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Abstract

A joint and integrated analysis of multi-site diffusion MRI (dMRI) datasets can

dramatically increase the statistical power of neuroimaging studies and enable

comparative studies pertaining to several brain disorders. However, dMRI data

sets acquired on multiple scanners cannot be naively pooled for joint analy-

sis due to scanner specific nonlinear effects as well as differences in acquisition

parameters. Consequently, for joint analysis, the dMRI data has to be harmo-

nized, which involves removing scanner-specific differences from the raw dMRI

signal. In this work, we present a dMRI harmonization method that, when

applied to multi-site data, is capable of removing scanner-specific effects, while

accounting for minor differences in acquisition parameters such as b-value, spa-

tial resolution and number of gradient directions in the dMRI data (typical for

multi-site clinical research scans). We validate our algorithm on dMRI data

acquired from two sites: Philadelphia Neurodevelopmental Cohort (PNC) with

800 healthy adolescents (ages 8 to 22 years) and Brigham and Women’s Hospital

(BWH) with 70 healthy subjects (ages 14 to 54 years). In particular, we show

that gender differences and maturation in different age groups are preserved

after harmonization, as measured using effect sizes (small, medium and large),

irrespective of the test sample size. Further, because we use matched control
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subjects from different scanners to estimate scanner-specific effects, we tested

how many subjects are needed from each site to achieve best harmonization re-

sults. Our results indicate that at-least 16 to 18 well-matched healthy controls

from each site are needed to reliably capture scanner related differences. The

proposed method can thus be used for retrospective harmonization of raw dMRI

data across sites despite differences in acquisition parameters, while preserving

inter-subject anatomical variability.

Keywords: dMRI, harmonization, inter-scanner

1. Introduction

Diffusion MRI is sensitive to molecular water motion, which can be recorded

non-invasively by an MRI scanner. However, these measurements are affected

by different hardware specifications (magnetic field strength, number of the re-

ceiver coils etc.), and different acquisition parameters (echo time, diffusion time,5

gradient strength, voxel size, number of gradient directions etc.) (Helmer et al.,

2016). Therefore, the data acquired by each scanner is substantially different

even for the same subject. In fact, even if the same subject is scanned with

the same hardware from the same manufacturer, diffusion signal can still be

different (Vollmar et al., 2010). This is due to differences in magnetic field10

inhomogeneities, sensitivity of receiver coils, the number of receiver coils used,

vendor-specific MRI reconstruction algorithms and differences in acquisition pa-

rameters. Consequently, dMRI data must be harmonized prior to joint analysis.

Several methods have characterized both intra-scanner and inter-scanner

variability in structural and dMRI data (Landman et al., 2011, 2007). Based on15

their study in Walker et al. (2013), the authors recommend the use of physical

phantoms to monitor and quickly detect any scanner-related changes in ongoing

neuroimaging studies. While the use of physical phantoms is necessary, they

are inadequate in capturing the regional and tissue specific scanner differences.

Further, it is non-trivial to use the scanner differences observed in physical20

phantoms to correct human in-vivo data, due to the complexities of biological
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tissue.

Existing techniques on data pooling are based on using diffusion tensor imag-

ing (DTI) derived metrics (Salimi-Khorshidi et al., 2009; Jahanshad et al., 2013;

Kochunov et al., 2014; Forsyth et al., 2014; Venkatraman et al., 2015; Jenkins25

et al., 2016; Pohl et al., 2016; Fortin et al., 2017). For instance, Salimi-Khorshidi

et al. (2009); Jahanshad et al. (2013); Kochunov et al. (2014); Palacios et al.

(2016); Kelly et al. (2017) use meta-analysis approach which involves combining

z-scores of a given diffusion measure (e.g. fractional anisotropy (FA)) from all

sites to determine group differences. However, the subject population at each30

site may not be sufficient to capture the variance of the entire population, a crit-

ical requirement to ensure proper pooling and analysis of the z-scores (which

depends on the variance and not just the population mean). Further, z-scores

may not be the best statistic to use if the distribution of the diffusion measure

in the population is not Gaussian (normal). On the other hand, Forsyth et al.35

(2014); Venkatraman et al. (2015); Fortin et al. (2017) use statistical covariates

to regress out the differences between sites in DTI measures such as FA, mean

diffusivity (MD) or cortical thickness. Of particular note is the work of Pohl

et al. (2016), where the authors use information from 3 traveling subjects to

obtain a linear correction factor for scanner related effects in FA (a different40

correction factor for each ROI analyzed). This method however has limitations

when using large ROIs (such as the corticospinal tract), as the scanner-related

effects are not only non-linear but also regionally varying (see (Mirzaalian et al.,

2016) and Figure 3). Thus, due to the regional variability of the diffusion sig-

nal, using a single regressor for large ROIs can lead to erroneous results in the45

aggregated data (Mirzaalian et al., 2016; Fortin et al., 2017).

