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Abstract 

In order to meet physical and behavioral demands of their environments animals constantly 

update their body posture, but little is known about the neural signals on which this ability 

depends. To better understand the role of cortex in coordinating natural pose and 

movement, we tracked the heads and backs of freely foraging rats in 3D while recording 

simultaneously from posterior parietal cortex (PPC) and frontal motor cortex (M2), areas 

critical for spatial movement planning and navigation. Single units in both regions were 

tuned mainly to postural features of the head, back and neck, and much less so to their 

movement. Representations of the head and back were organized topographically across 

PPC and M2, and the tuning peaks of the cells were distributed in an efficient manner, 

where substantially fewer cells encoded postures that occurred more often. Postural signals 

in both areas were sufficiently robust to allow reconstruction of ongoing behavior with 90% 

accuracy. Together, these findings demonstrate that both parietal and frontal motor 

cortices maintain an efficient, organized representation of 3D posture during unrestrained 

behavior. 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307785doi: bioRxiv preprint 

https://doi.org/10.1101/307785
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Introduction 

How neural circuits encode natural movement in 3D is a fundamental question in 

neuroscience. Though the neuronal computations involved are not fully understood, a 

substantial volume of work in head-fixed primates has identified key roles for posterior 

parietal and pre-motor cortices1 2 3 4 5 6 7. These efforts have produced a foundational 

understanding of cortical signals supporting targeted movements of individual parts of the 

body such as the eye or hand, with more recent studies elucidating population codes for 3D 

reaching trajectories and applying them to drive prosthetic limbs8 9 10 11. Parallel work in 

freely behaving rodents has demonstrated ostensibly similar functions for PPC and frontal 

motor areas in spatial orienting behavior12, movement planning13 14 15, and spatial 

navigation16 17 18 19. Although the rodent and primate literatures are empirically consistent, 

the field lacks a quantitatively precise account of how the cortex encodes naturally paced 

behavior in freely behaving individuals. 

We therefore tracked the head and back of unrestrained rats in high-resolution 3D 

while recording neural ensemble activity simultaneously from PPC and the frontal motor 

area with which it is connected, M220. By combining these methods we found the first 

evidence in any freely behaving model that both regions express robust population codes 

for 3D posture of the head, back and whole body, and that postural tuning in all animals was 

skewed so that fewer neurons represented poses in which the animals spent the most time. 

As our dataset included >1500 cells, we were able to discern that head and back 

representations were organized topographically over the cortical surface, and that spiking 

activity in PPC largely preceded M2, implying a directional flow of information across areas.  
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Results 

1D tuning curves for head, neck and back position 

Eleven rats were given dual-microdrive implants in the right hemisphere, with silicon probes 

targeting deep (>500um) PPC and M2 (Extended Data Fig. 1, 2 and 3), areas which exhibit 

similar thalamic, cortical and sub-cortical connections as PPC and premotor areas across 

mammals21 20 22 23 24 25. We recorded 729 well-isolated single units in PPC and 808 units in 

M2 while tracking rats with a 6-camera infrared tracking system during 20-minute foraging 

sessions in a 2m octagonal arena (Extended Data Figs. 1, 2 and 3; Supplementary video 1). 

Head position for each animal was monitored with a 4-point rigid body fixed above the 

microdrives, while the body was tracked with three circles of retroreflective tape placed 

along the top of the back (Fig. 1a; Methods). 

This configuration allowed us to estimate Euler angles (pitch, azimuth and roll) of the 

head relative to the body, as well as pitch and azimuthal flexion of the back, and elevation 

of the neck during single unit recordings (Fig. 1b; Methods). In doing so, we found 

substantial numbers of cells in PPC and M2 that exhibited robust 1D tuning curves for all 

postural features, with peak rates often >5 standard deviations (S.D.) from the null 

distribution (Fig. 1c-h, i-n). The shapes of the tuning curves could extend above and below 

the shuffled distribution, indicating that suppression of firing was also informative of pose. 

The majority of cells with 1D tuning peaks exceeding the 99th percentile of the shuffled 

distribution (Extended Data Fig. 4a,b) were stable across recording sessions (mean of 56.4% 

in PPC, 57.8% in M2, Fig. 1c-h, i-n; Extended data Table 1), and postural tuning in lighted 

sessions was stable in darkness (Extended Data Fig. 5).  

 

PPC and M2 encode 3D pose 

We found that many cells in PPC and M2 responded to conjunctions of Euler angles for the 

head and back, and in some cases were specific to the posture of the whole-body (Fig. 2a 

and c; Supplementary Videos 2-6). Since many aspects of posture and movement co-vary 

naturally, we disambiguated features best explaining spiking activity using an unbiased 

generalized linear model (GLM, Methods). The model considered egocentric pose variables 
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and their derivatives, as well as allocentric features including head direction, running 

direction and spatial location. Covariates that best explained neural firing were selected 

using a forward-search approach, in which features were added until model performance no 

longer improved 10-fold cross validation26 (Methods). 

The GLM identified 437 of 729 PPC cells showing significant tuning to at least one 

egocentric or allocentric variable (Extended data Table 2). The largest fraction of cells (n = 

237, 32.5%) were driven by postural features of the head, such as pitch, azimuth or roll 

individually, interactions between Euler angles (e.g. pitch x azimuth), conjunctions of 3D 

head pose and neck height, and head movement (Fig. 2b). The next largest groups of cells 

were tuned to back posture or movement (n = 69), and neck elevation (n = 43; Fig. 2b, 

Extended data Table 2). A smaller number of cells exhibited “whole body” postural tuning, 

driven conjointly by head, neck and back position (n = 29, 4.0%, Z = 7.9, P < 0.001; large-

sample binomial test with expected P0 of 0.01). 

In contrast to previous studies on rat PPC14 15, we found modest fractions of cells 

showing tuning to running speed (n = 38, 5.2%, Z = 11.2, P < 0.001) and self-motion (n = 15, 

2.1%, Z = 2.7, P < 0.01; Fig. 2b; Extended data Table 2), raising the possibility that those 

studies, which used 2D tracking, failed to resolve movement types from the 3D postures 

that attend them (Extended Data Fig. 6). Allocentric features such as head direction, running 

direction (combined n = 5, 0.7%; Z = -0.67, P > 0.85) and spatial position (n = 1, 0.1%, Z = -

2.2, P > 0.99) were not significant in the data set. 

