4 × 106τ) and
over 10 simulation replicas. The interaction values in the
simulated maps range from 0 to 1, therefore when plotting

simulated maps side-by-side with the HiC map, the later
was rescaled by a factor of 400.

Boundaries were detected using an algorithm where the
interactions map is analysed using a square window that
slides along the diagonal and records the number of in-
teractions inside the window as a function of its genomic
position. Specifically, a 300 kbp×300 kbp window slides
alongside the main diagonal with its corner positioned at
the diagonal. This algorithm yields a profile of interac-
tions with maxima at the center of domains and minima
at the boundaries, hence a boundary is called for every
local minima. The resulting set of boundaries is verified
manually (via visual inspection) to correct wrong bound-
ary calls due to the noisy signal of the interactions map.
The same method was used to call boundaries in simulated
contact maps. Boundary locations were said to have been
correctly predicted if they appear in the simulated map
within 54 kbp (6 beads) of the location on the HiC map.
We used the Jaccard index, defined as

J(BHiC, Bsim) = |BHiC ∩Bsim|
|BHiC ∪Bsim|

where BHiC and Bsim are the sets of boundaries from the
HiC data and simulations respectively. This takes values in
the range from zero for no correctly predicted boundaries,
to 1 for 100% agreement between simulation and HiC.

A quantification of the number of local and non-local
interactions was performed by simply setting a threshold
for locality and then calculating the total number of in-
teractions recorded in the map between chromatin beads
whose genomic separation is smaller (local interactions) or
larger (non-local interactions) than the threshold. The ra-
tio of the number of non-local to local interactions was
then plotted as a function of the “locality” threshold. This
ratio decreases as the threshold value increases.

Recent knock-out experiments for CTCF [34] and co-
hesin [25] were performed in liver and mouse embryonic
stem cells respectively, so are not directly comparable to
our human cell simulations. Nevertheless we show exam-
ple interaction maps from this data in Fig. S3. We used
these data sets to generate the plots in Fig. 7, showing the
ratio of non-local to local interactions as a function of the
threshold. As a suitable comparison for our simulations
we selected the first 30 Mb section of mouse chromosome
7, which has a similar proportion of active/repressed and
gene desert regions as our simulated section. We note that
while the plots would differ for different chromosome sec-
tions, the trends between WT and knock-out are the same.

“Virtual” 4C interaction profiles

“Virtual” 4C profiles were calculated for the HiC and
simulation data using the “observed over expected” inter-
action maps (see caption of Fig. S2). Specifically, each
diagonal line in the maps parallel to the main diagonal

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2018. ; https://doi.org/10.1101/305359doi: bioRxiv preprint 

https://doi.org/10.1101/305359
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

was first divided by the mean value of interactions in that
diagonal. This way all interaction values have the same
weight irrespective of their distance to the main diagonal.
This facilitates the comparison between experimental and
simulated profiles. Then, for the highlighted chromatin
locus the number of interactions with all the other loci
was calculated.

From active to diffusive loop extruders

We compared two possible loop extrusion mechanisms:
active extrusion, where the LE “heads” move apart uni-
directionally at a specified speed, or diffusive extrusion
where the two heads can move in either direction with
equal probability. For the active case the extrusion speed
is a parameter which can be chosen to give the best pre-
diction of the data; for diffusing LEs, if we choose realistic
parameters for diffusion, it takes much longer to generate
the same size loops - we would need to run our simulations
for infeasibly long times. In our previous work [29] (simu-
lating much smaller chromatin segments) we showed that
a simple 1-D model, where LE heads diffuse along a lattice,
can accurately capture the behaviour of more detailed 3-D
simulations with explicit diffusing slip-links.

1-D simulations

Here we employ a similar 1-D model to the chromosome
7 segment. Chromatin is modelled as a 1-D lattice with
N=10,000 lattice sites corresponding to the 10,000 simu-
lated chromatin beads. The CTCF binding sites and mo-
tifs sequences used for the 3-D model are also used here,
therefore we ran repeat simulations for the same stochas-
tically chosen subsets of CTCF sites. Diffusing LEs are
modelled as two heads that move independently, each oc-
cupying a lattice site. Every simulation step, each LE
head moves to either neighbouring site with equal prob-
ability. Like in the 3-D model, LE heads cannot go past
each other, or go past a CTCF oriented oppositely to
their motion. Note that, within our rules, a LE head
will go through a CTCF which is pointing away from
it, but would subsequently halt if it diffuses back to the
CTCF, as now this would be oriented towards the LE
head. LEs (2 heads) attach randomly along the lattice at
a rate kon = 5× 10−5 step−1, detach at a rate koff = kon,
and like in the 3-D case, if they form a CTCF loop (bring
together two convergent CTCFs), they detach at a rate
koff = 0.1 × kon. The number of LEs is chosen so that
the number of attached LEs is roughly 200 throughout the
simulation. The 10 simulations ran for 20× 106 steps.