All of the methods mentioned above have to correct for scanner-specific ef-

fects in each diffusion measure of interest separately, i.e., a linear correction

factor for each diffusion measure, thus making the harmonization procedure en-

tirely model-specific (e.g. single tensor). Recently, Fortin et al. (2017) have50

proposed a retrospective multi-site harmonization method that uses Combat (a

batch-effect correction tool used in genomics) to remove the site effects from FA
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and MD. This method estimates an additive and a multiplicative site-effect co-

efficient at each voxel, thus accounting for regional scanner differences. Despite

this, their optimization procedure assumes that the site-effect parameters follow55

a particular parametric prior distribution (Gaussian and Inverse-gamma), which

might not generalize to all scenarios or measures derived from other models (e.g.,

multi-compartment models).

Contributions of this work: In our earlier works (Mirzaalian et al., 2016,

2017), we had proposed a model-free dMRI harmonization method which can60

be used to harmonize the “raw dMRI signal” (and not just a particular dMRI

measure of interest) across sites. However, that work exclusively focused on

harmonizing dMRI data across sites but with similar acquisition parameters.

Thus, the method worked only when the spatial resolution and b-values were

the same across sites. Additionally, the earlier method did not have an extensive65

validation on a large dataset.

In this work, we further build on our existing framework and propose a model

free harmonization method that learns an efficient mapping across scanners de-

spite differences in scanner parameters. We extensively validate our algorithm

on dMRI data acquired from two different sites with different acquisition param-70

eters. We use two independent data sets of different sizes (BWH: 70 subjects

and PNC: 800 subjects) to demonstrate that our harmonization method is not

affected by the sample size as opposed to existing approaches that require an ac-

curate estimate of the variance of the underlying population in their model (e.g.

meta-analysis methods). To this end, we compute effect sizes between groups75

separated by age and sex. Specifically, we show that the effect sizes, whether

small, medium or large, are preserved by our harmonization procedure in both

small (e.g. BWH) and large (e.g. PNC) data sets. Such validation experiments

are necessary to robustly demonstrate the generalizability of any harmonization

procedure for use with clinical research dMRI studies. Most importantly, using80

bootstrap experiments, we find that at-least 16 to 18 well-matched subjects per

site are needed to robustly learn the mapping between sites.
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Table 1: Demographics and dMRI acquisition information of the studies and harmonized

results.

Dataset # Sub Age Gender IQ Handedness dMRI data

PNC 800
8 to 22 years

(15.12±3.26)

420 F

380 M 101.89±16.33

12.5% L

87.5% R

b=1000 s/mm2

64 directions

TE/TR=82/8100 ms

resolution=1.875×1.875×2mm3

BWH 70
14 to 54 years

(30.34±12.35)

22 F

48 M 114.71±14.68

8% L

92% R

b=900 s/mm2

51 directions

TE/TR=80/17000 ms

resolution=1.67×1.67×1.7mm3

Harmonized 870
8 to 54 years

(16.43±6.40)

412 F

458 M 101.96±16.36

12.5% L

87.5% R

b=1000 s/mm2

resolution=1.5× 1.5× 1.5mm3

Abbreviations: Dataset: PNC - Philadelphia Neurodevelopmental Cohort; BWH - Brigham and Women’s Hospital; F: females;

M: males; R: right-handed, L: left-handed.

2. Methods

2.1. Data Collection and Preprocessing

Neurodevelopmental Cohort (PNC) We used dMRI data from 88485

healthy participants from the publically available NIH repository: Philadelphia

Neurodevelopmental Cohort (PNC) study (Satterthwaite et al., 2014, 2016).

