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Abstract 19 

Disturbance is known to affect ecosystem structure, but predicting its outcomes remains 20 

elusive. Similarly, community diversity is believed to relate to ecosystem functions, yet the 21 

underlying mechanisms are poorly understood. Here, we tested the effect of disturbance on 22 

the structure, diversity, and ecosystem function of complex microbial communities within an 23 

engineered system. We carried out a microcosm experiment where activated sludge 24 

bioreactors were subjected to a range of disturbances in the form of a toxic pollutant, tracking 25 

changes in ecosystem function. Microbial communities were assessed by combining distance-26 

based methods, general linear multivariate models, -diversity indices, and null model 27 

analyses on metagenomics and 16S rRNA gene amplicon data. A stronger temporal decrease 28 

in -diversity at the extreme, undisturbed and press-disturbed, ends of the disturbance range 29 

led to a hump-backed pattern, with the highest diversity found at intermediate levels of 30 

disturbance. Undisturbed and press-disturbed levels displayed the highest community and 31 

functional similarity across replicates, suggesting deterministic processes were dominating. 32 

The opposite was observed amongst intermediately disturbed levels, indicating stronger 33 

stochastic assembly mechanisms. Tradeoffs were observed in community function between 34 

organic carbon removal and both nitrification and biomass productivity, as well as between 35 

diversity and these functions. Hence, not every ecosystem function was favoured by higher 36 

community diversity. Our results show that the assessment of changes in diversity, along with 37 

the underlying stochastic-niche assembly processes, is essential to understanding the impact 38 

of disturbance in complex microbial communities.   39 
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Importance 40 

Microbes drive the Earth’s biogeochemical cycles, yet how they respond to perturbations like 41 

anthropogenic pollutants is poorly understood. As human impact continues to increase 42 

worldwide, foreseeing how disturbances will affect microbial communities and the ecosystem 43 

services they provide is key for ecosystem management and conservation efforts. Employing 44 

laboratory-scale wastewater treatment bioreactors, this study shows that changes in 45 

community diversity accompany variations in the underlying deterministic-stochastic 46 

assembly mechanisms. Disturbances could promote stochastic community structuring, which 47 

despite harboring higher diversity could lead to variable overall function, possibly explaining 48 

why after similar perturbations the process outcome differs. A conceptual framework, termed 49 

the ‘intermediate stochasticity hypothesis’ is proposed to theoretically predict bacterial 50 

community shifts in diversity and ecosystem function, given a range of possible disturbance 51 

types, in a well-replicated time-series experiment. Our findings are relevant for managing 52 

complex microbial systems, which could display similar responses to disturbance, like 53 

oceans, soils or the human gut.  54 
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Introduction 55 

Understanding what drives patterns of community succession and structure remains a 56 

central goal in ecology (1, 2) and microbial ecology (3), especially since community diversity 57 

and assembly are thought to regulate ecosystem function (4, 5). The factors influencing the 58 

balance between mechanisms of community assembly are under debate and require studies 59 

across a range of ecosystems (6, 7). Assembly processes can be either stochastic, assuming 60 

that all species have equal fitness and that changes in structure arise from random events of 61 

ecological drift (8), or deterministic, when communities form as a result of niche diversity 62 

shaped by abiotic and biotic factors (9). Deterministic and stochastic assembly dynamics 63 

have been proposed to simultaneously act in driving assembly patterns observed in nature 64 

(10-14). This has stimulated scientific discourse including modelling of experimental data 65 

(15-18) and both observational and manipulative experimentation in a variety of ecosystems, 66 

like deserts on a global scale (19), groundwater (6), subsurface environments (2, 20, 21), soil 67 

plant-fungi associations (22), rock pools (23), water ponds (24), and sludge bioreactors (7, 68 

17, 25). These prior studies emphasized the need to understand what governs the relative 69 

balance between stochastic and deterministic processes and what conditions would lead to 70 

stochastic processes overwhelming deterministic processes, particularly under disturbance 71 

(21). To investigate their roles well-replicated time series experiments are needed (6, 25).  72 

Disturbance is defined in ecology as an event that physically inhibits, injures or kills 73 

some individuals in a community, creating opportunities for other individuals to grow or 74 

reproduce (26). Under disturbance, organisms may benefit from being able to grow, 75 

reproduce, and interact with other members of the community in the absence of specific 76 

familiarity with the environment. It is deemed a main factor influencing variations in species 77 

diversity (27) and structuring of ecosystems (28, 29), but a clear understanding of its 78 

outcomes is lacking (30). Particularly, the intermediate disturbance hypothesis (IDH) (31) 79 
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predicts that diversity should peak at intermediate levels of disturbance due to trade-offs 80 

between species’ ability to compete, colonize ecological niches, and tolerate disturbance. The 81 

