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Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocampus 
Daniel Levenstein12, György Buzsáki12, John Rinzel13* 
 
SUMMARY 
During non-rapid eye movement (NREM) sleep, the neocortex and hippocampus continuously 
alternate between states of neuronal spiking and inactivity. To study the mechanisms of NREM 
alternation dynamics, we used a mean field model of a recurrent adapting neural population. 
Analysis of the model reveals how the interplay between recurrence, adaptation, and drive can 
result in four distinct regimes of alternation dynamics. By directly comparing model dynamics 
with experimental observations of NREM sleep, we find that the neocortical dynamics match the 
model in a regime in which a stable active state is interrupted by transient inactive states (slow 
waves) while hippocampal dynamics match the model in a regime in which a stable inactive 
state is interrupted by transient active states (sharp waves). We propose that during NREM 
sleep, hippocampal and neocortical populations are excitable: each in a stable state from which 
noise or perturbation can evoke the stereotyped population events that support NREM 
functions. 
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INTRODUCTION 

 NREM sleep is dominated by a neocortical “slow oscillation” (Steriade et al., 1993) in 
which neuronal populations alternate between periods of spiking activity (UP states) and periods 

of hyperpolarization (DOWN states). Neocortical DOWN states correspond to large deflections 
of the local field potential (LFP) termed “slow waves” (or “delta waves”, (Ball et al., 1977; 

Buzsáki et al., 1988)), which are the signature of mammalian NREM sleep (Achermann and 
Borbely, 1997). The slow oscillation supports the consolidation of recently learned memories by 

temporally coupling to hippocampal sharp wave-ripple events (SWRs) (Siapas and M. A. 
Wilson, 1998; Sirota et al., 2003). SWRs are themselves the hippocampal analog of neocortical 

UP states: periods of spiking (SWR) separated by periods of relative inactivity (inter-SWR) 
(Buzsáki, 2015). In spite of the different durations of active/inactive states in the two regions, the 

hippocampus and neocortex are both cortical tissue and are under similar neuromodulatory 

influence during NREM sleep (Lee and Dan, 2012). Thus, it is possible that the neocortical slow 
oscillation and hippocampal SWRs can be explained by similar principles. 

 Experiments in multiple physiological contexts have revealed that SWRs and UP/DOWN 
alternations are a locally-generated “default state” of hippocampal and neocortical tissue 

(Buzsáki, 2006; Sanchez-Vives et al., 2017). Beyond NREM, they are observed during quiet 
wakefulness, (Buzsáki et al., 1983; Petersen et al., 2003) under anesthesia (Steriade et al., 

1993; Ylinen et al., 1995), and during in vitro slice or culture preparations (Colgin et al., 2004; 
Sanchez-Vives and McCormick, 2000). Understanding how alternation dynamics are generated, 

and how they differ between these physiological contexts, is important to understand their role in 
cortical function. Early modeling work demonstrated that recurrent excitatory connections are 

sufficient to support bistability, a condition in which a neural population can exist in a DOWN or 

an UP state (Latham et al., 2000; H. R. Wilson and Cowan, 1972), between which noise can 
induce stochastic alternations between the two states (Jercog et al., 2017). Subsequent 

experiments found that neuronal adaptation - activity-driven negative feedback in cortical 
excitatory cells - is involved in UP/DOWN alternations (Contreras et al., 1996; Sanchez-Vives 

and McCormick, 2000). Biophysical spiking models (Bazhenov et al., 2002; Compte et al., 2003; 
Destexhe, 2009; Hill and Tononi, 2005) and population rate models (Parga and Abbott, 2007) 

were then used to demonstrate that alternations between UP and DOWN states can also arise 
from a variety of adaptation mechanisms. However, it is not yet clear how the relative 

contributions of adaptation and recurrence influence UP/DOWN dynamics in a population.    
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 Models with recurrence and adaptation have been directly matched to neocortical 

UP/DOWN dynamics during anesthesia and in slice preparations (Curto et al., 2009; Jercog et 
al., 2017; Mattia and Sanchez-Vives, 2012). However, recurrent adapting models have not yet 

been matched to data from NREM sleep in naturally sleeping animals. Furthermore, these 
studies have had differing results: the UP/DOWN alternations in slice were found to be 

adaptation-mediated oscillations (Mattia and Sanchez-Vives, 2012), while those in the 
anesthetized animal were found to reflect noise-induced switches between bistable states 

(Jercog et al., 2017). Thus, the mechanisms of UP/DOWN alternations during NREM remain 
unclear. 

 To study alternation dynamics during NREM sleep, we used an idealized model of an 
adapting recurrent neuronal population. The model is able to produce four distinct regimes of 

alternation dynamics, which encompass those seen in previous models and in different 

physiological contexts. Analysis of the model reveals how the relative contribution of recurrent 
excitation and adaptation, as well as the level of drive, determine the regime of UP/DOWN 

alternations in a neuronal population. By directly matching the durations of modeled and 
experimental UP/DOWN states, we find that neocortical and hippocampal dynamics during 

NREM sleep are neither oscillations nor bistable, but are excitable: each population rests in a 
stable state from which suprathreshold fluctuations can induce a transient population event that 

is terminated by the influence of adaptation. Specifically, the neocortex maintains a stable UP 
state with occasional transitions to a transient DOWN state (slow waves) while the hippocampus 

is in a stable DOWN state with occasional transitions to a transient UP state (SWRs). Under the 
influence of noise, these excitable regimes produce UP/DOWN alternations with the asymmetric 

duration distributions seen during NREM sleep. We further observe that the stability of the 

rodent neocortical UP state changes over the course of sleep in a way that resembles the well-
characterized stages of NREM sleep in humans (Berry et al., 2017). Our findings reveal a 

unifying picture of hippocampal and neocortical dynamics during NREM sleep, with implications 
for NREM function. 
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RESULTS  
 In agreement with previous findings, we observed large amplitude slow waves in the 
neocortical LFP during NREM sleep in naturally-sleeping rats (Figure 1A). Population spike rate, 

calculated in overlapping 40ms windows, showed alternations between low spike rate UP states 
(~1-2Hz/cell) and DOWN states of spiking inactivity (<0.1Hz/cell), coincident with the LFP slow 

waves (Figure 1B). We used the coincidence of large-amplitude peaks in the low-frequency LFP 
(0.5 Hz - 8 Hz) with drops in the power of the high-frequency band of the LFP (100 Hz - 400 Hz; 

representative of spiking activity, (Watson et al., 2017)) to identify DOWN and UP states (Figure 
S1, Methods). The durations of UP and DOWN states both showed skewed distributions (Figure 

1C). However, the statistics of UP and DOWN states were highly asymmetrical: UP state 
durations were longer (mean = 1.7±0.92s) and more variable (CV = 1.1±0.27) than those of 

DOWN states (mean = 0.21±0.05s, CV = 0.38±0.06).  

 We also observed alternation between active and inactive states in a separate dataset of 
hippocampal population activity. Short duration (50-100ms) strongly synchronous spiking was 

coincident with hippocampal sharp-wave ripples (SWRs) and alternated with inter-SWR intervals 
with sparse spiking (Figure 1E,F). We used a previously described method to detect SWR 

events as the coincidence of increase ripple-band power and a low-frequency sharp wave (see 
Methods, (Grosmark and Buzsáki, 2016)). Similar to the neocortical UP/DOWN states, the 

durations of SWRs and interSWR periods also showed skewed distributions, and were highly 
asymmetrical. InterSWR durations were much longer (mean = 2.0±0.22s) and more variable 

(CV = 1.3±0.10) than those of SWR events (mean = 0.06±0.005s, CV = 0.33±0.04 (Figure 1G). 
 To simulate the alternation dynamics, we used a mean field model for the spike rate of 

an adapting neuronal population. Using the observed duration distributions, we were able to 

match our dynamic model to the UP/DOWN dynamics observed during NREM sleep in the 
neocortex (Figure 1D) and SWR dynamics in the hippocampus (Figure 1H). However, we also 

found that the model embodies a rich repertoire of physiologically-relevant dynamical regimes 
that extend beyond those seen during NREM sleep. In the following sections, we first introduce 

the model and its dynamic regimes (Figure 2). We then describe an analysis of the model that 
exposes how the interplay between recurrent excitation, adaptation, and drive can account for a 

range of UP/DOWN dynamics in neural populations (Figure 3-4). Next, we quantitatively match 
the model dynamics to those seen during NREM sleep (Figure 5-6). Finally, we add an inhibitory 

population to the model and show how balanced excitation and inhibition can account for the 

low firing rates during neocortical UP states and features of UP/DOWN transitions (Figure 7). 
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UP/DOWN dynamics in an adapting excitatory population model 
 In the spirit of Wilson and Cowan (H. R. Wilson and Cowan, 1972), we model cortical 

activity in terms of the mean firing rate of a neuronal population, here an excitatory population 
with rate ! ! , subject to a slow negative feedback (i.e. adaptation), ! !  (Figure 2A, see 

Methods for details and parameters). 