The dMRI data was acquired on a Siemens TIM Trio whole-body scanner, using

a 32 channel head coil and a twice-refocused spin-echo (TRSE) single-shot EPI

sequence with the following parameters: TR = 8100ms and TE = 82ms, b-90

value of 1000s/mm2, 7 b = 0 images. DMRI data was acquired with 64 diffusion-

weighted directions divided into two independent sets, each with 32 diffusion-

weighted directions. The images were acquired at 1.875×1.875×2 mm3 spatial

resolution.

Brigham and Women’s Hospital (BWH) DMRI images from healthy95

volunteers were acquired on a whole body General Electric MRI scanner (GE

Medical Systems, Milwaukee) at Brigham and Women’s Hospital as part of

a larger NIH funded study. A high resolution diffusion acquisition with the
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Figure 1: PNC data automated quality control analysis results: The average signal residual

for each subject (over the entire brain) was calculated and this generated two clusters: for

bad quality (orange) and for good quality (blue) cases. The threshold (yellow) to separate

good and bad clusters was chosen in a heuristic manner.

following parameters was used: twice refocused, TR = 17s, TE = 80ms, 1.67×

1.67 × 1.7mm3 spatial resolution, 51 gradient directions with b = 900s/mm2
100

and eight additional b = 0 images.

Table 1 summarizes the demographic information for each of these sites. We

applied axis alignment, centering and eddy current correction to each acquisi-

tion separately using the Psychiatry Neuroimaging Laboratory (PNL) pipeline:

https://github.com/pnlbwh/pnlutil. We used the brain extraction tool105

(BET) to generate the brain masks (Smith, 2002; Jenkinson et al., 2005). The

two dMRI acquisitions in the PNC data were combined by registering their re-

spective baselines using affine transformation (Advanced Normalization Tools

(ANTs) (Avants et al., 2011)). Then, the transformation was applied to each dif-

fusion weighted volume and the gradient vectors were rotated using the rotation110

matrix estimated from the affine transformation. After merging the acquisitions,
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we performed an automated quality check of all 884 PNC data sets as follows:

We fit the dMRI signal at each voxel using spherical harmonic basis functions

(up to 8th order) (Descoteaux et al., 2007). Next, the average signal residual

for each subject (over the entire brain) was calculated. This produced two clus-115

ters, one affected by motion and signal drops (bad cases) and another for good

quality cases. We removed the cases with highest average residual, categorized

as bad quality cases (84 participants in total). The threshold to determine the

bad cases was manually chosen to maximize the separation between the clusters

(see Figure 1).120

BWH data was also processed using the same PNL pipeline. Since the sample

size is smaller, it was manually inspected for any signal dropouts or artifacts (as

part of a separate study) and all subjects who did not pass our quality control

procedure were not included in this study. A total of 70 subjects were included

in this study after quality control analysis. See Table 1 for demographics of125

both the PNC and BWH data.

2.2. Group matching of training subjects across sites

Initially, we selected 20 right-handed (10F+10M) subjects from each site

(detailed analysis related to the training subjects size is going to be explained

in Section 2.4). The subjects were matched across sites for age and IQ to the130

best possible extent using unpaired t-test to minimize the statistical biological

differences across sites. See Table 2 for demographics of training data. These

training subjects were then used to learn the scanner-specific differences between

sites. Details about the harmonization procedure is explained in the subsequent

sections.135

2.3. Steps for voxel-wise harmonization

The overall outline of the proposed method is depicted in a flowchart in Fig-

ure 2. Briefly, we first project the signal from both sites to a common canonical

space of b-values and spatial resolution. Next, a set of matched controls are

used to learn a non-linear mapping (in the dMRI signal domain) that captures140
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Table 2: Demographics of training subjects at PNC and BWH sites.

Dataset # Sub Age Gender IQ Handedness

PNC 20
15 to 23 years

(19.37±2.19)

10 F

10 M
110.89±6.33 20 R

BWH 20
14 to 23 years

(19.57±2.26)

10 F

10 M
110.23±6.27 20 R

scanner-specific differences between the sites (see Figure 2a). This mapping

is then used to update the dMRI signal for each subject at the target site (see

Figure 2b), i.e., we harmonize the remaining set of subjects from the target

site. Each step in this process is explained in detail in the following subsections.