The 808 cells recorded in M2 showed tuning to similar variables as PPC, though in 

different proportions (Fig. 2c). For example, half (n = 400, 49.5%) the cells encoded 3D head 

posture, head movement or neck elevation (Fig. 2d, Extended data Table 2). The fractions of 

M2 cells tuned to posture and movement of the back (n = 75, 9.3%), as well as whole-body 

pose (n = 27, 3.3%) were on par with those seen in PPC. As in PPC, a small but significant 

fraction of cells was tuned to running speed (n = 26, 3.2%, Z = 6.2, P > 0.001), while self-

motion tuning (n = 4, 0.5%; Z = -1.3, P > 0.95; Extended data Fig. 7), direction (n = 6, 0.7%; Z 

= -0.6, P > 0.8), and location (n = 11, 1.4%; Z = 0.86, P > 0.15) were not significant in M2. 

We were struck that our statistical model indicated that a large majority of cells in 

PPC and M2, a motor area, were driven by posture (46.2% in PPC; 58.7% in M2) as opposed 
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to bodily movement (5.6% in PPC; 3.6% in M2), and sought to confirm the result. Since 

posture and movement often co-varied, we split recording sessions for individual cells from 

PPC and M2 on the basis of high and low movement velocity for specific features (e.g. head 

pitch), and examined how this affected the tuning curves. We found that tuning curves for 

pose remained virtually identical regardless of movement, while tuning curves for 

movement varied unreliably when split by posture (Extended data Figure 8), confirming that 

postural tuning was indeed expressed independently of movement. 

 

Spatial and temporal organization of tuning in PPC and M2 

Microstimulation and electrophysiological recordings in several mammalian species have 

identified topographical organizations in parietal and motor areas controlling movements 

for many parts of the body, including, the face, mouth, head, arm and trunk27 28 29 30 31 32. 

We therefore assessed whether postural features identified by the GLM were organized 

anatomically, and found significant gradients for the head and back across the surface of M2 

and PPC. Specifically, head representation in M2 was concentrated at anterior (χ2(4) = 57.1, 

P < 0.001; Yates corrected χ2 test; Fig. 3a) and medial (χ2(4) = 110.6, P < 0.001) locations, 

while back posture was represented more densely at the posterior (χ2(4) = 98.1, P < 0.001) 

and lateral (χ2(4) = 105, P < 0.001) poles (Fig. 3a, b). Back-dominated sites in M2 were 

contiguous with the most anterior and medial sites in PPC, which themselves showed the 

strongest coding for the back (χ2(3) = 29.9, P < 0.001, anterior-posterior gradient; χ2(4) = 

12.5, P < 0.05, medial-lateral). Head posture was represented predominantly in the 

posterior-lateral regions of PPC (χ2(4) = 47.5, P < 0.001, anterior-posterior; χ2(4) = 52.4, P < 

0.001, medial-lateral), producing a coarse mirroring of head and back representations across 

PPC and M2 (Fig. 3a). 

Previous recordings in primates suggest that PPC and frontal motor areas comprise 

an anatomically extended network33 for planning and decision making34 35, but few studies 

have succeeded in recording spikes from both areas simultaneously. We therefore asked 

whether a temporal correlation structure existed between spikes recorded simultaneously 

in PPC and M2 (n = 5 rats). Having screened for inter-regional cell pairs whose signal cross-

correlations within a ±5 second window exceeded chance (Fig. 3c; Methods), we found 1017 
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positively and 182 negatively correlated cell pairs in one recording session, and 758 

positively and 141 negatively correlated cell pairs in a second session from the same day. In 

both sessions, the majority of correlated pairs (60-62%) were led by PPC, with the 

normalized correlation of positive pairs peaking at -50ms relative to M2 (bootstrapped 99% 

C.I. for session 1: -113 to +8ms; session 2: -112 to +7ms), and negative correlations peaking 

at -85ms (bootstrapped 99% C.I.: -191 to +16ms) and -25ms (bootstrapped 99% C.I.: -129 to 

+74ms) for sessions 1 and 2, respectively (Fig. 3c). The number of cell pairs fell too low for 

comparison when split by tuning properties, but the data on the whole are consistent with 

an asymmetric information flow in which PPC leads M2. 

 

Ensemble decoding and the non-uniformity of postural tuning 

Although we observed robust postural correlates for single cells in PPC and M2, this did not 

answer whether population activity was sufficiently informative to reconstruct ongoing 

behavior. To address this we first reduced the behavioral dataset from six dimensions (3 

axes for the head, 2 for the back, and one for neck elevation) to two using Isomap36, a 

dimensionality reduction algorithm that approximately preserves local distances between 

linked features. With this approach, we mapped posture for the head, back and neck onto a 

single 2D surface, or “posture map”, with each pixel corresponding to a particular bodily 

configuration (Extended data Fig. 9). Neighboring pixels on the map correspond to similar 

postures, while dissimilar postures are farther apart. Using a session with 37 PPC and 22 M2 

neurons recorded simultaneously, we trained a uniform prior decoder using 10-fold cross-

validation to predict the animal’s position on the posture map, with maximal likelihood 

depicted by the color of the pixels (Fig. 4a; Supplementary videos 7-8). Decoder accuracy 

was highest with the full complement of cells (Fig. 4b), declined to 50% with 20 cells, and 

reached chance levels with 6 cells. Extrapolation analysis estimated that 177 cells with 

similar selectivity would be required to reach maximum decoding accuracy (not shown). 

We noted that the cumulative occupancy of the 2D posture map was dominated by 

the area corresponding to the animal standing on all 4’s with the head lowered (i.e. 

foraging; Fig. 4c, left). Further analysis showed that a significantly larger fraction cells were 

tuned to postures in which the animal spent less time, while fewer cells encoded the 
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postures the animal expressed most (t(10) = 4.82, P<0.01, Welch’s t-test; Fig. 4d, left). We 

repeated the analysis for our entire dataset and found the same pattern of tuning for all 

postural features across animals (t(10) = 7.74, P<0.001; Fig. 4d, right, Extended data Fig. 10), 

suggesting that the cells’ receptive fields were distributed optimally according to occupancy. 

