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Statement of significance: 

We developed and experimentally validated a computational pipeline to identify a novel class of 

tumor neoantigens derived from RNA-based intron retention, which is prevalent throughout 

cancer transcriptomes. The discovery of transcriptionally-derived tumor neoantigens expands the 

tumor immunopeptidome and contributes potential substrates for personalized cancer vaccine 

development. 
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Personalized cancer vaccine strategies directed at tumor neoantigens derived from somatic 

mutations in the DNA are currently under prospective evaluation1, 2. Alterations in tumor 

RNA, rather than DNA, may also represent a previously-unexplored source of neoantigens. 

Here, we show that intron retention, a widespread feature of cancer transcriptomes3, 4, 

represents a novel source of tumor neoantigens. We developed an in silico approach to 

identify retained intron neoantigens from RNA sequencing data and applied this 

methodology to tumor samples from patients with melanoma treated with immune 

checkpoint blockade5, 6, discovering that the retained intron neoantigen burden in these 

samples augments the DNA-derived, somatic neoantigen burden. We validated the 

existence of retained intron derived neoantigens by implementing this technique on cancer 

cell lines with mass spectrometry-derived immunopeptidome data7, 8, revealing that 

retained intron neoantigens were complexed with MHC I experimentally. Unexpectedly, we 

observed a trend toward lack of clinical benefit from immune checkpoint blockade in high 

retained intron load-tumors, which harbored transcriptional signatures consistent with cell 

cycle dysregulation and DNA damage repair. Our results demonstrate the contribution of 

transcriptional dysregulation to the overall burden of tumor neoantigens, provide a 

foundation for augmenting personalized cancer vaccine development with a new class of 

tumor neoantigens, and demonstrate how global transcriptional dysregulation may impact 

selective response to immune checkpoint blockade. 

 

Cancer immunotherapy relies on immune recognition of tumor cells as foreign, enabling an 

immune response that destroys tumor cells9. Recent clinical successes of immune checkpoint 

blockade therapies across tumor types demonstrate the ability of these agents to enhance immune 
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destruction of tumors in patients with advanced disease10, 11. In addition, personalized cancer 

vaccines, alone or in combination with immune checkpoint blockade therapies, have shown 

potential as targeted immunotherapies1, 2. Tumor neoantigens, which arise from somatic 

nonsynonymous mutations in expressed genes, generate novel peptides that are foreign to the 

immune system and are able to stimulate an immune response5, 12-14. Genes that are not normally 

expressed in adult somatic tissues, such as cancer germline antigens, also have been shown to 

generate immunogenic peptides that contribute to tumor rejection15, 16.  

 

Analysis of untreated tumor transcriptomes demonstrates abundant dysregulation of RNA 

splicing, characterized predominantly by intron retention, even in the absence of somatic 

mutations affecting the splicing machinery3, 4. Intron retention occurs when the spliceosome fails 

to remove an intron from the pre-mRNA transcript, causing it to remain in the final mRNA 

transcript. Products of aberrant splicing events, including intron retention, are endogenously 

processed, proteolytically cleaved into 8-11 amino acid peptides, and presented on the cell 

surface bound to MHC class I molecules for recognition by CD8 T cells17. Transcripts containing 

retained introns often enter the nonsense-mediated decay (NMD) pathway and usually do not 

lead to expression of full-length proteins due to premature stop codons contained in the intronic 

region18. The NMD pathway relies on recognition of these premature termination codons, which 

requires that transcripts undergo translation in order to be targeted for degradation. Peptides 

generated through this pioneer round of translation are a source of antigens presented by the 

MHC class I pathway, as evidenced by the finding that presentation of an antigen can occur even 

when synthesis of its full-length protein is disrupted19. In addition, genes yielding transcripts 

likely to undergo NMD have been found to preferentially give rise to MHC class I-associated 
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peptides, and the likelihood of undergoing NMD is predictive of MHC class I-associated peptide 

generation20. These findings suggest that aberrant peptide products generated through the 

translation and degradation of retained introns may be a novel source of tumor neoantigens; 

however, thus far there is no direct evidence that retained introns result in tumor neoantigens 

presented through the MHC class I pathway, nor is there an established relationship between this 

form of transcriptional dysregulation and clinical benefit from immune checkpoint blockade 

therapies. 

