

https://paperpile.com/c/4PrAuS/FnwAY
https://paperpile.com/c/4PrAuS/1vyvi
https://paperpile.com/c/4PrAuS/FnwAY
https://paperpile.com/c/4PrAuS/jjCK2
https://paperpile.com/c/4PrAuS/l5M4C



http://bioinformatics.burnham.org/pages/index.html



https://paperpile.com/c/4PrAuS/vJbXM










bioRxiv preprint first posted online Apr. 27, 2018; doi: http://dx.doi.org/10.1101/309179. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-ND 4.0 International license.

Figure 3 | Mutant 2, mutant 5, and mutant 13 show nucleotide-independent diffusive
motility. (a) Position of mutations mapped onto the structure of human cytoplasmic dynein 2
stalk (PDB: 4rh7'®) for mutant 2, mutant 5, and mutant 13. Spheres show residues that were
altered in the stalk to either create an insertion or deletion. (b) Kymographs for wild-type (grey),
mutant 2 (red), mutant 5 (orange), and mutant 13 (purple) in presence of ATP and (c) without
ATP. Additional kymographs are shown in Supplementary Fig. 5. (d) Table showing the type of
movement found for wild-type, mutant 2, mutant 5, and mutant 13 in modified single molecule
assay with and without ATP. Classification of type of movement is based on two repetitions of
different dynein preparations. Supplementary Movies 1-4 and 5-8 show motility of wild-type

and diffusive mutants with and without ATP, respectively.
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Figure 4 | Gliding assay shows slow directional movement for mutants 2, 5, and 13. (a)
Schematic of modified gliding assay. Dyneins (dark grey) are immobilized on microscope slide
(light grey) and can translocate microtubule (green). Plus end directed kinesins (dark blue)
move on top of microtubule to mark directionality. (b) Histogram of gliding velocities of
wild-type (grey, n=116), mutant 2 (red, n=105), mutant 5 (orange, n=129), and mutant 13
(purple, n=130) with average velocity («) and its standard deviation (¢). Example movies of

microtubule gliding for all four constructs are shown in Supplementary Movies 9-12.
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Figure 5 | Diffusive mutants show microtubule-independent, high basal ATPase activity
and low affinity for microtubules. (a) Microtubule stimulated ATPase activity of wild-type
(grey), mutant 2 (red), mutant 5 (orange), and mutant 13 (purple). (b) Bar plot of basal ATPase
activity of wild-type (grey), mutant 2 (red), mutant 5 (orange), and mutant 13 (purple).
Microtubule affinity measured by a cosedimentation assay in the apo state (full line) and in the
presence of ATP (dashed line), and AMPNP (dotted line) for (¢) wild-type, (d) mutant 2, (e)
mutant 5, and (f) mutant 13. Error bars in a-f show standard deviation of three repetitions of
different dynein preparations. Supplementary Table 3 and 4 show fit equation and rate

quantification for ATPase data and microtubule affinity data, respectively.
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Class 1
71.3%

A

Figure 6 | Cryo-EM structure of mutant 5 in the presence of AMPPNP shows gap in the
AAA ring. (a) Cryo EM reconstructions and fitted models for class 1 and class 2 resulting from
3D classification of the data. Class 1 is composed of 71.3% of all particles (left) and class 2 of
28.7% of all particles (right). The cryo-EM density map for both classes is shown as a
semi-transparent surface with a fitted model (fit as described in methods) as cartoon. Color
coding of domains is the same as for Fig. 1. Left: schematic of monomeric dynein construct,
box indicates region that was resolved in the cryo-EM maps. (b) Cartoon representation of
models for both classes. Black arrow indicates the position of the gap between AAA5L and
AAA5s in class 1. Left: schematic indicates the point-of-view. (c) Visualization of interatomic
distances between class 1 and class 2 as shown in b after alignment on AAA1L. Left:
schematic indicates the point-of-view. (d) Movements between the large and small domains of

AAA5 between class 1 (orange) and class 2 (grey). The large domain of AAAS is aligned.
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Figure 7 | A model for communication between ring and MTBD during the
mechanochemical cycle of dynein. Conformational changes is the AAA ring, the linker, and
the stalk of dynein during different nucleotide states based on crystal structures and EM
reconstructions'"*'® (left). (I) In the apo state dynein is bound to the MT and the stalk has been
shown to be in the « registry?'. The ring is in a relaxed conformation and the linker is docked.
(1) When AMPPNP is bound, the linker remains docked and the ring is more compact than in
the apo state. The stalk transitions to the g registry and the affinity of the motor for micritubules
is weakened. (Ill) In the presence of ADP-Vi the linker bends so that its N-terminus is closer to
AAA2 and AAAS and the ring is even more compact. Furthermore a kink in CC2 of the stalk can
be observed. (IV) When only ADP is bound to AAA1 and AAA3, the linker is seen in a straight
conformation and the ring a little less compact. Moreover, the stalk changes back to the a
registry.

For the AMPPNP state of wild-type dynein a minor (17%) and a major conformation
(83%) can be adopted. The major conformation is as previously reported’® with the ring in a
compact state, while in the minor conformation the ring is likely in a relaxed conformation, as
evidenced by weak density in the region of AAA5. For mutant 5 we observes a shift in
equilibrium where the relaxed ring with a break at AAAS5 is the major conformation (71%) and

the compact state of the ring is less prominent (29%).
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