Despite the low density of neural representation in the area of high occupancy, decoder 

error remained low. In fact, the decoder performed significantly better (t(74) = 6.21, 

P<0.001; Fig. 4e) in the region with >50% occupancy, despite being represented by ~15% of 

the ensemble. To our knowledge, such a non-uniformity of representation has not been 

described previously for positional coding of other effectors, or in other sensorimotor 

systems. 

 

Discussion 

We recorded single units from parietal and frontal motor cortices while tracking freely 

moving animals, revealing that cell populations in both regions robustly encode 3D posture, 

and in far larger proportions than other features of behavior. By measuring neural signals 

encoding the dynamic position of the head and trunk during whole-body movement, these 

data complement and extend years of detailed study on the positional coding of individual 

effectors in stationary animal4 5 37 38. The data directly support the notion that PPC is a key 

cortical substrate for the continual awareness of the spatial configuration of the body, or 

“body schema”, postulated over 100 years ago 39, and suggest that frontal motor areas may 

also play a role. 

The fact that tuning for posture vastly outstripped that for movement in PPC and 

M2, a motor area, was surprising and can be interpreted in different ways. One reason why 

postural tuning may have figured so prominently in our dataset was that the animals were 

freely behaving, in which case the brain must solve a host of kinematic problems not 

encountered when the axes of movement are limited by behavioral constraint. The 

imbalance of postural and movement signals in cortex also raises the possibility that a 

functional division of labor exists, at least partially, between cortical and sub-cortical motor 

systems. On this view, parietal and higher motor areas encode the positioning of the body 

and goals40 41 42, while descending pyramidal tract pathways, the basal ganglia, and 
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brainstem motor nuclei control muscle synergies directly, and would therefore provide 

more robust readouts of the kinetics, force and vigor of movement. Piecing together the 

timing and relative contributions of each of these systems to unrestrained 3D behavior is a 

new and exciting prospect that will require additional study. Further work will also be 

required to determine whether postural tuning is expressed throughout cortex during 

unrestrained behavior, akin to locomotor state or speed43 44 45, or occurs mainly in areas 

contributing to the production of movement.  

Our findings also have implications for previous studies of speed and self-motion 

tuning in PPC in freely behaving rodents, which may likely have overestimated these 

features due limitations inherent to 2D tracking of head-mounted LEDs14 15. This approach 

renders the animal as a point moving on a flat surface, which conveys essentially no 

information to distinguish vertical movements, head roll or contortions of the body. Though 

effective in revealing how the brain maps the physical world46 47, this approach is ill-suited 

to resolve individual behaviors animals employ, for example, when acquiring environmental 

inputs needed to generate such maps in the first place48 49 50 51 52 53. Our statistical model 

indicated that self-motion tuning was nevertheless found in a small but significant fraction 

of cells specifically in PPC, still supporting a role for encoding bodily movement through 

extended space. The high sensitivity of PPC and M2 cells to the angle of the head relative to 

the body could also potentially influence population responses in head-fixed preparations, 

including virtual reality paradigms54, though we acknowledge that several task-related 

computations are not likely to be explained by ongoing posture 55 56 57. Regardless of the 

nature of the task, our findings highlight the need for close behavioral monitoring in tasks 

seeking to distinguish cognitive functions from physical behavior. 

We also found an underlying spatial distribution of postural tuning for the head and 

back, and a temporal organization of spiking activity across PPC and M2. The roughly 

symmetric organization of head and back representations that we describe matches the 

general organization of sensory and motor areas described in classic cortical mapping 

experiments31. To our awareness, ours is the first study to chart a functional organization of 

behavioral tuning within the rodent PPC and, further, across PPC and M2. Though we did 

not test explicitly whether postural representations were organized temporally across 

regions, our cross correlation analysis supports the notion that PPC and M2 in rats, like 
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monkeys, comprises an anatomically extended network 33 34  that is organized 

hierarchically58, or at least temporally, with PPC operating upstream from M2.  

A striking finding complemented the ubiquity of postural coding in our dataset: the 

arrangement of tuning peaks was neither uniform across the distribution of postural 

occupancy, nor did it mirror it (Fig. 4c-e, Extended data Fig. 4). On the contrary, tuning 

curves were likelier to have significant peaks away from the most occupied bins, a feature 

that permitted accurate decoding of postures in which the animal spent less time. Likewise, 

the small faction of cells encoding the longest-expressed poses was also sufficient for low-

error decoding. This cost-reducing property, observed here in associative cortices, raises the 

question of optimal coding strategies and their potential metabolic benefits in other 

systems. Previous theoretical works have considered optimal coding strategies in sensory 

systems59 60, postulating that the range of the stimulus spectrum visited most frequently 

should be encoded by more cells with narrower tuning widths, but this did not appear to be 

the case in our data. Ganguli & Simoncelli (2014) suggest that lowering the gains of neurons 

tuned to the low end of the stimulus range, or increasing their number at the high end, 

could be metabolically efficient, though this may incur a cost on the quality of coding. The 

tuning scheme we observed maintained a high fidelity of coding for both long- and short-

lived postures, and would bring metabolic savings, making it both precise and efficient. An 

accurate representation of a default-state postural stance should demand little expenditure 

of neural and energetic resources.  

It is very intuitive that posture would have a prominent representation in cortex, 

whether it is for movement planning, or as a substrate for learning postural sequences to 

perfect an action, such as a tennis serve. The dense representation of head position relative 

to the body would also serve to bring environmental inputs detected by the sense organs 

into immediate register with the body, facilitating rapid orientation and appropriate 

behavioral responses. The extent to which postural signals described here are integrated 

with these features, particularly in frontal cortex 32, remains to be determined. 
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Methods 

Subjects and electrode implantation. 