!!
!"
!" = −! + !! !" − !" + ! + ! !            (1) 

!!
!"
!" = −! + !! !                                              (2) 

In the model, rate and adaptation each vary between an inactive state (! = 0, ! = 0) and an 
active state (! = 1, ! = 1). Equations 1-2 describe how ! and ! evolve in time as a function of 

the net input to the population: the sum of the recurrent excitation with weight ! and a 

background level of drive with a tonic parameter !, and noisy fluctuations ! ! , minus adaptation 
weighted by gain parameter !. Under constant net input, the population rate will approach a 

steady state level given by the input-output relation, !! !"#$% . Adaptation is similarly activated 
by neuronal activity to a steady state !! ! . !� !!"#$  and !� !  are taken to be sigmoidal 

functions. The time constants !! and !! determine how quickly ! !  and ! !  will approach their 
steady state values and time has been non-dimensionalized to arbitrary model units (AU) so 

!! = 1. 
 Model dynamics can be represented as a trajectory in the !-! phase plane (Figure 2B, 

Supplemental video 1, (Strogatz, 2014)). In the phase plane, trajectories are predictable from 

the !- and !-nullclines: two curves defined by the conditions !"!" = 0 and !"!" = 0. Steady states, or 

fixed points, of activity are found at intersections of the nullclines and may be either stable 

(attractors) or unstable. The !-nullcline is N-shaped with a right branch at !~1 and a left branch 
at !~0, which correspond to UP and DOWN states of activity (Figure 2B). When adaptation is 

slow (i.e. !! ≫ !!), trajectories move horizontally toward the UP/DOWN branches with time 
scale !!. At the UP/DOWN branches, trajectories drift along the !-nullcline as adaptation 

activates or inactivates with the time scale !!. If the branch contains a stable fixed point, the 
system will remain in the UP or DOWN state until some perturbation induces a transition to the 

opposing branch. If there is no fixed point, the trajectory transitions to the opposing branch at 
the turning point of the !-nullcline (Figure 2B). In this way, an UP or DOWN state in the model 

can be either stable: requiring a perturbation to evoke a transition to the opposite state, or 
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transient: automatically transitioning to the opposite state due to the activation or inactivation of 

adaptation.  
 Depending on parameter values, the nullclines can take one of four configurations that 

correspond to distinct regimes of UP/DOWN dynamics (Figure 2C). In the presence of noise, 
one regime corresponds to noisy oscillations (i) and three correspond to noise-induced 

alternation patterns (ii-iv). Comparable regimes are found in similar idealized models (Jercog et 
al., 2017; Mattia and Sanchez-Vives, 2012), which reinforces the generality of the model 

dynamics. 
 In the oscillatory regime (Figure 2Ci), activity alternates between transient UP and 

DOWN states at a relatively stable frequency. Adaptation activates during the UP state and 
brings the population to the DOWN state, during which adaptation inactivates and the population 

returns to the UP state. The oscillation corresponds to a limit cycle trajectory in the phase plane, 

surrounding a single, unstable fixed point. Because ! !  is fast compared to the slow adaptation, 
the ! !  time course and the phase plane trajectory are square-shaped, with rapid transitions 

between UP and DOWN states (Supplemental video 1, Figure S2). 
 In the case of two stable fixed points, the system is in a bistable regime (Figure 2Cii). In 

this regime, adaptation is not strong enough to induce UP/DOWN state transitions. However, 
sufficiently large (suprathreshold) fluctuations can perturb the population activity to cross the 

middle branch of the !-nullcline, resulting in a transition to the opposing branch. Thus, the 
presence of noise induces alternations between stable UP and DOWN states, resulting in highly 

variable UP/DOWN state durations.  
 In the case of a single stable fixed point, the system can still show UP/DOWN 

alternations in one of two excitable regimes. If the stable fixed point is on the DOWN branch 

(Figure 2Ciii), the system is in an ExcitableDOWN regime. The population will remain in the stable 
DOWN state in the absence of any external influence. However, a brief activating input to the 

population can trigger a rapid transition to a transient UP state, during which adaptation 
activates, leading to a return to the DOWN branch. In the presence of noise, UP states are 

triggered spontaneously by net activating fluctuations. The time course of the model in the 
ExcitableDOWN regime shows long DOWN states of variable durations punctuated by brief 

stereotyped UP states.  
 Conversely, if the stable fixed point is on the UP branch, the system is in an ExcitableUP 

regime (Figure 2Civ, Supplemental Video 2). Brief inactivating input can elicit a switch from the 

stable UP state to a transient DOWN state, during which adaptation deactivates, leading to a 
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return to the UP branch. Thus, in the presence of noise, DOWN states are triggered 

spontaneously by net-inactivating fluctuations. The time course will show longer UP states of 
variable durations with stereotypically brief DOWN states. These two regimes (Figure 2Ciii,iv) 

are excitable because relatively small fluctuations in population rate can “excite” the population 
out of a stable steady state and induce disproportionately large, stereotyped, population events: 

a transient UP state in the case of the ExcitableDOWN regime and a transient DOWN state in the 
case of the ExcitableUP regime, followed by a return to steady state. 

 
Recurrence, adaptation, and drive control UP/DOWN regimes 

 How do properties of a population determine dynamical regime? We next use numerical 
and analytical methods from dynamical systems theory (Strogatz, 2014) to create maps of the 

UP/DOWN regimes in parameter space (e.g., Figure 3C, 3F, see Methods) and reveal how 

intrinsic and network properties determine the properties of UP/DOWN dynamics in our model. 
We find that, given sufficient recurrent excitation, the dynamical regime of UP/DOWN 

alternations is determined by two factors: the level of drive, and the relative strength of 
recurrence and adaptation. We then analyze model simulations to reveal how UP/DOWN state 

durations act as a signature of dynamical regime, allowing us to later match modeled and 
experimental dynamics. 

 
 UP/DOWN alternations are possible only if the population can potentially exist in an UP 

or a DOWN state. This requires adequate strength of recurrent excitation, !, to self-maintain the 
UP state under conditions of low drive. We show this first for a reduced case without adaptation 

dynamics (! = 0). In this case, the population rate ! !  satisfies 
!"
!" = −! + !! !" + !  

The phase space is reduced from a plane to a line, and dynamics of the population rate 
correspond to motion along the !-axis following eqn. 3 (Figure 3A). The motion is rightward (rate 

increasing) where !" !" > 0 and leftward where !" !" < 0. If recurrent excitation is sufficiently 

strong, the graph of !" !" vs. r is N-shaped and there can be two stable (and one unstable) 
fixed points: an UP state of high activity at ! ≈ 1 and a DOWN state of low activity at ! ≈ 0. 