2.3.1. B-value mapping and resampling145

Due to differences in the b-values between sites, we first match the b-values

for both the sites. Using evidence from existing works (Jensen et al., 2005;

Steven et al., 2014), we note that stronger b-values become increasingly sensitive

to shorter molecular distances and the diffusion-weighted signal decay deviates

from the monoexponential decay predicted by the Gaussian DTI model after a150

b-value of (b > 1500s/mm2). That is, the diffusion-weighted signal attenuation

log(S(b)/S0) approximately follows a linear decay up to b = 1500s/mm2. We

utilize this observation to adjust for differences in b-values (for 500 < b < 1500)

between the two sites. Specifically, we estimate the signal for one of the sites

at a common harmonized b-value using a linear scaling of the signal in the log-155

domain. Mathematically, the diffusion signal at a new b-value can be estimated

using: S = S0exp(−bharmD̂), where S is the diffusion signal, S0 is the baseline

and D̂ = −1
b log

(
S
S0

)
is the diffusion coefficient, and b is the original b-value.

bharm is the new b-value of the harmonized data, which is a parameter of choice

and we set it to 1000 for all subjects and for both sites in this work (see Table 1,160

bottom row). For harmonizing b-values greater than 1500 s/mm2, one could

use any of the compressed sensing methods described in (Rathi et al., 2014;

Ning et al., 2015b; Fick et al., 2016; Ning et al., 2017, 2015a).
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Figure 2: Steps of multi-variate RISH feature template construction and dMRI data harmo-

nization.

Next, we upsample each diffusion weighted (DW) volume using a 7th-order

B-spline which is shown to perform better than other interpolation schemes165

(Dyrby et al., 2014). In this study, the harmonized data is resampled to 1.5mm3

isotropic spatial resolution, which is also a parameter of choice. Next, we use

a recently proposed unringing method (Kellner et al., 2015) to remove Gibbs

ringing artifacts from each diffusion weighted volume.

2.3.2. Rotation Invariant Spherical Harmonics features170

We represent the dMRI signal S in a basis of spherical harmonics (SH): S ≈∑
l

∑
m ClmYlm, where Ylm are the spherical harmonic basis functions of order

l and degree m with coefficients given by Clm. From this SH representation,

several rotation invariant spherical harmonic (RISH) features at each voxel can

be computed as follows (Mirzaalian et al., 2015):

F = [‖Co‖2, ‖C2‖2, ...‖C8‖2] where:‖Cl‖2 =
2l+1∑
m=1

(Clm)2. (1)

These RISH features can be appropriately scaled to modify the dMRI signal

without changing the principal diffusion directions of the fibers (Mirzaalian

et al., 2016). Thus, our goal is to estimate a voxel-wise linear mapping of the

9
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Figure 3: RISH Features for SH orders of l = {0, 2, 4, 6, 8} are depicted in each sub-figure from

left to right for PNC site (top row) and BWH site (middle row). Scale maps for each RISH

feature show the between-site mapping obtained between controls from two sites (bottom

row).

RISH features between the reference and target sites using matched healthy

controls, which can then be used to harmonize the rest of subjects in the target175

site. We note that this mapping is linear in the SH domain, but non-linear in

the dMRI signal domain.

Five RISH feature maps Cs
l (x; i) for SH orders of l = {0, 2, 4, 6, 8} are com-

puted at each voxel location x = (x, y, z) ∈ R3 for each scanner s as follows:

Cs
l (x; i) =

2l+1∑
m=1

Clm(x)2, (2)

where i is the subject number.180

2.3.3. Multi-variate template construction using training subjects

Using target scanner RISH features as input, our goal is to learn a voxel-

wise linear mapping between the target scanner and the reference scanner. To

achieve this, first, the RISH features in the training set are used to create

a multi-modal RISH feature template (antsMultiVariateTemplateConstruction

(Avants et al., 2010)). Once the template space is constructed separately for
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each shell (in case of multiple b-value data), we define the expected value of the

voxel-wise RISH features as the sample mean Es
l (x
′) ≈

∑Ns

t=1 Cs
l (x
′; i)/Ns over

the number of training subjects Ns, where s is the target site or reference site

and x′ is the voxel location in the template space. Next, we compute voxel-

wise linear (scaling only) maps between RISH features of target site (tar) and

reference site (ref) data in the template space using:

Sl(x
′; ref, tar) =

√
Eref
l (x′)

Etar
l (x′) + ε

, (3)

where l is the order of the RISH feature and ε is a small non-zero constant.