Experiments were performed in accordance with the Norwegian Animal Welfare Act and the 

European Convention for the Protection of Vertebrate Animals used for Experimental and 

Other Scientific Purposes. Neuronal activity was recorded from 9 male and 2 female Long-

Evans rats (3–5 months old, 400–600 g at implantation and testing) with chronically 

implanted dual microdrives. Mounted on each microdrive was a silicon probe (NeuroNexus 

Inc., MI, USA; custom design based on A8x1-tet-2mm-200-121). One probe targeted PPC (-

3.8 to -4.25mm AP, centre shank 2.7mm ML) and one targeted M2 (centre shank +0.5mm 

AP, 0.7mm ML). Each probe had eight 55µm wide, 15µm thick, 5mm long shanks, with four 

160µm2 iridium recording sites configured as a tetrode at each tip; inter-shank spacing was 

200µm. At surgery, animals were anesthetized in a ventilated plexiglass box with 5% 

isoflurane vapour, and maintained on 1.0-2.5% isofluorane for the duration of surgery. Body 

temperature was maintained at 37 0C with a heating pad. Once unconscious, animals 

received s.c. injections of analgesic (Metacam 2.5mg/kg weight, Temgesic (buprenorphine) 

0.05mg/kg). Local anaesthetic (Marcain 0.5%) was injected under the scalp before making 

the incision. The skull was then exposed, rinsed and sterilized using 0.9% saline and 3% 

hydrogen peroxide. A high-speed dental drill with 0.8mm burr was used to drill holes for 

skull screws and craniotomies over PPC and M2. Bone-tapping stainless steel screws were 

inserted securely into the skull, with a single screw serving as the ground wire and reference 

for both drives. The microdrives were housed in a single 3D printed unit that was lowered 

with probes targeting the right hemisphere. The drive unit was cemented to the skull, and 

probes were lowered into the brain, and craniotomies were filled with a 70-30% mixture of 

mineral oil and low-melt bone wax (Sigma-Aldrich Norway AS, Oslo, Norway). After surgery 

rats awoke in a 320C heated chamber, were returned to their home cage, and later 

administered post-operative analgesics. Rats were housed individually in Plexiglas cages (45 

x 44 x 30 cm) in a humidity and temperature-controlled environment, and kept on a 12 hr 

light/12 hr dark schedule. All training and testing occurred in the dark phase. Experiments 

were performed in accordance with the Norwegian Animal Welfare Act and the European 

Convention for the Protection of Vertebrate Animals used for Experimental and Other 

Scientific Purposes.  
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In vivo electrophysiology and behavior 

Single units, LFP or raw signal from PPC and M2 were sampled with a Digital Lynx 4SX 

recording station (Neuralynx Inc. Montana, USA). Rats were connected via AC-coupled unity-

gain operational amplifiers above the head (via H32-to-HS36 custom head stages, Neuralynx 

Inc.), which connected to a motorized commutator above the arena. Elastic string was used 

to counterbalance weight and excess cable length, allowing animals to move freely in the 

recording arena.  

Silicon probes were lowered in 50µm steps while the rat rested on a towel in a 

flower pot on a pedestal. Turning stopped when well-separated units appeared, typically 

between 500 and 1800µm. Data collection started when signal amplitudes exceeded ~4 

times the noise level (r.m.s. 20-30µV) and units were stable for > 3hr. After recording at a 

given depth, PPC and M2 probes were lowered to obtain new cells; probe depths typically 

differed by 100µm or more between recording days.  

Behavioral recordings were performed as rats foraged for crumbs of chocolate, 

cereal or vanilla cookies thrown randomly into an octagonal, black open-field arena (2 × 2 × 

0.8 m), with the animals oriented by extra-arena room cues. Recordings began once the 

animals achieved routine, complete coverage of the arena. Recording sessions typically 

lasted just over 20 minutes (average length 1335s, total range of 610-2467s). Rats rested a 

minimum of 1 hour in their home cage between runs. 

 

Spike sorting and analysis of firing rates during behavior. 

For the first 6 rats, spike data were clustered automatically with KlustaKwik 

(http://klustakwik.sourceforge.net; Harris et al., 2000), then sorted manually using graphical 

cluster-cutting software as described in Fyhn et al., 2004. For the remaining 5 animals, raw 

signal Neuralynx files collected on the same recording day were converted to binary format 

and concatenated, such that the identity of isolated units could be preserved across sessions. 

Spike sorting was performed offline with Kilosort61, followed by manual curation in Phy (C. 

Rossant, https://github.com/kwikteam/phy). Clusters were merged or separated based on 
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waveform similarity, spike rate auto- and cross-correlation and masked cluster quality 

measures. Clusters with ≥ 2% violation of a 2ms inter-spike interval were discarded. After 

spikes were split into individual sessions for each cluster, only cells with >100 spikes per 

session were kept for further analyses. 

 

 

3D tracking and model assignment. 

For tracking the head, four 9mm retroreflective markers (ca. 6cm apart) were affixed to a 

rigid body clamped above the recording drives. For the back, three 9mm circular cut outs of 

retroreflective tape (3M) were each affixed to shaved locations at the shoulder blades, the 

hunch of the back, and above the root of the tail. Position data were recorded at 120 fps 

using a 6-camera infrared recording system (OptiTrack, Oregon, USA), and registered using 

optical motion capture software (Motive, version 1.8, 1.9 or 1.10.2; OptiTrack). 

For 7 of 11 animals (tracked with Motive versions 1.9 or 1.10.2), labeling of individual 

markers was performed with the in-built labeling functions in Motive on raw .tak files. 

Specifically, the 3D data was first deleted. Then, a rigid body was constructed from the four 

head markers (in the same way across animals), and the three body markers were kept in a 

separate marker set. Both marker assets were then dragged onto the take and the 

“reconstruct and autolabel” function was applied. Depending on the results, errors in 

marker assignment were corrected and the unlabeled points were hand labeled. For each 

individual marker (across animals, across sessions), the tracking statistics were as follows: 

98.51% above the base of the tail (total range: 91-99%), 97.66% for the middle of the back 

(total range: 87-99%), and 96.33% for between the shoulder blades (total range: 83-99%). 

Each of the head markers, the mean percentages were 99% for head 1 (total range: 99-

99%), 98.78% for head 2 (total range: 85-99%), 98.61% for head 3 (total range: 88-99%) and 

98.89% for head 4 (total range: 95-99%). The head as a whole was captured 98.82% of the 

time (total range: 85-99%). After each session was labeled, remaining unlabeled markers 

were deleted and the data were exported as a .csv file, with units in metres and individual 

markers (not rigid body) as output. A brief, custom-written Python script was used to 

convert the .csv file into a .pkl file, which was modified for usage in a custom graphical user 
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interface (GUI). In the GUI, the head coordinate system was constructed and the tracking 

data was merged with spike data for further processing. 

For the remaining 4 animals (tracked using Motive version 1.8), raw data was 

exported as a .csv file, with units in metres and individual markers as output. The .csv file 

was then loaded into the GUI and each point was hand labeled for > 90% of the time it was 

tracked each session. The mean number of frames across all open field sessions was 

160159.1 (total range: 73231-296021). 