 The population rate at fixed points, !!!, depends on the level of drive, !, as is described 
by the effective input/output relation (I/O curve) of the recurrently connected population (Figure 

3B). If recurrence is weak (! = 0), the I/O curve increases monotonically with !. With increased 
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recurrence, the I/O curve shows a central region of bistability between a low-rate fixed point at 

weak drive and a high-rate fixed point at strong drive. In the !-! parameter space (Figure 3C), 
the bistable region (yellow) has borders that correspond to saddle-node bifurcations at the 

knees of the I/O curve. UP/DOWN bistability emerges at a critical value of recurrence (! = 4), at 
a level of drive for which the unconnected population would be minimally activated (! = !! − 2, 

where !! !! = 0.5, see Methods). Consequently, a first general insight of recurrent population 
rate models is that UP/DOWN bistability will emerge in neuronal populations with sufficiently 

strong recurrent excitation, during conditions of low drive. 
 

  With adaptation dynamics reintroduced (! = 1), the mechanism for UP/DOWN bistability 
is like that in the adaptation-free case. Increasing recurrence (larger !) enhances the N-shape 

of the !-nullcline, allowing for multiple stable fixed points at intersections of the !- and !-

nullclines (Figure 3D). The effective I/O curve is again bistable-centered for strong recurrence 
(Figure 3E, top). The region of !-! parameter space with multiple fixed points is now “butterfly-

shaped” (Figure 3F, S2), with a bistable regime again inside the yellow region at higher values 
of !.  

 In contrast to the effect of !, stronger adaption (larger !) diminishes the N-shape of the 
!-nullcline and decreases likelihood for multiple fixed points (Figure 3G). As a result, the 

network can now oscillate at intermediate values of !, for which the I/O curve appears 
oscillatory-centered (Figure 3E, middle). The oscillatory region in !-! parameter space is blue, 

with borders corresponding to Hopf bifurcations (Figure 3F). Increasing the strength of 
adaptation increases the domain of this oscillatory region in !-! parameter space (Figure S2). 

 Increasing drive raises the !-nullcline and brings the population from a stable DOWN 

state at low drive to a stable UP state at high drive, with fixed points that trace out the I/O curve 
(Figure 3H). Due to their opposite effects on the !-nullcline, adaptation and recurrence 

oppositely influence the dynamic regime at the I/O curve’s center region (Figure 3I). For low 
levels of recurrence, the I/O curve increases monotonically with a stable fixed point for each I-

value and no UP/DOWN alternations are possible. At a critical value of recurrence, UP/DOWN 

alternations emerge at !!/!: the axis of symmetry of the I/O curve (Figure S3, Methods). When 

adaptation is very weak, only bistability is possible and UP/DOWN alternations emerge in a 
cusp bifurcation as in Figure 3C. With sufficient adaption UP/DOWN alternations emerge in 

Hopf bifurcation as in Figure 3F (See methods for analytical solutions). With sufficient recurrent 
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excitation, the population will have a bistable-centered I/O curve if recurrence is stronger (Figure 

3I, yellow) or an oscillatory-centered I/O curve if adaptation is stronger (Figure 3I, blue). Thus, 
the relative strength of recurrence and adaptation defines a spectrum from bistable-centered to 

oscillatory-centered response properties. 
 

 In the absence of noise or external perturbation, only the oscillatory regime will alternate 
between UP and DOWN states. Noise extends the parameter domain for UP/DOWN 

alternations beyond the oscillatory regime by enabling transitions out of stable fixed points. 
Consider the effects of noise on the oscillatory-centered I/O curve (Figure 4A). Within the 

oscillatory regime the simulated population rate alternates regularly between transient UP and 
DOWN states, and UP/DOWN state durations reflect the time scale of adaptation, ~!! (Figure 

S4). For !-values above the oscillatory regime, noise can evoke transitions from the stable UP 

state to a transient DOWN state (an ExcitableUP regime). DOWN state durations still reflect the 
time scale of adaptation, !!, but UP state durations are much greater than !!. They now reflect 

the waiting time for random fluctuations to drop the system out of the UP state attractor, and 
thus UP state durations vary with noise amplitude (Figure S4). For I-values further above the 

oscillatory regime, the effective stability of the UP state increases; DOWN states are less 
frequent because the larger fluctuations needed to end the UP state are less frequent. Thus, UP 

states become progressively longer as ! is increased, while DOWN states stay approximately 
the same duration (~!!). The same case is seen for values of ! below the oscillatory regime but 

with UP/DOWN roles reversed (i.e. an ExcitableDOWN regime).  
The effective I/O relations, accounting for noise, are represented by statistical properties 

of UP/DOWN state durations. The duration distributions plotted vs. drive form a crossed-pair, 

with a center symmetrical portion (i.e. an oscillatory (Figure 4A) or bistable (Figure S4) regime) 
flanked by the asymmetrical ExcitableDOWN and ExcitableUP regimes. A complementary view of 

the I/O properties is the graph of decreasing fraction of time in the DOWN state as drive is 
increased (Figure 4Aii) This Prob(DOWN), or silence density, has been used as an experimental 

metric of the degree of cortical synchronization (Mochol et al., 2015). By this terminology, more 
synchronized regimes correspond to more time spent in the DOWN state, and less 

synchronized regimes correspond to more time spent in the UP state. Increased drive eventually 
leads to an UP-only (asynchronous) regime. Thus, the level of drive defines a spectrum from 

more synchronized to less synchronized dynamics in the model which, along with the spectrum 
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from bistable to oscillatory dynamics described above, defines a set of characteristic axes in the 

“space” of UP/DOWN alternation dynamics. 
 In sum, the UP/DOWN state duration statistics reflect the underlying dynamical regime. 

The mean durations vary continuously over the parameter plane as UP/DOWN durations 
increase/decrease with the level of drive (Figure 4B and correspondingly in the I-b space, Figure 

S4C). However, the duration variability (as measured by the coefficient of variation, CV) shows 
sharp transitions at the boundaries between regimes, which reflect the different nature of 

transitions out of stable and transient states. In general, the durations of stable states are longer 
and more variable while those of transient states are shorter and less variable, effectively 

distinguishing oscillatory, bistable, and excitable dynamics. In the following sections, we use the 
duration distributions to match experimentally-observed alternation dynamics with specific 

dynamic regimes in the model. 

 
Neocortex is in an ExcitableUP regime during NREM sleep 

  The durations of neocortical UP/DOWN states as presented in Figure 1 are indicative of 
an ExcitableUP regime in our model. Neocortical UP states during NREM are longer (1.7±0.92s) 

compared to DOWN states (0.21±0.05s), and more irregular (CVUP = 1.1±0.27; CVDOWN = = 
0.38±0.06) (Figure 5A). We directly compared the simulated and experimentally-observed 

dynamics by matching the statistics of experimental UP/DOWN durations to those in Figure 4D. 
We found that the region of model parameter space in which the CVUP, CVDOWN and ratio of 

means is within 2 standard deviations of the experimental durations is in the ExcitableUP regime 
(Figure 5B, red outline). We next compared the shapes of the duration distributions between 

model and experiment. For each model realization (i.e. each point in the !-! parameter plane), 

we calculated the similarity between simulated and experimental duration distributions for each 
recording session in the experimental dataset (Figure S5, Methods). We found high similarity for 

each session over a substantial domain in the !-! plane, indicating that the UP/DOWN 
dynamics of the model provide a good match for those observed during NREM in vivo (Figure 

S5). The domain of high similarity between animal data and the model fell in the ExcitableUP 
regime, as indicated by the 25 best fit points and in the average values of similarity (over all 25 

sessions) in !-! parameter space (Figure 5B) and in the !-! parameter space (Figure S6D). The 
simulated time course (Figure 5D) and duration distributions (Figure 5C) using the parameter 

set with highest mean similarity over all sessions revealed a good match between experimental 

and modeled dynamics. We thus found that NREM sleep in the rodent neocortex is 
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characterized by an ExcitableUP regime: a stable UP state with noise-induced transitions to a 

transient DOWN state. 
 