IDH has been influential in ecological theory, as well as in management and conservation 82 

(32), but its predictions do not always hold true (27, 33). For example, in soil and freshwater 83 

bacterial communities different patterns of diversity were observed with increasing 84 

disturbance frequency with biomass destruction (34) and removal (35) as disturbance type, 85 

respectively. Meanwhile, the effect of varying frequencies of non-destructive disturbances on 86 

bacterial diversity remains unknown. Furthermore, the IDH predicts a pattern but it is not a 87 

coexistence mechanism as it was originally purported to be (36). Hence, its relevance is being 88 

debated (37, 38) with multiple interpretations and simplicity as the main points of critique. To 89 

date, the mechanisms behind the observed patterns of diversity under disturbance remain to 90 

be elucidated (39, 40). 91 

The objective of this work was to test the effect of disturbance on the bacterial 92 

community structure, diversity, and ecosystem function of a complex bacterial system, with 93 

emphasis on the underlying assembly mechanisms. We employed sequencing batch 94 

bioreactors inoculated with activated sludge from an urban wastewater treatment plant, in a 95 

laboratory microcosm setup with varying frequencies of augmentation with toxic 3-96 

chloroaniline (3-CA) as disturbance. Chloroanilines are toxic and carcinogenic compounds 97 

and few bacteria encode the pathways to degrade 3-CA (41), which is also known to inhibit 98 

both organic carbon removal and nitrification in sludge reactors (42). Microcosm studies are 99 

useful models of natural systems (43), can be coupled with theory development to stimulate 100 

further research (44), and by permitting easier manipulation and replication can allow 101 

inference of causal relationships (45) and statistically significant results (46). 102 

We analyzed changes in ecosystem function over time by measuring removal of organic 103 

carbon, ammonia, and 3-CA, as well as biomass. Changes in community structure were 104 
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examined at different levels of resolution using a combination of metagenomics sequencing 105 

and 16S rRNA gene fingerprinting techniques. We also explored how diversity was related to 106 

function, focusing on tradeoffs. Furthermore, the role of stochasticity on community 107 

assembly was investigated by employing null model techniques from ecology. 108 

 109 

Results 110 

Overall community dynamics and differentiation of clusters 111 

Bacterial community structure displayed temporal changes and varied between 112 

disturbance levels (Fig. 1). Constrained ordination showed a defined cluster separation with 113 

0% misclassification error of the outermost levels L0 and L7 from the remaining intermediate 114 

levels L1-6 (Fig. 1A). Overall community structure differed over time with a dispersion 115 

effect after 14 days (Fig. 1B). Levels across disturbance and time factors showed significant 116 

differences (PERMANOVA P = 0.003, Table S1), with a non-significant interaction effect (P 117 

= 0.15). Disturbance was the factor responsible for the observed clustering (Fig. 1A), 118 

independent of dispersion heterogeneity (PERDIMSP P = 0.35). 119 

Ecosystem function dynamics and trade-offs 120 

The undisturbed community (L0) was the only one with complete organic carbon 121 

removal and nitrification, while the press-disturbed community (L7) was the only one that 122 

could never nitrify and also had the lowest biomass (Fig. 3). Initially, reactors at the disturbed 123 

levels showed an inability to remove all of the 3-CA (with the exception of L1). Such lack of 124 

3-CA degradation was accompanied by a reduction in organic carbon removal in the first 125 

three weeks (Fig. 2A, Fig. S3A-C), and a complete inhibition of nitrification with subsequent 126 

accumulation of ammonium (Fig. 2B, Fig. S3F-H). Removal of 3-CA recovered and was 127 

above 95% for all disturbed levels after 28 days (Fig. S3D), but COD removal was still not 128 

100% despite complete 3-CA removal towards the end of the experiment (Figure 2C). 129 
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Nitrification was detected on day 21 for L1 and later for other disturbance levels, except 130 

for the press-disturbed L7. The dominant NOX component was nitrite, but some nitrate was 131 

also produced (Fig. 2D, Fig. S2H-J). At the end of the study, there was a strong negative 132 

correlation between organic carbon removal and nitrification (Fig. S3A-B) in terms of nitrite 133 

production (r = -0.982, P = 0.003) and nitrate production ( = -0.697, P = 0.003). Biomass 134 

values on day 35 differed significantly among levels with the highest value at L1 and the 135 

lowest at L7 (Fig. 2C). There was a strong negative correlation between biomass and organic 136 

carbon removal (r = -0.418, P = 0.042), and positive between biomass and partial nitrification 137 

to nitrite (r = 0.488, P = 0.022) (Fig. S3C-E). 138 

Intermediate levels of disturbance displayed increased dissimilarity with time 139 