For all animals, files containing tracked points were loaded into the GUI, where the 

coordinate system for the rigid body on the head was translated to minimize jitter, which 

roughly corresponded to placing it at the base of the head.  We then rotated the coordinate 

system such that, on average, the x-direction of the head closely matched the horizontal 

movement direction. 

 

Extracting behavioral variables from tracking data  

Following the recording, we labeled tracked points within the Motive (OptiTrack) interface, 

and imported the labeled data into a custom script in Fiji. Using the four tracked points on 

the animal's head, we estimated the geometry of the rigid body using the average pairwise 

distances between markers. We then found the time point at which this geometry was 

closest to the average, and used that time point as a template. We then assigned an XYZ 

coordinate system to the template with the origin located at the centroid of the four points, 

and constructed coordinate systems at each time point of the experiment by finding the 

optimal rigid body transformation62 of the template to the location of the head markers. In 

order to find the likely axis of rotation for the head (i.e. the base of the head), we found the 

translation of the coordinate system that minimized the Euclidean distance between the 

origin at time point t-20 and t+20, where t is measured in frames from the tracking system 

(120 Hz). Next, the coordinate system was rotated to most closely match the Z-direction 

with the vertical direction of the room, and X-direction with that of the running direction, 

which was defined by horizontal movements of the origin from t-50 to t+50. Only time 

points where speed exceeded 10 cm/s were used to estimate running direction. The two 

objectives were combined by considering the sum of squared differences of the two sets of 
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angles. This definition of running direction was used only to rotate the head direction, and 

was not used in subsequent analyses. Hyperparameters were chosen such that head 

placement using the resulting coordinate system visibly matched experiments. 

To compute the variables for relating tracking to neural activity, we first denoted 

body direction as the horizontal component of the vector from the marker on the animal's 

rear to the neck point. The angles of the head (pitch, azimuth and roll) relative to body 

direction were then computed assuming the XYZ Euler angle method. The back angles (pitch 

and azimuth) were determined relative to body direction using standard 2D rotations, which 

were optimally rotated such that the average peak of the occupancy was close to zero. The 

point on the neck was then used to determine neck elevation relative to the floor, as well as 

the horizontal position of the animal in the environment. Movement variables were 

estimated from the tracked angles using a central difference derivative with a time offset of 

10 bins. Running speed was then estimated using a moving window of radius 15 bins. The 

values for self-motion were computed as the speed of the animal multiplied by the X and Y 

component of the difference in angles between the body direction at t-15 and t+15. We 

found this a more reliable representation of self-motion compared to previous 

mathematical descriptions15. 

 

1D tuning curves 

Angular behavioral variables were binned in 5o, with exception of back angles which were 

lowered to 2.5o. Movement variables were binned in 36 equally-spaced bins, spanning the 

range of recorded variables such that there was a minimum occupancy of 400 milliseconds 

in both the first and last bins. Neck elevation bins were 1cm, while position in the 

environment was estimated using 6.67cm bins. Finally, self-motion used a bin size of 3cm/s. 

For all rate maps, the average firing rate per bin was calculated as the total number of 

spikes per bin, divided by total time spent in the bin. All smoothed rate maps were 

constructed with a Gaussian filter with standard deviations of 1 bin. Only bins with a 

minimum occupancy of 400 milliseconds were used for subsequent analysis.To compare 

with shuffled distributions, we shifted the neural activity 1000 times on the interval of 

±[15,60] seconds. 
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Model selection 

To determine which of the large number of tracked features best explained the neural 

activity we considered the neural activity binned to match the resolution of the tracking 

system (120 Hz). We fit the neural data using a Bernoulli generalized linear model63 

assuming different versions of the natural parameter for each neurons, where each version 

contained a feature or sets of features as well as the constant term. We included each of the 

six postural features, their derivative values, body direction, head direction, speed, position 

and self-motion each in single variable models. We then maximized the likelihood of the 

data given each of the models using an L1 regularizer with λ= 10-4 for each model across 10 

folds of the data. We tested all combinations of angles associated with the head, back, and a 

model with all six behavioral variables. 

As in Hardcastle et al. (2017), we first compared the single feature models using the 

average cross-validated log-likelihood ratio, keeping the model, if any, that had the highest 

positive score and was significantly different from zero. Significance was determined using a 

one-sided signed rank test with significance of 0.01. Additional features were included if the 

increase in cross-validated log-likelihood ratio of the more complicated model was 

significantly more than that of the less-complicated model. Significance was again 

determined using a one-sided signed rank test with significance value of 0.01. 

 

Decoding 

In order to visualize and decode in the space of the six posture variables we used a common 

dimensionality reduction technique, Isomap36, to reduce the space to two dimensions. We 

did this by first normalizing each of the features, dividing the values for each by the 

maximum of the absolute value of the feature. This bounded the angular values to [-1,1] 

and the neck elevation to [0,1]. We then applied Isomap from the python library Scikit-

learn64 with an assumed number of neighbors equal to 100, which resulted in an estimated 

reconstruction error of 0.03. 

In order to decode on this space, we again assumed the neural data were distributed 

according to a Bernoulli distribution and fit it with a GLM. In this case, however, we used a 

square grid, 22 X 22, of Gaussian functions with width of 0.25 units to serve as a basis set65 
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for the Isomap surface, spanning the total space of 2.99 X 2.53 units. We used a small L1 

regularizer with λ= 10-7 and a 10 fold cross-validation scheme. The number and width of the 

basis functions as well as the value for the regularizer were determined by optimizing the 

average log-likelihood of the test sets. After fitting the model to the data, we computed the 

log-likelihood at each time point of the test data and for each bin of the binned posture map 

(50 X 50). To then visualize this as a dynamic map, Q(t,x,y), of the animal's likely position 

(x,y) in this posture space at time t, we let Q(t,x,y)=exp(Lave(t,x,y)), where Lave(t,x,y) was 

determined from a moving 150ms Gaussian average of the log-likelihood of the test data for 

each posture bin (x,y). The maps of Q(t,x,y) can be visualized in both Supplementary videos 

7-8 as well as in Figure 4a.  Only bins occupied >150ms are displayed in the figures. The 

most likely position at a given time bin t was then determined by finding the x,y position 

corresponding to the peak value of Q(t,x,y). The error between the values for x and y and 

the true position were then computed using the Euclidean distance. This was done for the 

entire recording of 59 neurons as well as with subsets of neurons. To estimate performance 

with fewer neurons, we built the decoder using random subsets of 2, 6, 10, … 54 and 58 

neurons. Decoding was repeated 100 times for each population size to compute a mean 

decoding accuracy.  For each population size, chance values were computed by shuffling the 

spikes of each neuron independently by a number of ±[10,120] seconds. This procedure was 

repeated 100 times for each population size. To estimate the likely number of neurons 

required for perfect decoding of the posture space, we extrapolated a linear fit to the 

reconstruction error as a function of the log of the number of neurons. Finally, decoder 

error as a function of bins in the posture map was estimated by taking the average error of 

the moments the animal was located in a given posture bin.  