 

In this study, we develop a computational method to identify putative retained intron neoantigens 

in tumor samples from two clinical cohorts of melanoma patients treated with immune 

checkpoint blockade therapies. We then apply our method to a set of cancer cell lines with 

corresponding mass spectrometry-derived immunopeptidome data and show that putative 

retained introns identified by our pipeline are found experimentally in complex with MHC I 

molecules. Further, we explore trends associated with retained intron (RI) neoantigens versus 

somatic neoantigens and the relevance of RI neoantigens to patient clinical outcome. These 

findings provide evidence that RI neoantigens are detectable in tumor cells and contribute to 

tumor immunogenicity.  

 

To identify putative RI neoantigens in tumor samples, we developed a computational pipeline 

using bulk RNA sequencing (RNA-Seq) data from clinical tumor samples as input (Fig. 1A, 

Methods). The pipeline leverages novel adaptations of established methods and publicly-

available databases21-26 to create a standardized workflow optimized for identification of putative 

RI neoantigens. Briefly, expressed intron retention events were detected from pre-processed 
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tumor sample RNA-Seq data, and intron fragments likely to be translated into peptides based on 

their position downstream from a translated exon and upstream from an in-frame stop codon 

were identified. Predicted binding affinities between RI peptide sequences and sample-specific 

HLA Class I alleles were calculated in order to identify candidate RI neoantigens. Critically, 

preliminary results were then filtered and thresholded to exclude artifacts generated by sources 

including erroneous transcriptome annotations, low sequencing coverage, and events that are 

unlikely to stimulate immune response due to tolerance mechanisms such as overlap with normal 

protein sequences and intron retention events detected in normal tissue. This process (Methods) 

generated a robust final list of putative RI neoantigens for each sample. 

 

We applied this pipeline to tumor samples from two published cohorts of melanoma patients who 

received immune checkpoint blockade therapies5, 6 to identify putative RI neoantigens (n = 48 

melanomas; Supplementary Tables S1 and S2). Another clinical immunotherapy-treated 

melanoma cohort27 was excluded from this analysis because it was generated from formalin-

fixed, paraffin-embedded (FFPE) tumor samples and sequenced using a transcriptome capture 

technique, which did not result in adequate preservation of RI transcripts (unpublished data). 

Both cohorts had comparable levels of intron retention and RI neoantigens, with one outlier in 

the Hugo et al. cohort with abundant transcriptional dysregulation and significantly elevated 

retention and RI neoantigen burden, defined henceforth as the count of unique RI-derived 

neoantigen peptide sequences per individual (Fig. 1B). However, slight variation in RI 

neoantigen load between cohorts was expected given differences in sequencing run, depth, and 

quality, which can be especially apparent in the context of RNA-Seq analysis28. Total number of 

retained introns was tightly correlated with RI neoantigen load in both cohorts (R2 = 0.93 and 
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0.86 for the Hugo and Snyder cohorts, respectively), with a mean of ~3 neoantigens arising from 

each neoantigen-yielding retained intron for both cohorts (Supplementary Fig. S1 and 

Supplementary Table S1).  

 

To determine the total neoantigen load for each patient, we considered neoantigens arising from 

both RIs (RNA-based), generated via our pipeline, and somatic mutations (DNA-based), 

generated via published methods27 (Fig. 1C, Supplementary Table S1). The majority of patients 

from both cohorts showed significantly augmented total neoantigen loads with the incorporation 

of RI neoantigens into the analysis. Mean somatic neoantigen load across cohorts was 2,218 and 

mean RI neoantigen load was 1,515, yielding a ~0.7-fold increase in mean total neoantigen load 

with the addition of RI neoantigens (Fig. 1D). There was not a significant correlation between 

somatic neoantigen load and RI neoantigen load (p = 0.63) (Supplementary Fig. S2), suggesting 

that analysis of the complete immunopeptidome may provide greater insight into patient 

response to immunotherapy.  