 To distinguish the effect of disturbance from temporal community dynamics (Fig. 1), 140 

community assembly was assessed at each time point by ordination analysis using PCO (Fig. 141 

3A-B), NMDS, and CAP with cluster similarity analysis (Fig. S4). The combination of 142 

constrained and unconstrained ordination methods allowed differentiating location from 143 

dispersion effects in community assembly (47). L0 was consistently different in all ordination 144 

plots and L7 differed after 21 days, both with 0% misclassification error at all time points for 145 

CAP plots. Dispersion effects within intermediate levels were evident in the unconstrained 146 

ordination plots with higher differentiation of biological replicates after 35 days (Fig. 3B), 147 

coinciding with the production of nitrite and low levels of nitrate (Fig. 2D). Community 148 

differentiation was statistically significant from day 21 onwards as supported by multivariate 149 

tests (Table S1). 150 

Metagenomics community analysis validates observations from fingerprint dataset 151 

 -diversity patterns observed from 16S rRNA gene amplicon T-RFLP data on day 35 152 

were significantly similar to those from shotgun metagenomics data. A Mantel test on Bray-153 
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Curtis distance matrixes for both datasets (n = 24) yielded significant similarity (r = 0.73, P = 154 

0.002). Procrustes tests of comparisons within ordination methods of PCO (Fig. 3C) and 155 

NMDS also yielded significant similarities for both datasets (P = 0.002, Table S1). 156 

Multivariate PERMANOVA tests on the metagenomics dataset produced statistically 157 

significant results, but with significant heteroscedasticity as shown by PERMDISP (Table 158 

S1). We resolved these mean-variance relationship concerns by running a General Linear 159 

Multivariate Models (GLMMs) test to fit the data to a negative binomial distribution. Both 160 

residuals vs fitted and mean-variance plots supported the choice of a negative binomial 161 

distribution for the regression model (Fig. S5). The analysis of deviance of the regression 162 

rejected the null hypothesis of no difference between communities at different disturbance 163 

levels, independent of heteroscedasticity (p = 0.0149). 164 

Higher -diversity for intermediately disturbed treatments and its trade-offs with function 165 

The observed patterns in -diversity were time dependent, as diversity decreased over 166 

time with respect to the initial sludge inoculum (Fig. 4A). Such temporal decrease in diversity 167 

was higher at the extreme ends of the disturbance range, resulting in a parabolic pattern on 168 

day 35 (Fig. 4B-C). The final -diversity pattern based on Hill number 
2
D was similar for 169 

both T-RFLP and Metagenomics methods (Fig. 4B), although the latter showed higher 170 

variability. For the metagenomics dataset we also calculated the lower-order Hill numbers 171 

(
0
D, 

1
D) which give higher weight to less abundant OTUs. They displayed the same parabolic 172 

pattern (Fig. 4C). Welch’s ANOVA tests were statistically significant for all Hill numbers (P 173 

< 0.01, P = 0.022 for 
2
DMetagenomics). Additionally, there were strong correlations between -174 

diversity and community function (Fig. S6), focusing on the more robust estimators of 175 

microbial diversity 
1
D and 

2
D (48). Both 

1
D and 

2
D correlated positively with nitrification 176 

and biomass productivity (r > 0.44, P < 0.03), but negatively with organic carbon removal (r 177 

< -0.45, P < 0.03). 178 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313585doi: bioRxiv preprint 

https://doi.org/10.1101/313585


9 

 

Null model analyses validate variations in -diversity and temporal increase in stochastic 179 

community assembly 180 

To test if the observed changes in -diversity (Fig. 1A, Fig. 3) were due to underlying 181 

stochastic and deterministic mechanisms or due to changes in  and diversity ratios (:) 182 

alone (49), we employed a null model analysis on the bacterial genus-level metagenomics 183 

and T-RFLP datasets on day 35 (Fig. 5A). Linear regression analyses between the calculated 184 

-deviation and the observed -diversity yielded non-significant results (PMetagenomics = 0.42, 185 

PT-RFLP = 0.31), confirming that observed changes in -diversity were not only due to changes 186 

in :. 187 

Furthermore, another null model analysis was employed to test whether the increase in 188 

community dissimilarity observed over time (Fig. 1B, Fig. 3) was related to an increase in 189 

stochastic effects driving community assembly. A temporal analysis on the T-RFLP 190 

community dataset (n = 96) employing the Raup-Crick dissimilarity metric (50, 51) showed 191 

that communities became closer to the null expectation over time, with the greater effect of 192 

stochasticity observed after 35 days (Fig. 5B). The observed differential heteroscedasticity 193 

among disturbance levels was statistically significant (PERMDISP P = 0.003). 194 

 195 

Discussion 196 

Deterministic and stochastic patterns of assembly amongst different disturbance levels  197 