 

Cross-correlations. 

In sessions with dual simultaneous recordings, firing rates were calculated for each cell in 

5ms bins and smoothed with a Gaussian kernel (S.D. = 100ms). Pairwise cross-correlations 

(Pearson’s r) were computed between the activity of any given M2 cell with each of the 

simultaneously-recorded PPC cells by offsetting the spiking activity of the PPC cell at 

intervals of 5ms from -5 to 5 seconds. To obtain values for the null-distribution, the first cell 

pair was cross-correlated 1000 times with a random offset each time, ranging from ±20 to 
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40 seconds. Pairs were considered to be significant if their peak cross-correlation was 

greater than 0.1 (in absolute terms) and if they exceeded chance values by 6 S.D. for 200ms, 

centered at the peak. The example pair cross-correlations were z-scored, so session 1 and 2 

could be shown on the same scale. Group results were obtained by normalizing all 

significant cross-correlations series by the absolute value of their peak and then averaging 

them at every time point. The grey shaded area represents the 99% C.I. for the resulting 

mean values. Bootstrapped values for the peaks were generated by resampling from the 

cross-correlation sets 1000 times with 10 or 50% of the significant positive or negative 

series, respectively. For each of the bootstraps, selected series were normalized by the 

absolute value of their peak and then averaged at every time point. For each of the 1000 

samples, we established the temporal offset of the peak/trough in the curve. We calculated 

the S.D. of the distribution of the peak/trough offsets and considered that the standard 

error of the population mean and obtained confidence intervals around bootstrapped 

means, which corresponded to the observed peaks to the third decimal.  

 

Histology  

Silicon shanks were left in place after the final recording session. The rats received an 

overdose of Isofluorane and were perfused intracardially with saline and 10 % formalin or 

4% paraformaldehyde. Electrodes were removed 60-120 min after perfusion, and brains 

were extracted and stored in DMSO. Frozen sagittal sections (30 µm) were cut in a cryostat, 

all sections were mounted on glass slides and stained with cresyl violet. Using a digital 

scanner and scanning software (Carl Zeiss AS, Oslo, Norway), electrode locations in PPC and 

M2 were registered with respect to local anatomical landmarks. Recoding sites were located 

on photomicrographs obtained using ZEN (blue edition) and imported to Adobe Illustrator. 

The position of the electrodes during recording was extrapolated using the read-out of the 

tetrode turning protocol and taking shrinkage (~20%) from histological procedures into 

account. Recording depths in PPC ranged from 500-1800µm, and in M2 ranged from 500-

1800µm.   
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Figure Legends 

Figure 1. Head, back and neck position in PPC and M2: one dimensional coding of pitch, 

azimuth, roll and neck elevation. a, Schematic illustration of head and back tracking using 

retroreflective markers (Methods; Extended Data Fig. 1). b, (left) Back pitch (blue arrow), 

neck elevation (orange arrow) and head pitch (red arrow) were calculated relative to the 

floor of the arena. (right) Azimuth of the head (pink arrow) and back (light blue) were 

measured relative to the animal’s body axis projected onto the floor (black arrow), defined 

by a line anchored between the tail marker and the base of the neck.  Head roll (light pink) 

was calculated relative to the arena floor. c-h, Examples of tuning curves for PPC cells 

measured in two open field sessions, with 95% confidence intervals for shuffled data shown 

in grey. Tuning to pitch, azimuth and roll of the head are shown (top, red), as well as back 

pitch and azimuth (middle, blue), and neck elevation (bottom, orange). Cumulative 

frequency histograms showing the stability of the tuning curves for each feature (black 

triangles mark the 95th percentile of the null distribution; detailed results in Extended data 

Table 1). i-n, Same as c-h for cells recorded in M2. 

 

Figure 2. Parietal and motor cortices are tuned to combinations of head, back and neck 

position. a, Two example PPC cells showing tuning to combinations of head, back and neck 

positions; the conjunctive representations appear as single firing fields in 2D rate maps 

(top). Each rate map corresponds to a combination of Euler angles of the head, back, and 

neck elevation. (below) 3D rat models depict the postures to which each cell was tuned. Cell 

1 was selective for whole-body flexion to the right plus rightward head roll; Cell 2 fired 

during rearing, driven primarily by the interaction of head pitch x neck elevation. b, The 

distribution of behavioral tuning in 729 PPC cells as determined using a generalized linear 

model. The largest fractions of cells in PPC were driven mainly by head position, though 

significant fractions of cells were tuned to neck height, back position, and whole-body 

postures (see color-coded legend below and Supplementary Table 2). Running speed and 

self-motion were also represented in the population, though much less than pose. c, 

Examples of postural tuning in M2 cells. Cell 3 (top right) was especially sensitive to vertical 

behaviors, with the head, back and neck raised; cell 4 was tuned to leftward head roll and 
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back flexion during sharp turns. d, Distribution of coding properties across 808 cells in M2. 

As in PPC, head position alone accounted for nearly 40% of the cells in M2, followed by neck 

elevation (10.4%) and back position (9.3%).  