Figure 3 shows five mean templates of RISH features for l = {0, 2, 4, 6, 8} from

left to right for PNC (top row) and BWH (middle row) sites. Note that, each

RISH feature captures different frequencies of the dMRI signal. For instance,185

RISH feature for l = 0 captures isotropic components of the diffusion signal,

while l = 2 is similar to FA and l ≥ 4 captures higher order frequencies. Con-

sequently, RISH feature for each l represents different microstructural tissue

properties of the dMRI signal, which can be modified to harmonize the dMRI

data from different sites without changing the underlying fiber orientations and190

hence the fiber connectivity of the subjects. Note the sharp differences in the

RISH feature maps between the two sites, indicating regional and tissue specific

non-linear differences between the sites. Figure 3 also shows the scale maps

learned for each RISH feature from the training subjects at both sites. As

expected, the difference between sites is region and tissue specific.195

2.3.4. Harmonization

We apply the linear map (for each RISH feature separately) learned from

the training data set to all new subjects in the target site by non-rigid spatial

transformation of the linear maps to the native subject space. The non-rigid

transformation is obtained by registering the RISH features of each subject

to the template space. The inverse of this transformation is applied to the

estimated inter-site linear map. The harmonized dMRI signal is then calculated

by scaling the SH coefficients of the signal at each voxel in the subject space as

11
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follows:

Ĉlm(x) = Ŝl(x) Clm(x), (4)

where Ŝl(x) is the scale map in the subject space and Ĉlm(x) is the scaled SH

coefficients. The final diffusion signal is then computed using:

Ŝ(x) =
∑
l

∑
m

Ĉlm(x)Ylm. (5)

2.4. Training set size

In this section we investigate the effect of the size of training subjects on the

estimated RISH feature map between sites. We begin by selecting a matched set

of subjects at both sites varying in size from 2 to 20 (consecutive even numbers).200

For each training set size, we generated multiple bootstrap samples of size 100 to

estimate the distribution of the scanner differences. The subjects were matched

across sites for age, gender and IQ to the best possible extent across sites for

each bootstrap sample.

To demonstrate the effect of training data size, in Figure 4, we plot the205

number of training subjects versus the estimated whole brain mean and standard

deviation (std) of the scale map. Our goal is to determine the minimum training

set size after which the mean and standard deviation of the scale maps changes

minimally, i.e. adding more subjects to the training data does not affect the

scale maps. In Figure 4 we show the mean and standard deviation curves for210

RISH features for order 0, 2 and 4 (order 6 and 8 behave very similar to order 4)

separately. For each training size, the mean and std of scale maps is computed

in whole brain in 100 bootstrap samples. We observe that the curves become

almost stable after a training size of 16, which implies that at-least 16 well

matched subjects at each site are needed to learn a robust mapping between215

sites for dMRI data harmonization. Further, we also observe that the average

difference of the mean and std between training size of 18 and 20 is ≤ 0.01. In

the rest of this work, we set our training data set size to 20 which can provide

robust learning of scanner differences between sites.
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Figure 4: Training size of subjects from 2 to 20 (consecutive even numbers) vs mean (left

column-pink) and std (right column-green) of scale maps for RISH features of L0 (top-row),

L2 (middle-row) and L4 (bottom-row) to decide how many training subjects are needed to

learn the scanner differences across sites. For each training set size, we generate multiple

bootstrap samples of size 100. The subjects were matched across sites for age and IQ to the

best possible extent across sites for each bootstrap sample.

To provide a more region-specific view, in Figure 5, we depict the differences220

between the scale maps with a training size of 20 (as “gold standard”) and some

representative training data sets of size 2, 12, 16 and 18 for each RISH feature

(L0, L2 and L4). Even though we observe large differences between the data
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sets with 20 subjects and 2 subjects, we see that the voxel-wise differences sig-

nificantly decrease and the difference maps become more similar after a training225

size of 16.