Hippocampus is in an ExcitableDOWN regime during NREM sleep 
 Since the burst-like dynamics of SWR is reminiscent of the ExcitableDOWN regime of our 

model, we asked whether these patterns could also be explained by the same principles. 
InterSWR durations are much longer (mean = 2.0±0.22s) compared to SWR events (mean = 

0.06±0.005s ),and more variable (CVInterSWR = 1.3±0.10; CVSWR  = 0.33±0.04) (Figure 5E). We 
applied the duration distribution matching procedure to the SWR/inter-SWR duration 

distributions and confirmed that the !-! model can also mimic SWR dynamics, with a band of 
high data-model similarity in the ExcitableDOWN regime (Figure 8G). Interestingly, our idealized 

model is not able to capture the short-interval inter-SWR periods associated with occasional 

SWR “bursts” (Figure S6H, cite), which suggest the presence of separate SWR-burst promoting 
mechanisms, possibly arising from interactions with the entorhinal cortex or spatially travelling 

patterns of SWRs in the hippocampus (Davidson et al., 2009; Yamamoto and Tonegawa, 2017). 
Accordingly, while the mean ratio and CVSWR of the best fitting model regime were within 2.5 

standard deviations of those observed in vivo, the CV of inter-SWR periods was larger than 
expected from the model. This finding suggests that during NREM sleep the hippocampus is in 

a tonic DOWN-like state, from which internal ‘noise’ or an external perturbation can induce 
spontaneous population-wide spiking events.  

 
Changes in neocortical state correspond to changes in UP state stability 

 For our initial analysis of the neocortical NREM data we assumed that cortical state is 

stationary, i.e. absent of variation in model parameters over the course of a single sleep 
session. However, we found that the duration of UP states showed weak but not insignificant 

correlation with temporally adjacent UP states, suggestive of a slow process by which the 
duration of UP states varied over time (Figure S6). EEG recordings from humans during sleep 

show systematic variation in slow wave dynamics, which has been classified into sleep-depth 
substates (i.e. stages N1, N2, and N3 or SWS). Rodent sleep is more fragmented, characterized 

by "packets" of NREM activity (Watson et al., 2016), but has also been classified on a spectrum 
from deep to light NREM, with power in the LFP delta band (1-4Hz) as a metric for NREM depth, 

(higher delta power indicating deeper sleep) (Gervasoni et al., 2004). To determine how NREM 

depth relates to UP/DOWN state durations, we calculated the level of delta power in the 8s time 
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window surrounding each UP and DOWN state (Figure 6A). We found that UP state durations 

varied to a much greater extent than DOWN state durations with NREM depth (Figure 6A,B,C, 
S6). While UP state durations were consistently more variable than DOWN state durations 

regardless of delta power, epochs of lower delta power (light NREM) contained longer UP 
states, and epochs of higher delta power (deep NREM) were associated with shorter UP states 

(Figure 6A,B,C, S6). 
 Indeed, one expects that that delta-band power reflects the incidence of DOWN states, 

given the relatively consistent DOWN state durations of 100-300ms. As neocortical DOWN 
states are coincident with slow waves in the EEG, these observations suggest an analogy to the 

stages of NREM sleep observed in humans, in which lighter stages of NREM (N2) are 
associated with less frequent slow waves, and deeper stages of sleep (N3/SWS) with more 

frequent slow waves. In further support of this idea, epochs with intermediate levels of delta 

power were associated with a heavy tail of infrequent high spindle-power (Figure S6), indicative 
of the thalamocortical spindle events that are a signature of N2 sleep.  

 To understand the relationship between NREM depth and UP/DOWN dynamics as 
captured by our model, we grouped the UP/DOWN states by delta power and calculated data-

model similarity maps for UP/DOWN state durations in each group (Figure 6C,D, S7). We found 
that deeper NREM sleep (higher delta power) was associated with a model parameter domain 

that is closer to the transition from the ExcitableUP to the Oscillatory regime, and that the epochs 
of highest delta power crossed the boundary into oscillatory dynamics in some sessions. 

Epochs with the lowest delta power (less than half the median power) were not well fit by the 
model. The change in parameter domain with deepening sleep corresponded to decreased 

recurrent excitation, decreased excitability (drive), or increased adaptation strength (Figure S7) 

in the model. Thus, we find that N2-like sleep corresponds to an ExcitableUP regime, and that 
UP state stability continuously varies with sleep depth resulting in more or less frequent DOWN 

states. Interestingly, the vast majority of time in all recording sessions was spent in an N2-like 
ExctitableUP regime (Figure 6B, bottom). Only for a small portion of time in a subset of sessions 

did cortical state enter an N3-like Oscillatory regime. 
 

 
Effects of balanced excitation and inhibition on UP/DOWN transitions 

 Our two-variable model captured significant features of UP/DOWN alternations and the 

relative roles of adaptation and recurrent excitation. However, firing rate in the UP state was 
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described only as “active”, limited by a saturating input-output function !! !"#$% . On the other 

hand, neuronal spike rate during the UP state is generally low (Watson et al., 2016) and 
synaptic inputs during neocortical UP states are balanced between excitation and inhibition 

(Haider et al., 2006). To understand the contribution of inhibition to UP/DOWN dynamics, we 
next included an inhibitory population (!! ≈ !!) into our model (Figure 7A):  

!!
!!!
!" = −!! + !!,! !!!!! − !!"!! − !" + !! + !!(!)  

!!
!!!
!" = −!! + !!,! !!"!! − !!!!! + !! + !!(!)  

!!
!"
!" = −! + !!(!!) 

where adaptation acts on the excitatory population and !!,! !"#$%  and !!,! !"#$%  are 

threshold power law I/O relations, as seen in the in vivo-like fluctuation-driven regime (Methods, 
(Ahmadian et al., 2013)). We find that by incorporating an inhibitory subpopulation in the model 

we achieve an inhibition-stabilized UP state with low firing rates, and that E-I interaction plays a 
role in UP/DOWN transitions in this model.  

 Given that adaptation is slow we can treat ! as frozen and visualize model dynamics in 
the !!-!! phase plane (Figure 7B). The fixed point value of !! as a function of drive describes the 

effective I/O curve of the excitatory/inhibitory network, !!! (Figure 7C). Like the excitation-only 
model, recurrent excitation induces bistability at low levels of drive for which the unconnected 

population would show minimal activation (S7, (Jercog et al., 2017)). In the bistable condition, 
the !!-!! phase plane shows a balanced UP state and a DOWN state fixed point, both stable and 

separated by a saddle point (Figure 7B,C). Unlike the excitation-only model, the UP state can be 

stabilized at a low rate determined by the strength of feedback inhibition.  
 As adaptation effectively decreases the net input to the excitatory population, a plot of  

!!! vs ! − ! (Figure 7D), and is analogous to the !-nullcline (rotated 90 degrees) in Figure 5D. 
Similarly, the curve !!(!!)�vs !! acts as the analog of the !-nullcline in Figure 5D. Depending 

on the relative configuration of these two curves, the inhibition-stabilized/adapting model can 
show UP/DOWN alternations with the same regimes as the two-variable model described above 

(Figure S7D).  
 To understand the effect of inhibition in the neocortical slow oscillation, we next 

investigated the effect of the inhibitory population during ExcitableUP dynamics in the adapting, 
inhibition-stabilized model (Figure 7E). Consider a sufficient perturbation that initiates a 

transition away from the UP state (Figure 7F). With ! dynamic, not frozen, the system is 
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attracted to the DOWN branch and then drifts along the DOWN branch as adaptation slowly de-

activates. When the DOWN state loses stability, the trajectory reaches and rounds the lower 
knee and transitions abruptly to the only remaining stable solution, the UP branch. Adaptation 

then builds, returning the system to the low firing rate, E-I balanced UP state (Supplemental 
video 3).  