 

Figure 3. Head and back posture are organized topographically across areas, and spiking 

activity in PPC leads M2. a, Dorsal view of the rat brain with anatomical boundaries 

illustrating primary and secondary motor cortices (M), somatosensory cortices (S), 

retrosplenial cortex (R), posterior parietal cortex (P), and primary and secondary visual 

cortices (V). The magnified view (right) shows recording locations (grey dots), and colored 

shading indicates the functional-anatomical distribution of tuning to the head (red) or back 

(blue). b, Percentages of cells in M2 (top) and PPC (bottom) driven by head and back 

position. In all cases the actual distribution tuning differed significantly from theoretical 

distributions that assumed a constant proportion of tuned cells across bins. c, (left) Four 

examples of cell pairs in PPC and M2, each showing stable z-scored cross-correlations over 

two recording sessions with spiking activity in PPC preceding M2. Shaded areas indicate ±6 

S.D. of the shuffled data. (right) The normalized cross-correlation for all cell pairs shows a 

negative peak for PPC relative to M2 for both positive and negative correlations across 

behavioral sessions. Shading indicates the 99% confidence interval of the mean. 

 

Figure 4. Ensemble decoding of pose from PPC and M2 reveals a non-uniform distribution 

of tuning in the population. a, (top, left) Four snapshots taken within 1s as the animal came 

down from rearing and bent rightward. (top, right) Frames from corresponding decoded 

maps illustrate the log posterior distribution of the animal’s posture estimated from 

ensemble activity in PPC and M2. Actual pose is marked with a green “O”, while the 

prediction is color coded yellow-to-black. (middle) Timeline indicating error, in Isomap 

pixels, taken from a 20 minute recording session. (bottom) Five examples of distinct poses 

throughout the session (time points marked underneath) and their attendant Isomaps 

showing real and decoded pose. b, Decoder accuracy as a function of the number of cells 

(red dots), with the null distribution above (black dots). Shaded area indicates ±3 S.D. c, 

(left) Cumulative occupancy on the Isomap shows the animal spent the majority of the 
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session in the low centre of the map, corresponding to postures during foraging on all fours. 

The dashed yellow oval contains the “high occupancy” area in which the animal spent >50% 

of the session. d, (left) Decoder error of the posture map was significantly higher in low 

occupancy areas compared to high. (right) The percentage of cells encoding each postural 

feature (black dots) was significantly higher in low versus high occupancy areas. Bar graphs 

indicate the mean ± SEM. e, Same analysis as the right panel of d, but for all 11 animals in 

the study.   
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Supplementary movies 

Suppl. Movie 1. Animated demonstration of the behavioral arena and recreated 3D rat as 

rendered by our graphical user interface (GUI). 

Suppl. Movie 2. Overhead view of rat foraging in the open field in the GUI. The animal is 

held in place artificially to visualize movement of the body, and spiking activity of a single 

PPC neuron can be heard when the animal flexes its head and spine to the right. 

Suppl. Movie 3. Same as Suppl. Movie 2, though in a different animal and viewed from the 

side, with a PPC neuron driven by rearing. 

Suppl. Movie 4. Example of an M2 neuron selective for leftward roll of the head. 

Suppl. Movie 5. An M2 neuron driven by the combined turn of the head to the right while 

the animal rears on its haunches. The neuron continues to spike while the animal remains 

still in the cell’s preferred body position. 

Suppl. Movie6. A PPC neuron that fires maximally when the head is raised at a high angle 

relative to the back, tending to occur just before rearing. 

Suppl. Movie 7. (left) 3D animation depicting the behavior of a rat in the open field, played 

at 1/3 speed. (right) Synchronized frame-by-frame decoding of the animal’s posture on a 2D 

“posture map” using simultaneously recorded ensembles in PPC and M2. The true posture 

of the rat is indicated by a green “X”, and color-coding depicts the posterior distribution of 

the animal’s posture estimated using spiking activity from PPC and M2. 