Training	size	2 Training	size	12 Training	size	16 Training	size	18

L0 L0 L0 L0

L2 L2 L2 L2

L4 L4 L4 L4
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0.0

-3.0

3.0
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-3.0

3.0

0.0
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Figure 5: Voxel-wise scale map differences between RISH feature scale map (L0, L2 and L4)

estimated with a training size of 20 (as “gold standard”) and some representative training

data size of 2, 12, 16 and 18 shown in each column respectively.

3. Experiments and Results

3.1. Experimental setup

In this section, we describe experiments to evaluate the performance of the

proposed algorithm. First, to show that the harmonization works equally well230

irrespective of the choice of the reference site, we will evaluate the performance of

our method using two experiments. In the first experiment, we choose BWH as

the reference site and PNC as the target site, whereas in the second experiment

we use PNC as the reference site and BWH as the target site. Another aim

of these experiments is also to demonstrate the robustness of the proposed235
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technique to preserve group differences despite the size of the test data sets.

For example, we evaluate age-related group differences in the PNC data which

has a large number of subjects, as well as the BWH site which has a small

sample size.

We use dMRI-derived measures of FA, MD and generalized-FA (GFA), which240

are typically used in neuroimaging studies to understand the effect of harmoniza-

tion. These measures were also chosen as they are known to change with age in

a nonlinear fashion (Yeatman et al., 2014; Lebel et al., 2008) and show different

maturational pattern between males and females (Gur et al., 1999; Asato et al.,

2010). Hence, our experiments consisted of evaluating the effect sizes between245

three/two groups (separated by age or sex) before and after harmonization. To

investigate performance of the harmonization in different regions of the brain

that are known to mature at different speed and be sex dependent, we used

the Illinois Institute of Technology (IIT) Human Brain Atlas (Varentsova et al.,

2014; Zhang and Arfanakis, 2018). We used 16 different white matter bundles1250

from this atlas to evaluate the performance of our method. We set a threshold

to 0.2 for all subjects to clearly define the regions-of-interest (ROIs) in the IIT

probabilistic atlas. Mean FA, MD and GFA were computed in each region for

all subjects before and after harmonization to use in the upcoming experiments.

For each of these experiments, we selected 20 right-handed subjects (10255

males, 10 females) from each site, matched on age and IQ as described in Sec-

tion 2.4. The demographic information details about these training subjects

was given in Table 2.

In Section 3.2.1, we test the learning (mapping) capabilities and performance

of our algorithm on 20 training subjects selected from each site. In Section 3.2.2,260

1Abbreviations: forceps major (Fmajor), forceps minor (Fminor), fornix (Fornix), cingu-

lum (cingulate gyrus portion) (Lcing and Rcing for left and right hemispheres respectively),

cingulum (hippocampal portion) (Lcing2 and Rcing2), corticospinal tract (Lcst and Rcst),

inferior fronto-occipital fasciculus (Lifo and Rifo), inferior longitudinal fasciculus (Lilf and

Rilf), superior longitudinal fasciculus (Lslf and Rslf), uncinate fasciculus (Lunc and Runc)
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(a) FA results for PNC as the reference site (red), BWH

as the target site (green) and BWH after harmonization

(blue).

(b) FA results for BWH as the reference site (red), PNC

as the target site (green) and PNC after harmonization

(blue).

(c) MD results for PNC as the reference site (red),

BWH as the target site (green) and BWH after harmo-

nization (blue).

(d) MD results for BWH as the reference site (red),

PNC as the target site (green) and PNC after harmo-

nization (blue).

(e) GFA results for PNC as the reference site (red),

BWH as the target site (green) and BWH after harmo-

nization (blue).

(f) GFA results for BWH as the reference site (red),

PNC as the target site (green) and PNC after harmo-

nization (blue).

Figure 6: Comparison of diffusion measures (FA, MD and GFA) across sites: red: reference

site, green: target site, and blue: after harmonization of target to reference. Left column:

PNC is selected as reference site and BWH is selected as target site. Right column: BWH is

selected as reference site and PNC is selected as target site. In both scenarios, large statistical

differences are observed prior to harmonization. By harmonization, the scanner effects are

removed .

we show how the aging and gender effects are preserved after harmonization in

a large number of test subjects. In Section 3.2.3, we demonstrate that the pro-

posed harmonization procedure preserves fiber orientation by comparing fiber

bundle tracing results before and after harmonization.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314179doi: bioRxiv preprint 

https://doi.org/10.1101/314179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Three age groups in BWH and PNC data for females and males separately.