 

To experimentally demonstrate that RIs are endogenously processed and presented through the 

MHC class I pathway, we identified RI neoantigens in tumor cell lines that were found 

complexed to MHC I. We utilized RNA-Seq data from multiple human tumor cell lines and their 

corresponding MHC I mass spectrometry data elucidating their immunopeptidomes to query for 

in vitro presentation of computationally-predicted RI neoantigens7, 8 (Supplementary Table S3). 

In MeWo, a melanoma cell line, the RI neoantigens EVYAAGKYV and YAAGKYVSF were both 

predicted with our pipeline and experimentally discovered in complex with MHC I via mass 

spectrometry with high confidence (Fig. 2A). Both of these RI neoantigens are predicted to arise 
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from a retained intron in the gene KCNAB2 at genomic locus chr1:6142308-6145287. Similarly, 

we found RI neoantigens identified with both methods in another melanoma cell line, SK-MEL-5 

(RI neoantigens AMSDVSHPK and LAMSDVSHPK from an intron in gene SMARCD1), in B cell 

lymphoma cell lines CA46 (RI neoantigen FRYVAQAGL from an intron in gene LRSAM1) and 

DOHH-2 (RI neoantigens TLFLLSLPL and FLLSLPLPV from an intron in gene CYB561A3), and 

in leukemia cell lines HL-60 (RI neoantigen SVLDDVRGW from an intron in gene TAF1) and 

THP-1 (RI neoantigen LTSQGKSAF from an intron in gene ZCCHC6) (Fig. 2B and 

Supplementary Fig. S3). Additionally, the same procedure was performed using 

computationally-derived, somatic mutation neoantigens, and comparable rates of mass 

spectrometric peptide detection were observed in this setting (Supplementary Table S4). The 

discovery of peptides in complex with MHC I in vitro via mass spectrometry with sequences 

shared by RI neoantigens predicted computationally with our pipeline provides direct evidence 

of the processing and presentation of RI neoantigens through the MHC I pathway.   

 

To explore the role of RI neoantigens in predicting individual response to checkpoint blockade, 

we next analyzed predicted RI neoantigens in melanoma patient cohorts (Fig. 1B, D).  We 

hypothesized that a subset of RI neoantigens may be differentially expressed between patients 

who did and did not respond to immune checkpoint blockade therapy. Such neoantigens might 

have both therapeutic relevance for cancer vaccines and clinical relevance as biomarkers for 

potential benefit of immune checkpoint blockade therapy. We identified a total of 6,178 

responder-exclusive RI neoantigens, or RI neoantigens that appeared in at least one responder 

and no nonresponders from either cohort, with 1,017 of those present in two or more responders 

and 398 present in at least one patient from each cohort (p > 0.05 for all, Methods) (Fig. 3A, B 
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and Supplementary Table S5). The most prevalent responder-exclusive RI neoantigen, 

LPVSTLPPSL, arose from a RI within the TRIP6 gene and was expressed in seven responder 

samples from the Hugo cohort with a median expression level of 9.38 transcripts per million 

(Fig. 3C). No non-responder samples from either cohort were predicted to have the 

LPVSTLPPSL RI neoantigen. Additionally, another RI in the TRIP6 gene yielded a second 

responder-exclusive RI neoantigen, RPDRQVTLPL, which was expressed in four samples from 

the Hugo cohort with a median expression level of 11.01 transcripts per million. The 

implications of expression of these RI neoantigens as well as other responder-exclusive RI 

neoantigens in patient samples merit further study in larger clinically-annotated cohorts.  

 

Given that somatic neoantigen burden is a known correlate of clinical benefit from immune 

checkpoint inhibitor therapy in melanoma27, we then examined whether RI neoantigen load 

might be similarly associated in our cohorts of melanoma patients. However, there was no 

significant association between RI neoantigen load and clinical benefit from immune checkpoint 

blockade therapy in either cohort alone or in aggregate, nor was there correlation with expression 

of canonical markers of immune cytolytic activity, CD8A, GZMA, or PRF129 (p > 0.05 for all, 