Niche-structuring at both ends of the disturbance range was suggested by community 198 

assembly patterns and ecosystem function. The undisturbed (L0) and press-disturbed (L7) 199 

levels were distinct from each other as well as from the remaining intermediate levels, as 200 

supported by multivariate tests (both distance-based and GLMMs). The ordination plots and 201 

cluster analyses showed a clear separate clustering for the independent replicates of these two 202 

disturbance levels along the experiment, and particularly the constrained ordination plots 203 
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displayed this with 0% misclassification error. Furthermore, community function was clearly 204 

differentiated between L0 and L7, as well as being consistent across replicates at each level. 205 

We contend that the observed clustering is an indication that both the undisturbed and press-206 

disturbed levels favoured deterministic assembly mechanisms, where the selective pressure 207 

due to unaltered succession (L0) or sustained toxic-stress (L7) promoted species sorting 208 

resulting in similar community structuring among biological replicates over the course of the 209 

experiment. 210 

Conversely, the communities from intermediately disturbed levels (L1-6) did not form 211 

distinct clusters for any particular level through the experiment. Within-treatment 212 

dissimilarity among same-level replicates increased over time, with some replicates being 213 

more similar to those of other intermediate levels. Concurrently, ecosystem function 214 

parameters also displayed within-treatment variability for L1-6. For example, the conversion 215 

of ammonia to NOX products, which was initially hampered when communities were still 216 

adapting to degrade 3-CA, was not the same across all equally handled independent 217 

replicates. The observed divergence across independent replicates is considered here as 218 

strong indicator of stochasticity in community assembly. Other aspects might promote 219 

stochastic assembly, like strong feedback processes (52) that are linked to density 220 

dependence and species interactions (53), priority effects (3), and ecological drift (54). 221 

Nonetheless, the observed increasing role of stochasticity over time was also supported by 222 

null model analyses, which also validated that the observed changes in -diversity were not 223 

due to changes in : diversity ratios alone (49). 224 

 We argue that there were different underlying neutral-niche mechanisms operating in 225 

the resulting community assembly along the disturbance range of our study. Similarly, a 226 

study on groundwater microbial communities (6) found through null model analysis that both 227 

deterministic and stochastic processes played important roles in controlling community 228 
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assembly and succession, but their relative importance was time dependent. The greater role 229 

of stochasticity we found on day 35 concurred with higher observed variability in community 230 

function and structure among replicates for intermediately-disturbed levels. Likewise, 231 

previous work on freshwater ponds tracking changes in producers and animals (51) found -232 

diversity (in terms of dissimilarity) increasing with stochastic processes. These observed 233 

patterns are also in accordance with ecological studies proposing deterministic and stochastic 234 

processes balancing each other to allow coexistence (12), with communities exhibiting 235 

variations in the strength of stabilization mechanisms and the degree of fitness equivalence 236 

among species (11). Thus, it is not sufficient to ask whether communities mirror either 237 

stochastic or deterministic processes (10), but also necessary to investigate the combination 238 

of such mechanisms that in turn explain the observed community structures along a 239 

continuum (11). 240 

Diversity-disturbance patterns and trade-offs with function 241 

We observed the highest -diversity at intermediate levels as predicted by the IDH (31), 242 

both in terms of composition (
0
D) and abundances (

1
D, 

2
D). This finding is non-trivial in two 243 

aspects. First, Svensson et al. (32) have shown that most studies find support for the IDH 244 

when using species richness (
0
D) rather than evenness or other abundance-related indices 245 

(like 
1
D and 

2
D). They called for the use of logical arguments to support the idea that peaks in 246 

compound diversity-indices should be also expected at intermediate levels of disturbance. 247 

Second, the use of richness for microbial communities is not reliable (48) since it is heavily 248 

constrained by the method of measurement (55), which makes it hard to compare results from 249 

different studies using this metric. Hence, for microbial systems, it is more reasonable to 250 

assess diversity in terms of more robust compound indices rather than richness, reason why 251 

we focused on 
1
D and 

2
D for diversity-function analyses. 252 
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Importantly, the observed pattern in -diversity was time dependent and resulted in an 253 