 This E-I balanced ExcitableUP regime has implications for the nature of UP->DOWN and 
DOWN->UP transitions. For our chosen parameter values, small perturbations around the UP 

state fixed point will exhibit damped, resonant, E-I oscillations as the system returns to the 
balanced state. The damped oscillations are a result of transient imbalance of excitation and 

inhibition, and occur when the UP state fixed point is an attracting spiral. As a result, high 
frequency oscillations occur at the DOWN->UP transition, at a time scale set by the inhibitory 

population. A further implication is that, counter-intuitively, an UP->DOWN transition can be 

induced by a sufficiently-strong, brief excitatory input to the excitatory population, which can 
then recruit sufficient inhibition to force the entire network into a DOWN state. This threshold 

effect is seen in the phase plane as a separatrix: the trajectory shaped as an inverted-U that 
emerges (in reverse time) from the saddle and curves around the UP state fixed point. It 

separates the basins of attraction of the UP and DOWN state. From this visualization we see 
that brief excitatory input to either population can push the trajectory out of the UP state basin of 

attraction (Figure 7F). Thus, the system can transition to a DOWN state (i.e. a neocortical slow 
wave) in response to an excitatory perturbation to either population, as well as due to drops in 

the excitatory population rate.  
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Discussion 

 To study cortical dynamics during NREM sleep, we used a firing rate model that 
represents a general neuronal system with fast positive feedback (recurrent excitation) and slow 

negative feedback (adaptation). While the model is decidedly idealized, it is amenable to 
mathematical treatment in terms of a few key parameters, which allows us to develop intuitions 

for the repertoire of dynamics available to an adapting, recurrent excitatory population. Our 
analysis of the model revealed an intuitive spectrum of dynamical regimes with UP/DOWN 

alternations, defined by the stability or transience of UP and DOWN states. Within this 
dynamical spectrum, we found that the neocortical and hippocampal alternations during NREM 

sleep are well matched by the model in excitable regimes of dynamics that produce 
characteristically asymmetric distributions of UP and DOWN state durations (Figure 8A). We 

next discuss biological interpretations of the model and implications of the findings for 

UP/DOWN alternations during NREM and other physiological contexts.  
 

Physiological interpretation of model parameters 
 Our model describes the mean activity of a neuronal population with positive feedback 

from recurrent excitation (!"), slow negative feedback from adaptation (!"), and a source of 
noisy drive (! + !(!)). We interpret drive in the model as the combination of external input and 

various other factors that drive cells toward spiking, including internal (for example, miniEPSPs) 
and modulatory influences (for example, increasing the excitability of cells would correspond to 

an increase in drive parameter in our model). The recurrence parameter, !, reflects the effective 
weight of excitatory synapses within the population. This self-excitation drives the population 

during the UP state. In the two-variable model, the saturating I/O relation, !� !"#$% , imposes a 

maximum activity at ! ! = 1. However, the three-variable model reveals that fast negative 
feedback from inhibitory cells can dynamically stabilize the rate of excitatory population during 

the UP state.  
 Adaptation could encompass a variety of physiological processes that are activated by, 

and subsequently reduce, spiking at a slow timescale (~50ms-1s), such as slow voltage or 
calcium activated potassium currents, or sodium current inactivation (Jung et al., 1997; Vergara 

et al., 1998). For mathematical simplicity, we have reduced the effect of adaptive processes, to 
a single, saturating, mean field variable, !(!), that negatively feeds back on population activity 

with strength !. Previous studies modeled synaptic or slow divisive feedback to achieve the 

same goal (Holcman and Tsodyks, 2006; Tabak et al., 2011), in some cases showing 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312587doi: bioRxiv preprint 

https://doi.org/10.1101/312587
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312587doi: bioRxiv preprint 

https://doi.org/10.1101/312587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

characteristic differences (Tabak et al., 2011). Further work to identify signatures of different 

sources of adaptive feedback could give insight to the implications and identification of 
biophysical substrates of adaptation in different physiological contexts. 

 With these idealizations, our model encompasses numerous previous models for 
UP/DOWN dynamics, from mean field to large scale spiking models. We have reduced the 

critical influences to a few key parameters that provide an intuitive understanding of a wide 
range of UP/DOWN alternation dynamics in neuronal populations. 

 
General insight to synchronized UP/DOWN dynamics 

 Due to their ubiquity under conditions of low neuromodulatory tone, UP/DOWN 
alternation dynamics are proposed to represent a “default state” of cortical tissue (Buzsáki, 

2006; Sanchez-Vives et al., 2017), a view supported by their presence in isolated cortical and 

hippocampal tissue (Buzsáki et al., 1987; Timofeev et al., 2000). Our model reveals why 
UP/DOWN alternations are so ubiquitous: they are seen in neural populations with sufficiently 

strong local recurrent excitation (>!!) at comparatively low levels of drive (~!!/!). 

 Synchronized UP/DOWN dynamics have been proposed to exist in a “multi-dimensional 

spectrum” (Harris and Thiele, 2011). Our model captures a subspace of this spectrum defined 
by two axes (Figure 8A). First, the magnitude of excitatory drive determines the degree of 

synchronization (Mochol et al., 2015). Increasing drive brings the population from a DOWN-
dominated “more synchronized” regime with brief population bursts, to an UP-dominated “more 

asynchronous” regime with occasional DOWN states. The relative strength of recurrent 
excitation and adaptation determines the temporal dynamics between these extremes. When 

recurrence dominates, the system is characterized by bistability; when adaptation dominates, 
oscillations emerge. We note that this second axis also influences the “steepness” of UP/DOWN 

transitions, even in the adjacent excitable regimes, which we have not explored. 
 Different experimental conditions are associated with different regimes in the spectrum 

of UP/DOWN dynamics captured by our model. Other models have described oscillatory 

UP/DOWN dynamics in the spinal cord (Vladimirski et al., 2008) and in cortical slices (Mattia 
and Sanchez-Vives, 2012), whereas in cortical cultures ExcitableDOWN-like bursting behavior 

dominates (Hinard et al., 2012). Recently, bistable UP/DOWN dynamics were found to describe 
the activity of sensory cortex during urethane anesthesia (Jercog et al., 2017; Mochol et al., 

2015). During quiet wakefulness, cortical state varies following the level of arousal of the animal 
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(McGinley et al., 2015), but is unclear which of the regimes. Our model provides a framework by 

which one can predict how duration statistics should change with experimental manipulation of 
intrinsic or network properties, for example by varying levels of anesthesia or applying other 

pharmacological agents. 
 Extensive study has revealed multiple factors that can bring cortical tissue from the 

“default mode” of UP/DOWN dynamics to an activated state. In culture and slice preparations, 
increased levels of subcortical neuromodulators are able to ‘wake up’ the tissue, leading to the 

replacement of slow oscillations in the neocortex with asynchronous spiking (Hinard et al., 2012) 
and SWRs in the hippocampus with theta-like oscillations (Konopacki et al., 1987). Acetylcholine 

induces neocortical desynchronization and hippocampal theta during REM sleep ((Jouvet, 
1994)), and acetylcholine, norepinephrine, or thalamic drive can give rise to cortical 

desynchronization during quiet wakefulness (Eggermann et al., 2014; Poulet and Petersen, 

2008). Each of these factors have effects that correspond to parameter changes that can 
transition our model from UP/DOWN dynamics to an asynchronous (tonic UP) state: 1) 

increasing excitability or external drive, !, 2) decreasing recurrence below the critical value for 
UP/DOWN alternations, ! < !!, or 3) decreasing the strength of adaptation, !, or 4) increasing 

recurrence such that the DOWN state loses stability. Similarly, the ascending neuromodulators 
increase excitability by depolarizing cortical pyramidal cells, decrease the effective weight of 

excitatory-excitatory synapses, and deactivate adaptive currents (Cole and Nicoll, 1983; 
Hasselmo and McGaughy, 2004). By these parallels, we are able to apply our model to interpret 

the putative mechanisms by which cortical desynchronization follows global and local levels of 
arousal. 
 

UP/DOWN dynamics of the NREM slow oscillation 

 Our recordings from naturally-sleeping rats show that the neocortical UP/DOWN 
dynamics during NREM are unlike those reported during anesthesia or quiet wakefulness. 