Fig. 4A and Supplementary Fig. S4). Further, patients who did not respond to immune 

checkpoint blockade therapy tended to have higher RI neoantigen loads than those who did 

respond, although this trend was not statistically significant (p = 0.29 and 0.61 for the Snyder 

and Hugo cohorts, respectively). There was no association between other clinical covariates (i.e., 

age, sex, disease status) and RI neoantigen load (Supplementary Fig. S5).  
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To investigate this paradoxical trend and the transcriptional correlates of RI neoantigen burden, 

we performed gene set enrichment analysis (GSEA)30 on the top (n = 12) vs. bottom (n = 11) 

quartile patients by RI neoantigen load across both patient cohorts. Analysis of 50 “Hallmark” 

gene sets representing major biological processes30 revealed a statistically significant enrichment 

in expression of cell cycle-related genes, including those linked to the G2M checkpoint (q < 

0.0001), E2F targets, which play a role in the G1/S transition of the cell cycle (q < 0.0001), 

MYC targets (q = 0.012, q = 0.026), and mitotic spindle (q = 0.016), in the top quartile RI 

neoantigen load patients compared to the bottom quartile patients (Fig. 4B and Supplementary 

Table S6). In further GSEA analysis of the more refined “Founders” gene sets describing the 

significantly enriched Hallmark gene sets, the most strongly enriched gene sets in the top quartile 

RI neoantigen load patients were related to DNA replication and damage repair, e.g., 

downregulation of TLX targets including tumor suppressor genes CDKN1A, SIRT1, and PTEN (q 

< 0.0001)31, activation of ATR in response to replication stress (q < 0.0001), DNA dependent 

DNA replication (q < 0.0001), BRCA centered network (q < 0.0001) (Fig. 4B and Supplementary 

Table S6).  

 

Interestingly, similar results were seen when performing GSEA on the same set of patients but 

grouped based on response to immunotherapy (n = 10 nonresponders and n = 13 responders), 

despite the fact only half of the top quartile RI neoantigen load patients were nonresponders (Fig. 

4B). Compared to responders, immunotherapy nonresponders showed statistically significant 

enrichment in many of the same gene sets related to cell cycle and DNA damage repair as were 

upregulated in the top quartile RI neoantigen load patients for both the Hallmark and Founders 

gene sets: G2M checkpoint (q < 0.0001), E2F targets (q < 0.0001), mitotic spindle (q < 0.0001), 
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MYC targets (q = 0.005, q = 0.104), downregulation of TLX targets (q < 0.0001), activation of 

ATR in response to replication stress (q = 0.001) (Fig 4B and Supplementary Table S6). Our 

results reveal a transcriptional similarity between high RI neoantigen load patients and 

immunotherapy nonresponders, and suggest that cell cycle dysregulation may be influencing 

both global aberrant RNA splicing and immunotherapy response, potentially via distinct 

biological mechanisms and pathways.  

 

This study establishes a novel and previously uninvestigated source of neoantigens derived from 

RNA-based tumor events. We demonstrate that tumor-specific RI neoantigens can be identified 

computationally in both patient- and cell line-derived samples and a subset can be validated as 

presented on the cell surface in complex with MHC I. We developed a computational framework 

to identify patient-specific neoantigens arising from intron retention events and identified RI 

neoantigens in tumor samples from two clinical cohorts of melanoma patients. Putative RI-

neoantigen peptides predicted in silico from multiple human tumor cell lines were found 

experimentally to be bound to the MHC Class I molecule in vitro through mass spectrometry. 

These data support the hypothesis that aberrant splicing results in intron retention, which 

generates abnormal transcripts that are translated into immunogenic peptides and presented to the 

immune system, underscoring their relevance in patients receiving immunotherapy. Notably, 

further studies and experimental approaches will be necessary to clinically validate the 

immunogenicity of specific RI neoantigens in patients, including identification of T cells specific 

to predicted RI neoepitopes.  
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Additionally, although RI neoantigen load is not predictive of response to immune checkpoint 

blockade therapy as a global measure, a subset of RI neoantigens are associated with treatment 

response and may have further clinical relevance for both cancer vaccine formulation and 

immunotherapy response prediction. Moreover, we discovered that patients with top quartile RI 

neoantigen loads are transcriptionally similar to immunotherapy nonresponders; both patient 

groups have enrichment of cell cycle and DNA damage repair-related gene sets. Intron retention 

has been shown to regulate the cell cycle in both non-malignant32 and malignant cells33. Further, 

high RI neoantigen load and nonresponse to checkpoint blockade were associated with 

downregulation of TLX target genes including tumor suppressors CDKN1A, PTEN, and SIRT1, 

genes that are involved in halting cell cycle progression in response to DNA damage sensing34. 