IDH pattern after 35 days. Temporal dynamics were expected since the sludge community 254 

experienced an initial perturbation in all reactors after transfer from a wastewater treatment 255 

plant to our microcosm arrangement. For the sludge inoculum this implied changes in reactor 256 

volume, frequency of feeding (continuous to batch), type of feeding (sewage to complex 257 

synthetic media), immigration rates (open to closed system), and mean cell residence time 258 

(low to high). This was a succession scenario in which communities had to adapt to such 259 

changes along with the designed disturbance array. For L0 and L7, 
2
D decreased over time in 260 

agreement with niche-dominated processes, probably because such levels represented the 261 

most predictable environments within our disturbance range. In contrast, intermediate levels 262 

either increased or maintained the same 
2
D over time (after an initial decrease within the first 263 

two weeks), seemingly a case where niche overlap promoted stochastic assembly (10). The 264 

emergence of a IDH pattern after time is coherent with findings in previous microcosm 265 

studies using synthetic protist (56) and freshwater enrichment (35) microbial communities. 266 

Yet, none of these studies evaluated the relative importance of the underlying assembly 267 

mechanisms of assembly on the observed diversity dynamics. 268 

Additionally, both 
1
D and 

2
D were positively correlated with nitrification and 269 

productivity, suggesting that higher community evenness favours functionality under 270 

selective pressure (57), but were negatively correlated with organic carbon removal. Thus, we 271 

cannot affirm that more diverse communities have better functionality without considering 272 

tradeoffs. This supports the notion that higher -diversity does not necessarily imply a 273 

“better” or “healthier” system (55). In addition to the observed OTU diversity, there was an 274 

evident ecosystem function diversity along the disturbance range studied, a similar finding to 275 

that of previous studies with simpler planktonic communities (58).  276 
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Functional tradeoffs are expected under disturbance since organisms need to allocate 277 

resources normally used for other functions to recover after a disturbance (59). In our study, 278 

communities with higher biomass had lower organic carbon removal efficiencies, which 279 

together with the tradeoffs described for nitrification, suggest the adoption of different 280 

community life-history strategies depending on the frequency of disturbance. The results 281 

presented here were all taxonomy-independent since our focus was on diversity, function, and 282 

mechanisms of community assembly (phylum-level community changes are provided as 283 

supplemental material Fig. S7). Taxonomy-independent approaches continue to be useful to 284 

describe diversity patterns and mechanisms of community assembly (2, 60). However, it has 285 

been proposed that species’ traits can predict the effects of disturbance and productivity on 286 

diversity (61). Hence, further analysis of the different taxa and their genetic potential paired 287 

with the observed tradeoffs in community function will aid in the understanding of potential 288 

life-history strategies (59) and their relationship with community aggregated traits (62) in the 289 

near future. 290 

Merging mechanisms of community assembly and alpha-diversity patterns: an intermediate 291 

stochasticity hypothesis 292 

Knowing that the validity of the IDH is still under debate (37, 38) and that many 293 

different diversity-disturbance patterns have been reported (27, 30, 33), we asked whether 294 

there is a relationship between the peaked pattern in diversity observed and the underlying 295 

neutral-niche processes of community assembly. Under purely neutral processes, diversity 296 

should vary randomly as all species have equal fitness (63), unless some other mechanism 297 

acts to prevent this. We hypothesized that higher -diversity at intermediate disturbance 298 

frequencies is the result of weaker stabilizing mechanisms (niches), which are stronger at 299 

extreme ends of the disturbance range. Neutral (stochastic) mechanisms will produce even 300 

assemblages (higher -diversity) at intermediately disturbed levels, whilst infrequent or too-301 
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frequent disturbances will favour some species over others (lower -diversity). We propose 302 

this idea as the Intermediate Stochasticity Hypothesis (ISH, Fig. 6) and contend that it should 303 

hold particularly for compound -diversity indices (48), since the underlying assembly 304 

mechanisms would affect taxa abundance distributions. 305 

It is recognized that, beyond empirical pattern description, an understanding of the 306 

underlying mechanisms is necessary to comprehend the outcomes of intermediate disturbance 307 

regimes (30, 40, 64). Furthermore, microbes constitute a special case since they evolve 308 

quickly, compared with plants and animals microbial turnover is rapid, and selection can 309 

cause very rapid shifts in community structure (65, 66). The complementary role of 310 

stochastic-niche processes could then be one of the key substantive issues promoting species 311 

coexistence (37, 39). This can foster research on disturbance-diversity-relationships by 312 

complementing the already proposed modifications to the competition-colonization tradeoffs 313 

under succession on which the IDH was originally based (31, 38), like considering effects of 314 

competitive exclusion (56, 67), productivity (68, 69), spatial heterogeneity (70), feedbacks 315 

between diversity and disturbance (71), and type of -diversity metric employed (32). 316 