Suppl. Movie 8. Same as Suppl. Movie 7, taken from later in the same recording session. 
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Extended Data Figure 2 | Recording loca�ons of each shank that produced single units M2.
Coronal maps showing architectonic boundaries at each AP loca�on where single units were recorded in M2 in nine 
rats. Recording loca�ons in M2 ranged from +4.20mm to -0.48mm AP; all recording sites were confirmed histologically
as confined to M2.
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Extended Data Figure 3 | Recording loca�ons of shanks targe�ng PPC.
Coronal maps showing architectonic boundaries at each AP loca�on where single units were recorded PPC and neigh-
boring regions in eight rats. Recordings spanned the rostral-to-caudal extent of PPC, and in one animal (#23939) inclu-
ded area V2M (Paxinos & Watson 2006). The shanks in two rats (#21082 and #22986) were en�rely rostral to PPC, with
units recorded in caudal M2. Ten cells in #21082 were recorded in M1 and analysed separately.
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Extended Data Figure 4 | Distribu�ons of tuning peaks in PPC and M2, and behavioural coverage.
a, The distribu�on of tuning peaks for head, back and neck posi�on in PPC. For all features tested the observed
distribu�ons of tuning peaks were significantly non-uniform (top to bo�om: head pitch, χ2(9) = 104.3, P <0.001;
head azimuth, χ2(9) = 64.8, P < 0.001; head roll, χ2(9) = 50.8, P < 0.001; back pitch, χ2(9) = 113.7, P < 0.001;
back azimuth, χ2(9) = 166.6, P < 0.001; neck elevation, χ2(9) = 55.9, P < 0.001), tending to accumulate in bins to-
ward the periphery and with lower cumula�ve occupancy. b, The distribu�ons of tuning peaks in M2 were also non-
uniform, tending to accrete in peripheral bins with lower occupancy (top to bo�om: head pitch, χ2(9) = 123,
P <0.001; head azimuth, χ2(9) = 51.5, P < 0.001; head roll, χ2(9) = 38.4, P < 0.001; back pitch, χ2(9) = 106, P < 0.001;
back azimuth, χ2(9) = 123.5, P < 0.001; neck elevation, χ2(9) = 63.9, P < 0.001). c, (Le�) Cumula�ve occupancy for
all egocentric posi�ons sampled across animals; (right) same data, but on a log scale to show that bins with the low-
est occupancy had >5 sec of sampling. 
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(right) in light and darkness. b, Cumula�ve frequency distribu�ons of Pearson’s correla�ons for all features of the
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session. The distribu�ons of correla�ons did not differ significantly for any comparison (inset, K-S test, p > 0.05 in all
cases). c, Examples of three M2 cells with stable tuning across light and dark recording sessions (same as in a).
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Extended Data Figure 6| Examples of postural tuning independent of self-mo�on in PPC .
a, (le�) A cell showing li�le tuning to self-mo�on (informa�on rate 0.11 bits/sec; blue text), exhibited sharp firing
fields for combina�ons of head pitch, azimuth and roll (right, first 2 panels). The cell was largely uninforma�ve
other behavioral features, such as angular head velocity, neck eleva�on, head direc�on or running speed (reflected
by lower informa�on rates of the 2D rate maps). b, Example of a PPC cell with strong sensi�vity to head pitch,
which was not captured by the self-mo�on map. The cell’s selec�vity for head pitch was clear in interac�ons with se-
veral behavioral features, including head angular velocity, neck eleva�on, head direc�on and running speed (right
panels). c, A third cell showing li�le self-mo�on tuning that was par�cularly sensi�ve to head pitch x roll (2nd panel
on right).
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Extended Data Figure 7| Examples postural tuning in M2 independent of self-mo�on.
a, (le�) Example of a cell showing poor tuning to self-mo�on (informa�on rate = 0.10), but sharp sensi�vity to pitch,
azimuth and roll of the head (2D interac�on rate maps, right). The tuning of this cell was dominated by head pitch,
and showed li�le co-modula�on by world-centred features such as head direc�on and speed. b, Another cell tuned 
weakly to self-mo�on (le�most rate map) was highly sensi�ve to specific combina�ons of head pitch, azimuth and roll.
The cell was co-modulated weakly by head direc�on and tended to fire at lower running speed (rightmost rate map).
c, The firing rate of a cell showing a preference for rightward turns (self-mo�on map, le�) is be�er explained by down-
ward pitch of the head and low neck eleva�on. The cell did not di�nguish le� from right head angular veloci�es 
middle panel), it was not sensi�ve to head direc�on, nor was it modulated by running speed. In all cases tested, 3D
postural tuning was maintained when self-mo�on maps were split into le�ward or rightward displacements (not
shown).
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Extended Data Figure 8 | Spli�ng sessions by posture or movement reveals the primacy of pose.
a, (top, le�) 1D tuning curve of a PPC neuron tuned to head roll. (top, right) The recording session was split to only in-
clude le�ward or rightward angular veloci�es for the roll of the head, but this had no effect on the tuning curve, dem-
onstra�ng that posture was independent of head movement. (below, le�) The firing rate of the same cell is expressed
as a func�on of roll velocity. (below, right) The session was again split, but on the basis of the roll (posi�on) of the head
to the le� or right. The tuning curve of the cell was not stable across these condi�ons (right), demonstra�ng that velo-
city tuning was downstream of postural tuning. b, The same test was performed on an M2 neuron tuned to head pitch,
which again demonstrated that postural tuning was independent of movement velocity (top), but not vice versa (below).
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Extended Data Figure 9 | 2D posture maps.
a, The six postural features we measured (head pitch, azimuth and roll, neck eleva�on, back pitch and azimuth) 
were collapsed onto a single 2D surface using Isomap (Tenenbaum, 2000). Ver�cal features, such as pitch of the
head, back, and neck height are stretched along the ordinate (red arrow); head and back azimuth are represented
along the abscissa (blue arrow); head roll occupies the corners. b, Two example PPC cells (le�) and two M2 cells (right) 
show discrete firing fields on 2D posture maps with illustra�ons of their corresponding 3D poses. Popula�on-level ac-
�vity was used to decode dynamic posture using Isomaps in Figure 4a.
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Extended Data Figure 10 | For all features, the majority of cells had tuning peaks at posi�ons with <50% occupancy.
a, The dura�on that each bin was occupied for measures of head, neck and back posi�on (as shown in Extended Data
Fig.4 a and b) was divided by total recording �me to determine the percent occupancy per bin. Bins with <1% occupan-
cy were excluded. The percentage of cells with significant tuning peaks (>3 S.D. above shuffled) was higher for posture
bins with below-mean occupancy (e.g. for head pitch in both PPC and M2, 83% of cells had tuning peaks in bins with
less than 20% rela�ve occupancy). The inverse rela�onship between the number of tuned cells and occupancy was par-
�cularly clear for head and back azimuth. b, Summary of results obtained in (a) with means and SEMs. The percentages 
of cells tuned were summed across levels of high/low occupancy in both regions, showing that that the mean % of cells
tuned for “low occupancy” in PPC was 68% (99% C.I.: 53-82%), while the mean % for “high occupancy” was 14% (99% 
C.I.: 9-19%). For M2, the mean % for low occupancy was 65% (99% C.I.: 47-84%), and 15% (99% C.I.: 9-22%) for “high
occupancy.” 
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Extended Data Table 1 | Stability of 1D tuning curves 

M2PPC

Head pitch

Feature # cells1 # stable cells2 % stable3

Head
azimuth

Head roll

Back pitch

Back
azimuth

Neck
eleva�on

296 191 64.5%

233 128 54.9%

191 137 71.7%

277 121 43.6%

220 113 51.3%

260 143 55.0%

# cells # stable cells % stable

341 218 63.9%

208 117 56.2%

236 156 66.1%

269 140 52.0%

190 87 45.7%

286 167 58.4%

1Number of cells with tuning curve peaks exceeding the 99th percen�le of the shuffled distribu�on in the first recording session. All cells from
PPC (n = 729) and M2 (n = 808) were considered for each feature.
2Number of cells from the first column with across-session r-value exceeding the 95th percen�le of the shuffled data.
3(Column2 / colum 1) x 100.
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Neck Back
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body
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Extended Data Table 2 | Summary of GLM model selec�on for all cells

Head
Behavioural

feature

cell count 11 86 8 47 22 65 7 28 42 10 74 8 57 6 4 27 4 26 6 11 259

n = 75 (9.3%)n = 316 (39.1%) n = 84
(10.4%)

PPC
n = 729

Move-
ment Pitch All pose

variables 
Neck

height

Head all x
neck

height
Roll Roll x

azimuth
Move-
ment Pitch Azimuth Pitch x

roll 
Behavioural

feature
Pitch x

azimuth
Head 

all

cell count 12 51 25 59 15 22 13 21 19 7 36 22 20 17 10 29

Unclas-
sifiedDirec�onAzimuth Pitch x

azimuth

15 38 5 1 292

Pitch x
azimuth Speed Posi�onSelf-

mo�on
Move-
ment

Back
All 

bodyHead

n = 69 (9.5%)n = 237 (32.5%) n = 43
(5.9%)

Neck

Move-
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