These findings are provocative given the emerging synergistic relationship between cell cycle 

inhibition and immune checkpoint blockade therapies35-37. Small molecule cell cycle inhibitors, 

which reduce activity of E2F targets, have been shown to enhance tumor cell antigen 

presentation as well as inhibit proliferation of immunosuppressive regulatory T cells, possibly 

explaining their potentiation of the effects of checkpoint blockade. In our cohorts, both high RI 

neoantigen load and checkpoint inhibitor nonresponse were associated with increased expression 

of E2F targets. Further investigation may elucidate whether a similar mechanism underlies the 

paradoxical trend between elevated RI neoantigen burden and immunotherapy nonresponse.  

 

Identification of a wider array of tumor neoantigens, including those derived from somatic 

mutation, aberrant gene expression, and splicing dysregulation, will contribute to a more 

complete understanding of the tumor immune landscape. Additional work dissecting the 

relationship between the prediction, processing and presentation, and ultimate immunogenicity 
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of neoantigens derived from different sources will be required to ensure clinical relevance of this 

approach. It has been shown that melanoma in particular may feature certain shared epitopes 

across patients which are derived from incomplete splicing processes, which may render these 

cancers more susceptible to RI-derived neoantigens38, 39. Similar approaches across different 

histologies will provide further clarity on the role and contribution of RI neoantigens to tumor 

immunity across cancer contexts. Currently, the availability of clinically annotated cohorts with 

high quality RNA sequencing limits the widespread application of this method. Future efforts to 

promote RNA sequencing of matched normal samples alongside tumors, as well as optimization 

of methods specifically for formalin-fixed, paraffin-embedded tissue samples, will provide 

further clarity on the importance of specific intron retention events and corresponding 

neoantigens. Prediction of patient-specific RI-neoantigens has the potential to contribute to the 

development and further improvement of personalized cancer vaccines. 

 

Methods 

Clinical cohorts 

Analysis was conducted on published cohorts of melanoma patients treated with immune 

checkpoint inhibitors. The Hugo et al. cohort included samples from 27 melanoma patients (26 

pretreatment, 1 on-treatment) treated with the PD-1 inhibitor pembrolizumab6. Patient outcomes 

were classified as responding to therapy (R) (n=14) or not responding to therapy (NR) (n=13), as 

described in the original publication. These samples were sequenced from fresh frozen tissue 

using a standard, poly(A) selected protocol (personal communication, Willy Hugo). The Snyder 

cohort included post-treatment samples for 21 melanoma patients treated with ipilimumab (anti-

CTLA-4 therapy)5, 40. Outcomes were classified as receiving long-term clinical benefit (LB) 
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(n=8) or not receiving clinical benefit (NB) (n=13), as described in the original publication. RNA 

sequencing of the Snyder cohort was performed on fresh frozen tissue using a standard, poly(A) 

selected protocol.  

 

RI neoantigen pipeline 

Raw RNA-Seq FASTQ files were pseudoaligned to an augmented hg19 (GENCODE Release 19, 

GRCh37.p13)41 transcriptome index containing both exonic and intronic transcript sequences,  

and transcript expression was quantified via kallisto21. The KMA algorithm22, implemented as a 

suite of Python scripts within an R package, was used to identify the genomic loci of expressed 

intron retention events with limited false positives. Using these RI loci, the UCSC Table Browser 

database23 was queried via public MySQL server to obtain the nucleotide sequences 

corresponding to the intronic regions and fragments of the previous exonic sequences, as well as 

the open reading frame orientation at the start of the intron. RI peptide sequences of 9-10 amino 

acids, with at least one intronic amino acid, were generated by translating open reading frames 

into intronic sequences until hitting an in-frame stop codon. These peptides, along with sample 

HLA Class I alleles identified via the POLYSOLVER algorithm26, were assessed for putative 

peptide-MHC I binding affinity via NetMHCPan v3.124. A threshold of rank < 0.5% was used to 

identify putative RI neoantigens.  