Implications and concluding remarks  317 

The implications of this study relate to both process engineering and environmental 318 

management. Sludge communities within wastewater treatment are not only model systems in 319 

microbial ecology (72), but also a key driver for water sanitation and the environmental 320 

impact of anthropogenic water discharges (73). Disturbances could promote stochastic 321 

assemblages of the sludge communities, which despite harbouring higher diversity could lead 322 

to variable overall community function. This could be the reason why after similar 323 

perturbations the process outcomes differ, causing operational problems for water utilities 324 

(74). Furthermore, cases where disturbance temporally favours stochastic assembly could 325 
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lead to a different final community after the perturbation (29), which could compromise the 326 

expected ecosystem function. More research is needed to identify such scenarios in practice. 327 

We described how different frequencies of disturbance affected ecosystem function and 328 

bacterial community diversity and assembly. Communities were assessed through different 329 

molecular methods that nonetheless yielded very similar patterns. Furthermore, besides the 330 

wastewater treatment microbial community, other complex microbial systems (e.g. gut 331 

microbiome) might display similar responses to disturbance. We argue that changes not only 332 

in diversity but also in the underlying deterministic-stochastic assembly mechanisms should 333 

be evaluated in studies of the effects of disturbance on such systems. For such an assessment, 334 

both replication and wide-enough disturbance ranges are key. This calls for more studies in 335 

microcosm (45, 75) and mesocosm settings, as well as meta-analysis from full-scale 336 

application studies.  337 

 Finally, the ISH could conceptually predict bacterial community shifts in diversity and 338 

ecosystem function, given a range of possible disturbance types, in a well-replicated time-339 

series experiment, like it did in this study. Since microbes drive the Earth’s biogeochemical 340 

cycles (76), its potential application in biodiversity conservation efforts and the built 341 

environment, should encourage further testing under different disturbance dimensions and 342 

microbial systems. 343 

 344 

Materials and Methods 345 

Experimental design 346 

We employed sequencing batch microcosm bioreactors (20-mL working volume) 347 

inoculated with activated sludge from a full-scale plant (Text S1) and operated for 35 days. 348 

The daily complex synthetic feed included toxic 3-CA at varying frequencies. Eight levels of 349 

disturbance were set in triplicate independent reactors (n = 24), which received 3-CA every 350 
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day (press-disturbed), every two, three, four, five, six, or seven days (intermediately-351 

disturbed), or never (undisturbed). Level numbers were assigned from 0 to 7 (0 for no 352 

disturbance, 1 to 7 for low to high disturbance frequency, Fig. S1). Ecosystem function, in the 353 

form of process performance parameters, was measured weekly in accordance with Standard 354 

Methods (77) where appropriate, and targeted chemical oxygen demand (COD), nitrogen 355 

species (ammonium, nitrite, and nitrate ions), volatile suspended solids (VSS), and 3-CA. On 356 

the initial day and from the second week onwards, sludge samples (1 mL) were collected 357 

weekly for DNA extraction.  358 

Microbial community analysis and statistical tests 359 

 All reported p-values for statistical tests in this study were corrected for multiple 360 

comparisons using a False Discovery Rate (FDR) of 10% (78). Community assembly was 361 

assessed by a combination of ordination methods (PCO, NMDS, CAP) and multivariate tests 362 

(PERMANOVA, PERMDISP) (79) on Bray-Curtis dissimilarity matrixes constructed from 363 

square-root transformed normalized abundance data using PRIMER (v.7). Additionally, 364 

general linear multivariate models (GLMMs), which deal with mean-variance relationships 365 

(80), were employed using the mvabund R package (81) fitting the metagenomics dataset to a 366 

negative binomial distribution, to ensure that the observed differences among groups were 367 

due to disturbance levels and not heteroscedasticity. The 500 most abundant genera (97% of 368 

total reads abundances) were employed to ensure random distribution of residuals fitted in the 369 

model. Significance was tested using the anova function in R with PIT-trap bootstrap 370 

resampling (n = 999) (82). Hill diversity indices (83) were employed to measure -diversity 371 

as described elsewhere (48, 84), and calculated for normalized non-transformed relative 372 

abundance data (Text S1).  373 

 Abundance data from Terminal Restriction Fragment Length Polymorphism (T-RFLP) 374 

analysis of the bacterial 16S rRNA gene (using 530F-1050R primer set targeting V4-V5 375 
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regions) were employed in combination with shotgun metagenomics sequencing at the genus 376 

taxonomic level. Such an approach is valid for the questions asked in this study, since 377 

comparisons between NGS and fingerprinting techniques support the use of T-RFLP to detect 378 

meaningful community assembly patterns and correlations with environmental variables (60), 379 

and such patterns can be validated by NGS on a subset of the fingerprinting dataset (2).  380 