Despite the widely used term slow “oscillation” (Steriade et al., 1993), we found that the NREM 
slow oscillation is reflective of ExcitableUP dynamics: an irregular process in which activity 

fluctuations during stable UP states can lead to transient DOWN states. Furthermore, we found 
that the stability of the UP state is not constant but evolves over the course of sleep in a manner 

that resembles the stages of NREM/SWS sleep in humans (Berry et al., 2017). In relatively 
superficial NREM sleep (N1 stage, using the human clinical term), long UP states are 

occasionally punctuated by neuronal silence-associated positive delta or “slow waves” (surface 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312587doi: bioRxiv preprint 

https://doi.org/10.1101/312587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

negative, depth positive), which can be localized at one or few recording sites (Sirota and 

Buzsáki, 2005). As sleep deepens, the incidence of DOWN states increase and they become 
synchronous over larger cortical areas (N2 stage; (Nir et al., 2011)) The DOWN-UP transitions 

occasionally become strongly synchronous, producing a sharp LFP wave (surface positive, 
depth negative), known as the K complex (Cash et al., 2009). With further deepening of sleep, 

DOWN states become more frequent and short episodes of repeating DOWN states may 
become rhythmic (N3 stage). This relationship explains the inverse correlation between delta 

power, measuring mainly the large LFP deflections of the DOWN state, and UP state duration. 
By our model, the decreasing stability of the UP state with deeper stages of sleep may be due to 

1) decreased recurrent strength, 2) increased adaptation, or 3) decreased excitability. 
Quantifying the time spent in these sub-states (N1, N2, N3) revealed that the N3 state in the rat 

occupies only a small fraction of NREM sleep, whereas in humans this stage is more prominent. 

Overall, our model captures the entire qualitative dynamic of NREM evolution. However, the 
quantitative share of the various NREM stages differ between rodent and human sleep.  

 While the model is ambiguous to the biophysical substrate of adaptation, we can make 
some predictions: first, the adaptive process responsible for neocortical UP/DOWN alternations 

should be constitutively active during the UP state and deactivate during the hyperpolarized 
DOWN state. Because of low spike rates during the NREM UP state, subthreshold adaptation 

conductances are a good candidate, especially given that most neurons are silent or fire at a 
very low rate during any given UP state. Adaptation in our model could also include effects of a 

hyperpolarization-activated excitatory process, such as Ih. Second, the neocortical adaptive 
process should recover at a time scale reflective of the DOWN state duration (~200ms). Our 

model predicts how changing properties of the relevant adaptive mechanisms experimentally or 

in disease should change the duration statistics of the slow oscillation, which we hope can 
provide a guide for future experiments to uncover the biophysical substrates of these 

physiologically relevant dynamics. 
 

Regional differences that support differential neocortical and hippocampal dynamics 
 The different mean durations of the neocortical DOWN state and the hippocampal SWR 

indicate that alternation dynamics is mostly likely mediated by different adaptive processes in 
the two regions. The hippocampal adaptive process should activate at a time scale that reflects 

the SWR durations (~60ms), faster than the one that mediates the neocortical slow oscillation. 

Previous work has revealed threshold behavior in the generation of SWRs, indicative of 
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ExcitableDOWN dynamics, with a GABAB-mediated adaptation mechanism (English et al., 2014; 

Menendez de la Prida et al., 2006). 
 An important question is how neocortical and hippocampal networks would occupy 

different dynamic regimes of the same model. Neocortical slow oscillations and hippocampal 
SWRs are present simultaneously during NREM sleep. Although they appear fundamentally 

different, our model with just a few parameters can quantitatively account for both by using 
different parameter values. We suggest that the different nature of recurrent connectivity in the 

two regions is responsible for their differing dynamics. 
 The neocortex is a modularly organized structure. In contrast, the hippocampus can be 

conceived as a single expanded cortical module (Amaral and Witter, 1989). Strongly recurrent 
pyramidal cell populations are found in neocortical layer 5 and the hippocampal CA2 and CA3a 

subregions (Li et al., 1994), which would support their role as the locus of UP state and sharp 

wave initiation, respectively (Buzsáki et al., 1983; Sanchez-Vives and McCormick, 2000). 
However, crucial differences exist between connectivity of neocortical layer 5 and hippocampal 

CA2-3 regions. Excitatory connectivity in layer 5 is local (200 µm), dense (up to 80% connection 
probability), and follows a ‘Mexican hat’ excitatory-inhibitory spatial structure with strong local 

excitatory connections and spatially extensive inhibition (Markram et al., 2004). In contrast, 
excitatory connectivity in the hippocampus is sparse and spatially extensive(Li et al., 1994), with 

local inhibitory connections ((English et al., 2017; Freund and Buzsáki, 1998)). While layer 5 
excitatory synapses are relatively strong, the transmitter release probability of synapses 

between hippocampal pyramidal neurons is very low, resulting in comparatively weak synapses 
(Silver, 2010). Together, these factors indicate that the effective strength of recurrence in the 

hippocampus is lower than that in neocortex, which would result in DOWN-dominated as 

opposed to UP-dominated dynamics, as are observed. To demonstrate that connectivity and 
synaptic strength are responsible for the different NREM dynamics of the neocortex and 

hippocampus will require experimental manipulations that explicitly vary these parameters in 
combination with models that take into account the spatial effects of recurrent excitation. 

 
NREM function through stochastic coordination of excitable dynamics 

 According to the two-stage model of memory consolidation (Buzsáki, 1989; McClelland 
et al., 1995), the hippocampus acts as a fast, but unstable, learning system. In contrast, the 

neocortex acts as a slow learning system that forms long-lasting memories after many 

presentations of a stimulus. The two-stage model proposes that recently-learned patterns of 
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activity are reactivated in the hippocampus during SWRs, which act as a “training” signal for the 

neocortex, and that the neocortical consolidation of those patterns relies on SWR-slow wave 
coupling (Maingret et al., 2016; Peyrache et al., 2009). The excitable dynamics described 

provide a mechanism by which the stochastic, or probabilistic, coordination of state transitions in 
each structure could support communication between the two regions (Figure 8B). Namely, the 

excitatory kick of a hippocampal SWR could induce a neocortical UP->DOWN transition by 
briefly disrupting the neocortical excitatory/inhibitory balance.  

 Extensive experimental evidence points towards temporal coordination between slow 
waves and SWRs. Slow waves in higher-order neocortical regions are more likely following 

SWRs (Battaglia et al., 2004; Peyrache et al., 2009), and SWR->slow wave coupling is 
associated with reactivation of recently learned activity patterns in the neocortex (Ji and M. A. 

Wilson, 2007; Maingret et al., 2016; Peyrache et al., 2009). Interestingly, slow waves are not 

reliably evoked by SWRs, suggesting that the efficacy of any one SWR to evoke a slow wave in 
a given cortical region is probabilistic. The probability of SWR->slow wave induction likely varies 

by brain state, cortical region, and even SWR spiking content. Further work to investigate how 
these factors shape SWR->slow wave coupling will likely shed light on the brain-wide 

mechanisms of memory consolidation. 
 How then, does a SWR-induced neocortical slow wave induce changes in the 

neocortex? Recent work suggests that the DOWN->UP transition at the end of a slow wave (aka 
the k complex) is a window of opportunity for synaptic plasticity that supports NREM functions 

(Levenstein et al., 2017). Spike sequences during the DOWN->UP transition produce lasting 
changes in synaptic strength, that correlate with post-sleep behavioral change (Gulati et al., 

2017; Kruskal et al., 2013; Wei et al., 2016). SWR-coupled slow waves have altered spiking 

dynamics at the subsequent DOWN->UP transition (Maingret et al., 2016). Interestingly, we 
found in our model that the same E-I balance that allows excitatory input such as a SWR to 

initiate a neocortical UP->DOWN transition produces a burst of resonant excitatory-inhibitory 
(gamma-like) oscillation at the DOWN->UP transition. High gamma (~60-150Hz) activity is seen 

following slow waves in vivo (Watson et al., 2016) and may act to coordinate and promote 
plasticity between cell assemblies (Buzsáki and Wang, 2012). 

 In turn, the burst of activity at the neocortical DOWN->UP transition could induce SWRs 
in the hippocampus. The functional role of slow wave->SWR coupling is less well understood, 

but hippocampal SWRs are more likely immediately following slow waves in some neocortical 

regions - including the entorhinal cortex (Isomura et al., 2006; Peyrache et al., 2009). Slow 
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wave->SWR could provide a mechanism by which neocortical activity is able to bias SWR 

content, or another mechanism by which the SWR could interact with the neocortical window of 
plasticity at the DOWN->UP transition. Further, a SWR-slow wave-SWR loop could produce the 

occasional SWR bursts not captured by our model of hippocampal SWR activity in isolation. 
Uncovering regional or state-dependent differences in the directionality of coupling could 

provide insight into the mechanisms that support of memory consolidation. 
 