 

Several filters were applied at various steps throughout the pipeline to eliminate likely false 

positive RIs and RI neoantigens. After expression quantification, RIs expressed at a level ≤ 1 

transcript per million, likely artifactual, were eliminated from the analysis. Additional 

expression-based filters were applied within the KMA algorithm: RIs that did not reach a level of 
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at least five unique counts and whose neighboring exons did not reach a level of at least one 

transcript per million in at least 25% of samples in a cohort were eliminated as false positives. 

Due to the absence of matched normal RNA-Seq data for our melanoma clinical cohorts, a ‘panel 

of normals’ approach was taken in an attempt to filter out introns commonly retained in normal 

skin tissue, which would not produce immunogenic peptides due to likely host immune 

tolerance. RIs were identified in six normal skin samples (three individuals, two samples per 

individual: Individual ERS326932 with samples ERR315339 and ERR315376, Individual 

ERS326943 with samples ERR315372 and ERR315460, and Individual ERS327007 with 

samples ERR315401 and ERR315464) from the Human Protein Atlas42. RNA-Seq paired-end 

FASTQ files for each sample were downloaded from the following open-access link: 

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/samples/. All normal sample 

retention profiles were highly concordant, both within and across individuals (Supplementary 

Fig. S6A). The final filter set of 7,050 normal RIs was obtained by intersecting the sets of RIs 

shared by each unique combination of one sample per individual—eight groups total 

(Supplementary Fig. S6B, Supplementary Table S7). These RIs were eliminated from 

downstream tumor sample analyses. In addition, RI peptides with amino acid sequences present 

in the normal proteome, derived from the UniProt human reference proteome version 2017_03, 

downloaded on 07/05/201725, were filtered due to likely host immune tolerance. Finally, a set of 

RIs that were flagged due to abnormally high expression values and discovered upon manual 

review via Integrative Genomics Viewer43 to be erroneously-annotated in either the reference 

transcriptome or the Table Browser database were eliminated from the analysis (Supplementary 

Fig. S7A-D, Supplementary Table S7).  
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Pipeline code is publicly accessible on GitHub at https://github.com/vanallenlab/retained-intron-

neoantigen-pipeline. 

 

Clinical cohort somatic neoantigen analysis 

Putative somatic neoantigens were identified in silico for each sample as described in Van Allen 

et al. 2015. Briefly, BAM files from each cohort underwent sequencing quality control to ensure 

concordance between tumor and matched normal sequences and adequate depth of sequencing 

coverage. Single nucleotide variants were called using MuTect44 and insertions and deletions 

were called using Strelka45. Annotation of identified variants was done using Oncotator 

(http://www.broadinstitute.org/cancer/cga/oncotator). Sequences of 9-10 amino acid peptides 

with at least one mutant amino acid were generated. These peptides, along with HLA Class I 

alleles called with POLYSOLVER26 were analyzed using NetMHCpan v3.024 to identify HLA-

peptide binding interactions. For each patient, all peptides with predicted binding rank ≤ 2.0% 

for at least one patient HLA Class I allele were called somatic neoantigens. 

 

Responder-exclusive retained intron neoantigens 

Responder-exclusive RI neoantigens were defined as neoantigens that were present in at least 

one patient who responded to immune checkpoint blockade therapy and absent in all non-

responders, using clinical annotations as published for both cohorts. RI transcripts yielding 

response-associated RI neoantigens were often expressed in multiple patients— both responders 

and non-responders— who lacked HLA alleles with predicted high binding affinity to the RI 

peptide. However, RI neoantigens were only classified as responder-exclusive if they were not 
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expressed in any non-responders expressing HLA alleles with predicted high RI neoantigen 

binding affinity.  