Comparison between Metagenomics and T-RFLP community datasets 381 

 Mantel and Procrustes tests (85) were applied to compare metagenomics and T-RFLP 382 

datasets from all bioreactors on day 35 (n = 24, subsample of the full T-RFLP dataset). 383 

Briefly, Bray-Curtis dissimilarity matrixes were computed using square root transformed T-384 

RFLP data and bacterial genus-level taxa tables generated using a metagenomics approach. 385 

Mantel tests were then used to determine the strength and significance of the Pearson 386 

product-moment correlation between complete dissimilarity matrices. Procrustes tests 387 

(PROTEST) were also employed as an alternative approach to Mantel tests in order to 388 

compare and visualize both matrices on PCO and NMDS ordinations. The resultant m2-value 389 

is a statistic that describes the degree of concordance between the two matrices evaluated 390 

(86). All these statistical tests were performed using the vegan R package (functions: 391 

procuste, mantel, metaMDS, vegdist). 392 

Metagenomics sequencing and reads processing 393 

 Around 173 million paired-end reads were generated in total and 7.2 ± 0.7 million 394 

paired-end reads on average per sample. Illumina adaptors, short reads, low quality reads or 395 

reads containing any ambiguous base were removed using cutadapt (–m 50 –q 20 - --max-n 0, 396 

v.1.11) (87). Taxonomic assignment of metagenomics reads was done following the method 397 

described by Ilott et al. (88). High quality reads (99.2±0.09% of the raw reads) were 398 

randomly subsampled to an even depth of 12,395,400 for each sample prior to further 399 
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analysis. They were aligned against the NCBI non-redundant (NR) protein database (March 400 

2016) using DIAMOND (v.0.7.10.59) with default parameters (89). The lowest common 401 

ancestor approach implemented in MEGAN Community Edition v.6.5.5 (90) was used to 402 

assign taxonomy to the NCB-NR aligned reads with the following parameters: 403 

maxMatches=25, minScore=50, minSupport=20, paired=true. On average, 48.2% of the high-404 

quality reads were assigned to cellular organisms, from which in turn 98% were assigned to 405 

the bacterial domain. Adequacy of sequencing depth was corroborated with rarefaction 406 

curves at the genus taxonomy level using MEGAN (90). We did not include genotypic 407 

information because it was outside the scope of our study, but will do so in future 408 

investigations arising from this work. 409 

Null Model Analyses on Diversity 410 

-diversity is normally seen as the variation in composition of communities among sites 411 

(91), although there are several definitions for it (92). It is also known that most changes in -412 

diversity are determined by variation in the ratio of local() and regional () diversity. Thus, 413 

to disentangle the roles of stochastic and deterministic processes as drivers of change in -414 

diversity it is necessary to incorporate statistical null models in the analysis (51, 91), which 415 

assume that species interactions are not important for community assembly (93). We 416 

employed two null model approaches previously tested in community ecology (49, 51), and 417 

more recently for microbial communities (6). To adapt them to handle microbial community 418 

data, we considered species as OTUs (i.e. genus for metagenomics and T-RFs for T-RFLP 419 

datasets) and each individual count as one read within the metagenomics dataset, or one 420 

peak-area unit within the T-RFLP dataset. The first null model approach used here, originally 421 

applied to woody plants (49), randomizes the location of each individual within the three 422 

independent reactors for each of the eight disturbance treatment levels, while maintaining -423 

diversity, the total quantity of individuals per reactor, and the relative abundance of each 424 
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OTU. The second null model uses a modified Raup-Crick dissimilarity metric (RC), which 425 

indicates the degree to which the observed number of shared OTUs between any two 426 

communities deviates from the expected number of shared OTUs in the null model. The 427 

closer to the null expectation, the stronger the stochastic effects on the community assembly 428 

are, and vice versa (51). This method is robust for variation in -diversity among 429 

communities.  430 

Sequence data and metadata 431 

The microbial DNA metagenomics sequencing datasets supporting the results in this 432 

article is available at NCBI BioProjects with accession number: 389377. 433 
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Figure Legends 667 

FIG 1 Ordination plots differentiating undisturbed (L0) and press-disturbed (L7) levels from 668 

intermediately disturbed levels (L1-6) and displaying temporal community dispersion effects 669 

for all time points. (A) Canonical Analysis of Principal coordinates (CAP, constrained 670 

ordination) plot, with disturbance levels as differentiation criteria, shows niche differentiation 671 

for L0 (CAP1 axis) and L7 (CAP2 axis). Disturbance levels: L0[ ], L1[ ], L2[ ], L3[ ], L4[672 