Conclusions 
 Our results reveal that NREM sleep is characterized by structure-specific excitable 

dynamics in the mammalian forebrain. We found that a model of an adapting recurrent neural 
population is sufficient to capture a variety of UP/DOWN alternation dynamics comparable to 

those observed in vivo. The neocortical “slow oscillation” is well-matched by the model in an 

ExcitableUP regime in which a stable UP state is punctuated by transient DOWN states, while 
the hippocampal sharp waves are well-matched by the model in an ExcitableDOWN regime in 

which a stable DOWN state is punctuated by transient UP states (Figure 8A). With balanced 
excitation and inhibition, UP->DOWN transitions can be induced via excitatory perturbations that 

momentarily disrupt balance, and DOWN->UP transitions are followed by a high frequency 
oscillation as the system returns to the balanced state. Furthermore, we found that slow 

fluctuations in neocortical state over the course of sleep correspond to slow fluctuations in the 
stability of the neocortical UP state. Our results offer a unifying picture of hippocampal and 

neocortical dynamics during NREM sleep, and suggest that NREM function is mediated by 
excitable dynamics in the two structures. 
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METHODS 
Datasets 
 The datasets used were reported in Watson et al 2016 (neocortex) and Grosmark and 

Buzsaki 2016 (hippocampus), and are briefly summarized here. 
 For the cortical dataset, silicon probes were implanted in frontal cortical areas of 11 male 

Long Evans rats. Recording sites included medial prefrontal cortex, anterior cingulate cortex, 
premotor cortex/M2, and orbitofrontal cortex. Neural activity during natural sleep-wake behavior 

was recorded using high-density silicon probes during light hours in the animals’ home cage. 25 
recordings of mean duration 4.8+/-2.2hrs were recorded. The raw 20kHz data was low-pass 

filtered and resampled at 1250Hz to extract local field potential information. To extract spike 
times, the raw data high-pass filtering at 800Hz, and then threshold-crossings were detected. 

KlustaKwik software was used to cluster spike waveforms occurring simultaneously on nearby 

recording sites, and Klusters software was used for manual inspection of waveforms consistent 
with a single neuronal source. Units were classified into putative excitatory (pE) and putative 

inhibitory (pI) based on the spike waveform metrics. Each animal had 35+/-12 detected pE units 
and 5+/-3 detected pI units on average. For the hippocampal dataset, silicon probes were 

implanted in the dorsal hippocampus of 4 male Long Evans rats. Neural activity during sleep 
was recorded before and after behavior on a linear track. LFP and spikes were extracted similar 

to the cortical dataset. Sharp-wave ripple events were detected as described in Grosmark and 
Buzsaki 2016. 

 
NREM Detection 

 Sleep state was detected using an automated scoring algorithm as described previously 

(Watson et al 2016), with some modifications. As only the NREM state was used in this study, 
we describe here the process for NREM detection. However, the code for full state detection is 

available at https://github.com/buzsakilab/buzcode. NREM sleep was detected using the FFT 
spectrogram of a neocortical LFP channel, calculated in overlapping 10s windows at 1s 

intervals. Power in each time window was calculated for frequencies that were logarithmically 
spaced from 1 to 100Hz. The spectral power was then log transformed, and z-scored over time 

for each frequency. The slow wave power (signature of NREM sleep) was calculated by 
weighting each frequency by a weight determined from the mean of the weights for the first 

principal components from the dataset in Watson et al 2016, which was found to distinguish 

NREM and non-NREM in all recordings. While the same dataset was used here, using the filter 
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(i.e. weighted frequency)-based approach as opposed to PCA makes the algorithm robust for a 

wider range of recording conditions, especially those in which there is less time spent asleep 
(and thus NREM may not be expected to account for the largest portion of variance). Like the 

first principal component, the slow wave filtered signal was found to be bimodal in all recordings, 
and the lowest point between modes of the distribution was used to divide NREM and non-

NREM epochs. 
 In the hippocampal dataset, manual NREM scoring as reported in Grosmark and Buzsaki 

2016 was used for this study. 
 

Slow Wave Detection 
 Slow waves were detected using the coincidence of a two-stage threshold crossing in two 

signals (Figure S1A,B): a drop in high gamma power (100-400Hz, representative of spiking 

(Watson et al 2017)) and a peak in the delta-band filtered signal (0.5-8Hz). The gamma power 
signal was smoothed using a sliding 80ms window, and locally normalized using a modified 

(non-parametric) Z-score in the surrounding 20s window, to account for non-stationaries in the 
data (for example due to changes in brain state and noise), that could result in local fluctuations 

in gamma power. The channel used for detection was determined as the channel for which delta 
was most negatively correlated with spiking activity, while gamma was most positively 

correlated with spiking activity.  
 Two thresholds were used for event detection in each LFP-derived signal, a “peak 

threshold” and a “window threshold”. Time epochs in which the delta-filtered signal crossed the 
peak threshold were taken as putative slow wave events, with start and end times at the nearest 

crossing of the window threshold. Peak/window thresholds were determined for each recording 

individually to best give separation between spiking (UP states) and non-spiking (DOWN states) 
(Figure S1C). To determine the delta thresholds, all peaks in the delta-filtered signal greater 

than 0.25 standard deviations were detected as candidate delta peaks and binned by peak 
magnitude. The peri-event time histogram (PETH) for spikes from all cells was calculated 

around delta peaks in each magnitude bin, and normalized by the mean rate in all bins. The 
smallest magnitude bin at which spiking (i.e. the PETH at time = 0) was lower than a set rate 

threshold (the “sensitivity” parameter, Figure S1D) was taken to be the peak threshold. For 
example, a sensitivity of 0.5 means that the delta peak threshold is set to the smallest threshold 

for which spiking drops below 50% of mean spiking activity. The window threshold was set to 

the average delta value at which the rate crosses this threshold in all peak magnitude bins. The 
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gamma thresholds were calculated similarly, but using drops below a gamma power magnitude 

instead of peaks above a delta magnitude. 
 Once the thresholds were calculated, candidate events were then detected in the delta 

and gamma power signals, and further limited to a minimum duration of 40ms.  Slow wave 
events were then taken to be overlapping intervals of both the gamma and delta events. DOWN 

states with spiking above the sensitivity threshold were thrown out. 
 Detection quality was checked using a random sampling and visual inspection protocol. 

LFP and spike rasters for random 10s windows of NREM sleep were presented to a manual 
scorer, who marked correct SW detections, false alarms, and missed SWs. This protocol was 

used to estimate the detection quality (miss %, FA %) for each recording (Figure S1E), and to 
optimize the detection algorithm. 

 

 
Model Equations 

 The r-a model represents the mean firing rate or activity of a neural population with 
activity-driven adaptation a(t). 

!!! = −! + !! !" − !" + ! + ! !          (1) 
!!! = −! + !! !                                            (2) 

with activation functions 

!! ! = 1
1 + !! !!!!  

and 

!! ! = 1
1 + !!! !!!!  

 

Unless otherwise specified, we use !! = 5, !! = 0.5 = !! !! , and ! = 15 to parameterize the 
activation functions. Values of other parameters are as indicated in the text and figure legends. 

The rate and adaptation variables can be considered as non-dimensionalized, scaled by their 
maximum possible values; similarly, we use !! = 1 (unless otherwise specified) so that time is 

dimensionless (AU, arbitrary units), scaled by the time constant for firing rate. 
 The e-i-a model represents the mean rate of an adapting excitatory and an inhibitory 

population,  

!!!! = −!! + !!,! !!!!! − !!"!! − !" + !! + !! !            (3) 
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!!!! = −!! + !!,! !!"!! − !!!!! + !! + !! !                         (4) 
!!! = −! + !! !!                                                                       (5) 

with power law activation functions, as in Ahmadian and Milller (2013). 