 

Cell line analyses   

Raw RNA-Seq data from the following published8 cell lines: CA-46, DOHH-2, HL-60, THP-1, 

MeWo, SK-Mel-5 were obtained from the Cancer Cell Line Encyclopedia7 via the NCI Genomic 

Data Commons46 and run through our computational pipeline as previously described, with 

minor adaptations as described henceforth. HLA Class I alleles were used for each cell line as 

enumerated in publication. A threshold of predicted binding rank ≤ 2.0% for at least one HLA 

Class I allele was used to distinguish cell line RI neoantigens. All pipeline filters applied to 

patient data described above were implemented on the cell line data except RI neoantigens 

expected to be retained in normal tissue were not filtered due to the fact that these experiments 

were focused on presentation of RI neoantigens rather than immune system stimulation once 

presented. 

 

Mass spectrometric data from Ritz et al.8 as well as previously unpublished data for cell lines 

MeWo, DOHH2, and SKMEL5 was searched against a database consisting of 93,250 sequences 

of the human reference proteome downloaded from UniProt on July 7, 2017 concatenated with 

putative retained intron sequences (TPM > 1), or concatenated with 133,811 intron sequences 

with TPM < 1 (not retained) as negative control. Fragment mass spectra were searched with 

SEQUEST and filtered to a 1% false discovery rate with percolator to identify high confidence 

events. 
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Gene set enrichment analysis  

Gene expression was quantified in patient samples using kallisto21. Gene set enrichment analysis 

(GSEA)30 was run to compare both top quartile vs. bottom quartile RI load patients and 

immunotherapy responders vs. nonresponders. Initially, 50 Hallmark gene sets were tested.  

GSEA analyses of the Founders gene sets underlying the Hallmark gene sets that were 

significantly enriched in both top quartile vs. bottom quartile RI load patients and 

immunotherapy responders vs. nonresponders were subsequently performed. All statistical 

values reported are Benjamini-Hochberg FDR q values corrected for multiple hypothesis testing.  

 

Statistical analyses 

Assessment of difference in means or medians for a continuous variable between two clinical 

response groups (i.e., clinical benefit vs. no clinical benefit) was performed using the 

nonparametric Mann-Whitney U test for non-normally-distributed variables (e.g., RI neoantigen 

burden). In the case of responder-exclusive RI neoantigen analyses, empirical p-values 

representing the percentage of time the outcome was observed in the setting of random 

phenotypic assignment were derived from 10,000 simulations with random permutation of the 

clinical benefit vs. no clinical benefit labels. To be specific, in each simulation round, the 

number of responder-exclusive RI neoantigens present in X samples, where 1 ≤ X ≤ total number 

of responders, was calculated. Then, empirical one-sided p-values were calculated as the 

proportion of simulations in which the outcome in question, or any greater outcome, was 

observed. All statistical analyses were conducted in the R statistical software environment 

(v.3.3.1).  
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Data availability 

Raw RNA-Seq data for the Snyder et al. 2014 patient cohort are available on dbGaP under 

accession code phs001038.v1.p1 and for the Hugo et al. 2016 cohort on the Sequence Read 

Archive (https://www.ncbi.nlm.nih.gov/sra) under the accession number SRA: SRP070710.  
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Figure 1. Computational identification of RI neoantigens significantly augments overall 

neoantigen burden in the Hugo and Snyder patient cohorts. A, In silico retained intron pipeline 

detects intron retention events from whole transcriptome sequencing, determines open reading 

frames extending into intronic sequences, and identifies putative HLA-specific neoantigens. B, 

Distribution of total RI load, neoantigen-yielding RI load, and RI neoantigen load in patient 

cohorts (n = 27 Hugo, n = 21 Snyder). Boxplots show the median, first and third quartiles, 

whiskers extend to 1.5 x the interquartile range, and outlying points are plotted individually. C, 

Neoantigen presentation pathway: Somatic DNA mutations (1) are transcribed (2), spliced (3) 

and missense mutations are translated (4) and undergo processing into 9-10mer peptides (5), 

which are presented on the cell surface through the MHC I pathway (6). RI neoantigens are 

produced from unmutated DNA (1), transcribed (2), and undergo defective splicing resulting in 

intron retention (3). RI transcripts are translated resulting in abnormal peptides and early 

termination (4). Abnormal proteins are degraded through the NMD pathway, processed into 9-