], L5[ ], L6[ ], and L7[ ]. (B) Non-metric Multidimensional Scaling (NMDS, 673 

unconstrained ordination) shows dispersion effect after a given number of days. Days: 14[ ], 674 

21[ ], 28[ ], and 35[ ].  675 

FIG 2 Process performance indicators across disturbance levels. Effects include temporal 676 

changes and tradeoffs in community function. (A,C) Percentage of organic carbon as 677 

chemical oxygen demand (COD, ) and 3-CA ( ) removal for all levels (negative values 678 

represent accumulation). (C) Biomass as volatile suspended solids. (VSS, ). (B,D) 679 

Concentration of ammonium ( ), nitrite ( ), and nitrate ( ) as nitrogen for all levels. Data 680 

are from days 7 (A-B) and 35 (C-D) of the study (for all time points sampled, see Fig. S2). 681 

Mean ± s.d. (n = 3) are shown. Undisturbed L0 replicates had consistent organic carbon 682 

removal and complete nitrification, whereas press-disturbed L7 never showed nitrification 683 

and had the lowest final biomass. Intermediate levels L1-6 displayed changing functionality 684 

with higher s.d. values that increased over time. 685 

FIG 3 Community assembly as assessed by Principal Coordinates Analysis (PCO) plots for 686 

all disturbance levels on T-RFLP datasets on days (A) 14 and (B) 35 of the study. Ovals with 687 

dashed lines represent 80% similarity calculated by group average clustering. Disturbance 688 

levels: L0 [ ], L1 [ ], L2 [ ], L3 [ ], L4 [ ], L5 [ ], L6 [ ], and L7 [ ]. (C) Procrustes 689 

analysis on PCO at day 35 comparing metagenomics (circles) and T-RFLP (triangles) 690 
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datasets. Lines unite data points from the same reactor (n = 24). Same colour palette as for 691 

disturbance levels. Tests comparing both methods were statistically significant (Table S1). 692 

Intermediate treatments’ (L1-6) within-treatment dissimilarity increased with time. L0 and L7 693 

clusters consistently displayed higher similarity after 14 days. 694 

FIG 4 -diversity patterns based on T-RFLP and metagenomics data. (A) Temporal 695 

dynamics of Hill number 
2
D for abundant OTUs, calculated from T-RFLP data across 696 

disturbance levels. (B) Hill number 
2
D calculated from T-RFLP (black dashed bars) and 697 

metagenomics (grey solid bars) data at days 0 (seed) and 35. (C) Hill numbers 
0
D (black solid 698 

bars) and 
1
D (blue solid bars) from metagenomics data on days 0 (seed) and 35. Values 699 

represent mean ± s.d. (n = 3). 700 

FIG 5 Null model analyses of community data. (A) -deviation versus observed -diversity 701 

for all disturbance treatment levels on day 35. Each point involved all replicates (n = 3) of 702 

each disturbance level (a = 8) using the model from (49) on the metagenomics (closed circles, 703 

bacterial genus taxonomical level), and T-RFLP (open squares) datasets. Non-significant 704 

linear regression tests confirmed that changes in -diversity did not arise from changes in : 705 

diversity alone, suggesting other mechanisms underlying community assembly. (B) NMDS 706 

ordination plot of community dynamics of common OTUs (T-RFLP dataset, n = 96) using 707 

the Raup-Crick dissimilarity metric as in (51). Days: 14[ ], 21[ ], 28[ ], and 35[ ]. Lines 708 

denote the minimum convex shapes around the data for each disturbance level. Points that are 709 

further separated represent communities less deviant from the null expectation, whereas those 710 

that are closer together are more divergent from the null expectation. Communities on day 35 711 

are nearer to the null expectation compared with the ones on previous days, suggesting an 712 

increasing role over time of stochastic processes in driving community assembly. Overall, 713 
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null model analyses validate variations in -diversity and temporal increase of stochastic 714 

community assembly 715 

FIG 6 Intermediate Stochasticity Hypothesis (ISH) for community assembly under varying 716 

disturbances. Conceptual representation of the classic relationship between -diversity and 717 

disturbance (31), including the effect of underlying stochastic and deterministic processes 718 

driving bacterial community assembly. When intermediate disturbance regimes result in less 719 

predictable environments, specialized traits would be advantageous to taxa, and the stochastic 720 

equalization of competitive advantages would lead to higher -diversity. On the contrary, 721 

extreme ends of the range where conditions are recurrent would select for adapted organisms 722 

whose dominance would result in a lower -diversity. 723 
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