!!/!,! ! = ![!]!! 

 
The activation function of adaptation, !! ! , is the same as in the r-a model, with parameters 

!! = 2, and ! = 3. Unless otherwise specified, we’ve assumed for simplicity !!! = !!" = !! and 
!!! = 0. However, the behaviors are robust to a range of weight values. 

 

Model Implementation 
 Phase plane and bifurcation analysis of the model in the absence of noise was 

implemented in XPP, and a similar code was implemented in MATLAB for simulations of the 
model with noisy input, for the analysis of UP/DOWN state durations. Noise was implemented 

using Ornstein-Uhlenbeck noise. 

!" = −!!"# + ! 2!"#!" 
with time scale ! = 0.05 and standard deviation ! = 0.25 unless otherwise specified. 
 Simulations of equations [1-2] and [3-5] were performed in Matlab using the ode45 solver, 

with input noise computed using forward Euler method with time step dt=0.1. Accuracy was 
assessed by comparing results for time steps dt=0.1 and dt=0.05 for a subset of simulations. 

Statistics for simulations with noise were determined by simulations of duration 60,000 (AU). 
 A simulated time course was determined to have UP/DOWN states if the distribution of r(t) 

was bimodal, as determined using a hartigans dip test (Hartigan and Hartigan 1985, 

implementation at http://www.nicprice.net/diptest/). UP/DOWN state transitions were detected 
as threshold crossings between high and low rate states. To avoid spurious transition detection 

due to noise, a “sticky” threshold was used: the threshold for DOWN->UP transitions was taken 
to be the midpoint between positive crossings of a threshold between the high rate peak of the 

rate distribution and the inter-peak trough, while the threshold for UP->DOWN transitions was 
the midpoint between the low rate peak of the rate distribution and the inter-peak trough.  

 All simulation and analysis code is available at 
https://github.com/dlevenstein/Levensteinetal2018. 
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Analytical Solutions for Bifurcation Parameters for the r-a model. 

 To analyze the parameter space of the model, we used standard procedures from 
dynamical systems theory (Strogatz). To determine the linear stability and class of a fixed point 

(! = ! = 0) at !∗, !∗ , we  evaluate the eigenvalues of the Jacobian matrix 

! =
!!
!"

!!
!"

!!
!"

!!
!" !∗ !∗

=
−1 + !!! !

!"
!!! !
!"

1
!
!!! !
!" − 1! !∗ !∗

 

where ! = !" − !" + ! is the total input to the population. Simplifying the partial derivatives as  
!!! !
!" = !!! !

!"
!"
!" = ! !!! !

!"  

!!! !
!" = !!! !

!"
!"
!" = −! !!! !

!"  

gives the Jacobian for an arbitrary fixed point: 

! =
−1 + ! !!! !

!" −! !!! !
!"

1
!
!!! !
!" − 1! !∗ !∗

 

where 

!!! !
!" = !!(!!!!)

!!(!!!!) + 1 ! = !(1 − !) 

!!! !
!" = !"!!(!!!!)

!!!(!!!!) + 1 ! = !"(1 − !) 

and thus 

! =
−1 + !"(1 − !) −!!(1 − !)
1
! !(1 − !) − 1! !∗ !∗

 

 

 We define !!/! as the level of drive for which there is a fixed point at ! = ! = 0.5, and thus 

! = !! !" − !" + !  
0.5 = !! ! 0.5 − ! 0.5 + !! !  
!! ! = !!!! 0.5 + 0.5 ! − !  
!! ! = !! − 0.5(! − !) 

When there is sufficient recurrent excitation for UP/DOWN alternations (i.e. ! > !!, see 

derivation of !! below), !!/! gives the level of drive for equi-duration UP and DOWN states, for a 

given level of recurrence and adaptation strength (Figure S3). 
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 If we define !∗ = ! − !!/! as the drive relative to !!/!, the bifurcation diagrams in !∗-! and 

!∗-! parameter space (Figure S4A) reveal that !∗ = 0 (i.e. ! = !!/!) acts as an axis of symmetry 

of the effective I/O curve, with ExcitableDOWN/UP regimes surrounding a bistable or oscillatory 
regime that has equi-duration UP/DOWN states at !∗ = 0, depending on the values of !, ! 

(Figure 4A, S3A). Furthermore, transitions of the dynamic regime at the center of the I/O curve 
happen at !∗ = 0. Figure S4B shows the bifurcations at !∗ = 0 with changing ! and fixed ! = 1. 

As ! is increased, the fixed point at ! = 0.5 loses stability with the appearance of oscillations in 
a Hopf bifurcation at ! = !!. With further increased values of !, two stable fixed points appear 

at high and low rate, marking the transition from oscillations to bistability in a pair of saddle node 

bifurcations at ! = !!. Finally, the pair of “inner” unstable fixed points coalesce in a pitchfork 

bifurcation at ! = !!". Thus, the bifurcations at !∗ = 0 reveal the parameter values at which 
qualitative changes in the I/O curve occur, between monotonic stable, oscillatory-centered, and 

bistable-centered I/O curves (Figure 4D). 

 To solve for the type of fixed point at ! = !!/!, we use the total input 

! = !" − !" + !! ! 
! = ! ! − 0.5 − ! ! − 0.5 + !! 

For the fixed point at !∗ !∗ = [0.5 0.5], ! = !!, giving  

! =
−1 + !4 − !4

!
4! − 1!

 

which we can use to obtain the conditions for !! and !!".  
 The condition for a Hopf bifurcation at !! (Figure 4D, S4) is that ! has a pair of purely 

imaginary eigenvalues !± = 0 ± !" (Strogatz). !± can be found by 

!± =
1
2 Tr ± Tr! − 4Det  

where Tr and Det are the trace and determinant of !, respectively. The value for !! is found from 

the null-trace condition: 
 Tr = 0 

−1 + !!4 + −1! = 0 

!! = 4 1 + 1!  

and minimal value for b follows from: 
0 <  Det 
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0 < −1 + !!4
−1
! − !

4
!
4!  

! > 16
!" 

 The pitchfork bifurcation at !!" is the transition from 5 (3 unstable) to 3 (1 unstable) fixed 
points. !!" satisfies the condition that ! has a degenerate pair of eigenvalues !± = 0. 

0 =  12 Tr ± Tr! − 4Det  

0 = Det 

0 = −1 + !!"4
−1
! — !

4
!
4!  

!!" =
!"
4 + 4 

 The degenerate pair of saddle node bifurcations at !!, which separates oscillatory-

centered and bistable-centered I/O curves, is determined numerically using XPP. 

 
 

UP/DOWN State Duration Matching 
 In vivo and simulated UP/DOWN state durations were compared using a non-parametric 

distribution matching procedure (Figure S5). Similarity was calculated as 
! = 1 − !"!" ∗ 1 − !"!"#$  

where 
!"!"/!"#$ = sup!|!! ! − !! ! | 

is the Kolmogorov-Smirnov (KS) statistic, in which sup! is the supremium function and !!/! !  

are the empirical cumulative distributions of simulated and in vivo durations. In short, KS 
measures the largest difference between the observed cumulative distributions for simulated 

and in vivo durations, where !"!" = 0 indicates that the in vivo/simulated UP state durations 
distributions are identical and !"!" = 1 indicates that the in vivo/simulated DOWN state 

durations distributions are non-overlapping. Similarity is thus bounded between 0 and 1, where 
! = 1 indicates that both UP and DOWN state distributions are identical between simulation and 

the experimental observation, and ! = 0 indicates that either the observed UP or DOWN state 
distributions are non-overlapping with the modeled durations. 

 There is one free parameter in the fitting procedure, which is !, the population time 

constant, or equivalently, the time scale factor from non-dimensionalized model time and 
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seconds. For each simulation, we tested time scale factors from 1ms to 25ms with increments of 

0.1ms and used the time scale parameter that gave the highest value for !, thus preserving the 
shapes of the distributions and the relative values of UP/DOWN state durations. 
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