“HiC-like” interaction maps were calculated by consid-
ering that two lattice sites (chromatin loci) are in contact
if they are occupied by matching LE heads. These maps

were then averaged over time (every 400 steps) and over
the 10 simulation replicas. Note that due to this definition
of contacts it is not possible to obtain long-range interac-
tion information.

3-D simulations

We then performed 3-D simulations of diffusive loop ex-
trusion, modelling the gene desert region chr7:10,000,000-
20,000,000 at a lower resolution of 25 kbp per chromatin
bead (N=400 beads). We derived the CTCF binding
strengths according to the called ChIP-seq peak heights,
and the CTCF relative orientations were assigned in the
same way as described above. As before, all beads interact
by a repulsive Weeks-Chandler-Andersen potential (Eq. 2),
but here consecutive beads are bound together by a stan-
dard harmonic potential Ubond(rij) = (Kbond/2)(rij−r0)2,
where we set Kbond = 1000kBT and an equilibrium dis-
tance r0 = σ/

√
2. Additionally, all pairs of beads interact

through an attractive Lennard-Jones potential (Eq. 5, with
ε = 1kBT and rthr = 2.5σ), modelling the effect of macro-
molecular crowding.

Like in the active extrusion case, diffusing LEs are mod-
elled as harmonic bonds between two beads (Eq. 6), with
KLE = 10kBT and r0 = σ. LEs are randomly positioned
on the polymer, and diffusive extrusion is performed by
allowing the two heads to slide independently along the
polymer in both directions with equal probability (as in
the 1-D model). LEs halt if they find a correctly ori-
ented CTCF, with a probability set by the CTCF bind-
ing strength. Since a CTCF binding site can be visited
several times for diffusive extrusion, we introduce a refrac-
toriness time τreft = 102τ for those CTCF sites where a
possible bonding event fails. Once a LE halts at a CTCF,
it remains stuck, meaning that the system will eventually
“equilibrate” with “fixed” CTCF loops. In order to explore
higher order loops, we introduce dissociation events where
LEs unbind from CTCFs and start diffusing again (with
τreft = 4× 103τ). In the light of the active LE model, here
LE-CTCF bonding events are such that only convergent
CTCF loops are allowed.

The number of LEs in the simulation spans from 6 up to
15, and it is kept fixed during the simulation. To produce
the initial polymer configurations, we generated random
walk chains, where the distance between consecutive beads
was fixed to 3σ, and let the system relax with a statisti-
cal minimization. The system obeys a Langevin equation
(Eq. 7), which is integrated with a time-step ∆t = 0.005τ .
An extrusion event occurs every 200∆t = τ . We let the
system evolve up to 4× 104τ and produce an ensemble of
102 different conformations.
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Human chr4:20,300,000:22,600,000 simulations

We also analysed a different chromosome region -
chr4:20,300,000:22,600,000, one of those thoroughly inves-
tigated in Ref. [20] - and compared the performance of the
different loop extrusion models. We considered a polymer
chain made of N=575 beads, each bead corresponding to 4
kbp, and we followed the same chromatin model and sim-
ulation details described in the previous section “3-D dLE
simulations”. Here, we derived CTCF binding strengths
and relative CTCF motif orientations using the standard
approach described in Ref. [20].

First we implemented active Loop Extrusion (LE) with
3-D Molecular Dynamics (MD). Again we derived an en-
semble of 102 different replicates for the considered region
and ran each simulation for 8 × 105∆t, corresponding to
t = 4 × 103τ . Finally, we computed the averaged con-
tact maps over these configurations, and we considered two
beads in contact if their 3-D separation was ≤ 1.5σ.

Second, we implemented the 3-D diffusive Loop Extru-
sion (dLE) model for this same region. We used a re-
fractoriness time τreft = 10τ for the CTCF sites where a
bonding event fails. Here, we derived an ensemble of 40
different configurations and we let the system evolve up to
106∆t.