10mer peptides (5), and presented on the cell surface through the MHC I pathway (6). D, 

Somatic and RI-neoantigen load for each patient, sorted by clinical cohort. 
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Figure 2. Predicted RI neoantigens in cancer cell lines are experimentally identified in complex 

with MHC Class I. A, The application of our method to the MeWo cell line revealed two RI 

neoantigens originating from the same intron in gene KCNAB2 which were both predicted in 

silico and found by mass spectrometry to be present in the MeWo immunopeptidome. 

Corresponding Integrative Genomics Viewer (IGV) sashimi plot indicating RNA-Seq read depth 

in intron and surrounding exons (RI expression in TPM=5.13, percent-spliced-in [PSI] 

value=1.07%) as well as mass spectra for the RI neoantigen peptides, are shown. B, A similar 

procedure revealed RI neoantigens predicted by our pipeline with mass spectrometric evidence 

supporting their presentation on cell surfaces in complex with MHC Class I in five other human 

tumor cell lines: SK-MEL-5, CA46, DOHH-2, HL-60, and THP-1.  
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Figure 3. A subset of RI-neoantigens were exclusive to patients who received clinical benefit 

from immune checkpoint blockade therapy (n = 22 patients total). A, UpSet visualization of set 

intersections for RI neoantigens exclusive to responders, nonresponders, and shared by at least 

one patient in both response groups. B, Distribution of responder-exclusive RI neoantigens 

across patients. Each bar corresponds to the number of unique RI neoantigens common to the 

indicated number of responder patients. The most common responder-exclusive RI neoantigen 

was present in seven patients. C, IGV sashimi plot highlights RNA-Seq read depth for the seven 

patients with responder-exclusive RI neoantigen LPVSTLPPSL. Expression in TPM and PSI 

(percent spliced-in) values for each patient as follows, from top to bottom of stacked sashimi 

plots: Pt15 TPM=4.66, PSI=4.10%; Pt19 TPM=10.96, PSI=13.90%; Pt27A TPM=9.87, 

PSI=8.90%; Pt2 TPM=12.93, PSI=18.05%; Pt35 TPM=5.80, PSI=3.95%; Pt38 TPM=1.09, 

PSI=3.91%; Pt9 TPM=9.38, PSI=7.88%. The zoomed-in region of a representative sample 

expressing the retained intron shows the identified RI-neoantigen amino acid sequence, 

translated in the correct reading frame from the previous exon. An N-terminal portion of the 

retained intron is likely translated due to its position upstream of an in-frame stop codon (not 

shown).  
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Figure 4. Patients with high RI neoantigen loads and immunotherapy nonresponders show 

enrichment of similar transcriptional programs. A, Association of RI load, neoantigen-yielding 

RI load, and RI neoantigen load with clinical benefit from immunotherapy in Hugo (n = 14 

clinical benefit, n = 13 no clinical benefit) and Snyder (n = 8 clinical benefit, n = 13 no clinical 

benefit) patient cohorts. Both cohorts show a nonsignificant trend (p > 0.05, two-sided Mann-

Whitney U test) towards association between RI neoantigen load and immunotherapy 

nonresponse. Boxplots show the median, first and third quartiles, whiskers extend to 1.5 x the 

interquartile range, and outlying points are plotted individually. B, Gene Set Enrichment 

Analysis (GSEA) was performed comparing top vs. bottom quartile RI neoantigen load patients 

and immunotherapy nonresponders vs. responders. Only half of the top quartile RI neoantigen 

load patients were overlapping as nonresponders to immunotherapy. Enrichment of cell cycle- 

and DNA repair-related gene sets was seen in both high RI neoantigen load patients and 

immunotherapy nonresponders. Representative GSEA enrichment plots from the G2M 

checkpoint and Downregulation of TLX targets gene sets are shown for both the top vs. bottom 

quartile RI neoantigen load patients and immunotherapy nonresponders vs. responders 

comparisons. FDR q-values are indicated on plots. 
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