And third, we investigated the same region with the
“strings-and-binders” model [18]. We performed MD sim-

ulations considering a polymer chain made of N=2300
beads, each bead corresponding to 1 kbp. Here, all parti-
cles interact by a repulsive Weeks-Chandler-Andersen po-
tential (Eq. 2) and consecutive beads are connected by a
FENE spring (Eq. 1), while beads and binders interact by
an attractive Lennard-Jones potential (Eq. 5). Chromatin
is modelled by a homo-polymer, where all beads can in-
teract with the same type of binders [62]. CTCF binding
sites were considered according to the approach described
in Ref. [20]. CTCF sites interact with an additional type
of binders, which bridge CTCFs with opposite orientations
(forward – reverse). For such a system, there are three pos-
sible thermodynamic states depending on the interaction
energy and concentration of the binders – open, closed dis-
ordered, and closed ordered (for more details see Ref. [62]).
As before, the system evolves under Langevin dynamics by
MD with an integration timestep ∆t = 0.012τ . From the 3-
D equilibrium configurations in each thermodynamic state
we computed averaged contact maps as described above
(rint = 3.5σ). Then, we find the mixture of the three states
described above which best describes the locus by maximiz-
ing the distance corrected Spearman correlation coefficient
between model and experimental data (at 4 kbp resolution,
see also Refs. [51, 62]). We find the best mixture to be 10%
open state and 90% closed state (of which 55% is in the
ordered state and 35% in the disordered state).
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Figure S1: The TF model predicts A/B compartmentalisation. Plot showing, for each chromatin bead, the level of
interaction with active (red), inactive (grey) and mixed (blue) domains. Chromatin domains interact mainly with other domains
bearing the same histone marks, a typical feature of A/B compartmentalisation. For each domain the number of interactions with
each type is normalised so that the total number of interactions sums to 1. The type of each domain is indicated below the plot.
Domains were defined as the regions between domain boundaries, and their type was set according to the most frequent bead type
in that region.

Figure S2: “Virtual” 4C of a locus for the various models. Plots showing interactions with a promoter at position
chr7:20,232,000-20,241,000. The 4C-like interaction profiles were extracted from the “observed over expected” interactions map,
where the expected value for a given pair of beads is the mean interaction level for all pairs of beads with the same genomic
separation. Normalised in this way, it is easier to compare longer ranged interactions in the different models. The black arrowheads
indicate the 4C viewpoint. Other enhancer/promoter sites are indicated in red below the curves.
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Figure S3: Comparison of knock-out experiments and simulations. (a) A cohesin knock-out is performed by removing
LEs in simulations and the cohesin loader NIPBL in mouse liver cell experiments. Interaction maps are shown for two different
chromosome regions - i and ii: (left) HiC map for a human chromosome 7 region, (centre) simulations’ map for the same human
chromosome region, and (right) HiC map for a syntenic chromosome 6 region of mouse liver cells [25]. The human HiC map for
the wild type is shown for reference. In the simulation and mouse experimental maps the knock-out (top left triangle) is compared
with the wild type case (bottom right). (b) Similar interaction maps to the above, but for CTCF knock-out simulations (middle)
and mouse embryonic stem cell experiments (right) [34].
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Figure S4: Quantitative comparison of knock-out and wild type simulations. As in Figure. 5: (a) Plots showing the level
of interaction with active (red), inactive (grey) and mixed (blue) beads, for each chromatin bead. The labelling of each bead is
indicated bellow the plots. (b) Venn diagrams showing the overlap between called domain boundaries in the KO and WT models.
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Figure S5: Performance of different polymer extrusion models to explain Hi-C data for the human chr4. (a) in-situ
Hi-C data of the region chr4:20,300,000-22,600,000 for GM12878 cells at 4kb resolution investigated in Ref. [9] and corresponding
CTCF binding sites, strength and orientation (green is forward, and red reverse). The coloured bar highlights CTCF positions
and main polymer interacting regions to help 3-D visualization; Contact maps for the same region obtained with the (b) Loop
Extrusion, (c) diffusive Loop Extrusion and (d) SBS 3-D chromatin models with interactions between CTCF sites oriented in
opposite ways. For each model a typical 3D polymer structure is shown. Diffusive extrusion is as efficient as active extrusion at
predicting HiC domain boundaries and peaks.
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