Gender Group BWH PNC

Female

1st

2nd

3rd

14 to 22 years (n = 8)

23 to 33 years (n = 9)

38 to 48 years (n = 5)

8 to 12 years (n = 97)

13 to 17 years (n =

186)

18 to 22 years (n =

127)

Male

1st

2nd

3rd

14 to 24 years (n = 25)

24 to 38 years (n= 7)

42 to 54 years (n= 16)

8 to 12 years (n = 90)

13 to 17 years (n= 183)

18 to 22 years (n =

107)

Abbreviations: Dataset: PNC - Philadelphia Neurodevelopmental Cohort; BWH - Brigham

and Women’s Hospital; F: females; M: males.

3.2. Results265

3.2.1. Evaluation on training subjects

In Figure 6, we show the mean FA (a, b), mean MD (c, d) and mean GFA (e,

f) values in the reference site (red), the target site (green) and the harmonized

results (blue) for each of the major white matter bundles (from the IIT atlas)

on the training data. In (a, c, e), respectively, we depict the results for FA, MD270

and GFA with PNC as the reference site and BWH as the target site. In (b, d,

f), the experiment is repeated with BWH as the reference site and PNC as the

target site. We also observe that the site differences are not uniform but vary in

a highly nonlinear fashion across the brain and for all measures. We note that

the site differences appear to be more for MD as compared to FA and GFA,275

which was also reported in (Vollmar et al., 2010).

To statistically analyze each diffusion measure before and after harmoniza-

tion, the parametric paired t-test was applied to all major bundles between two

sites: (i) reference site and target site (before harmonization); (ii) reference site

and harmonized site (after harmonization). See Table 4 for the statistics of280

PNC as the target site and see Table 5 for the statistics of BWH as the target
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Table 4: The statistics for PNC data: paired t-test was applied to each diffusion measure of

all major bundles between two sites: (i) BWH as the reference site and PNC as the target

site (the statistics are reported in before PNC rows); (ii) BWH as the reference site and

harmonized PNC results (the statistics are reported in after PNC rows).

Data P value t, df
Mean of

differences

SD of

differences

95%

CI
R2 r

Before PNC:

FA
<0.0001

t=18.14

df=15
-0.04869 0.01074

-0.05442 to

-0.04297
0.9564 0.9861

Before PNC:

MD
<0.0001

t=24.89

df=15
-1.165e-4 1.871e-4

-1.264e-4

to 1.065e-4
0.9764 0.8981

Before PNC:

GFA
<0.0001

t=37.59

df=15
-0.05979 0.006362

-0.06318 to

-0.0564
0.9895 0.9659

After PNC:

FA
0.1825

t=1.398

df=15
-0.001756 0.005025

-0.004434

to

0.0009215

0.1153 0.9968

After PNC:

MD
0.1661

t=1.456

df=15
-2.708e-6 7.442e-6

-6.674e-6

to 1.257e-6
0.1238 0.9838

After PNC:

GFA
0.7964 t=0.2626

df=15

0.0001812 0.002761
-0.00129 to

0.001652
0.004576 0.9913

CI: confidence interval; r: correlation coefficient (to observe how effective the pairing is); R2: partial eta squared

(to observe how big the difference is).

site. We observe a significant difference between the two sites for all measures

(p < 1e − 4 for all bundles and measures) before harmonization. After harmo-

nization, the statistical difference between controls from both sites is removed

for all bundles and measures.285

3.2.2. Effect size comparison in test subjects

Once a mapping between the sites is estimated from the 20 training subjects

(per site), it is applied to the rest of the data set from the target site (i.e.,
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Table 5: The statistics for BWH data: paired t-test is applied to each diffusion measure of

all major bundles between two sites: (i) PNC as the reference site and BWH as the target

site (the statistics are reported in before BWH rows); (ii) PNC as the reference site and

harmonized BWH results (the statistics are reported in after BWH rows).

Data P value t, df
Mean of

differences

SD of

differences

95%

CI
R2 r

Before BWH:

FA
<0.0001

t=18.77

df=15
0.05251 0.01119

0.04655 to

0.05847
0.9591 0.9887

Before BWH:

MD
<0.0001

t=24.89

df=15
1.165e-4 1.871e-5

1.065e-4 to

1.264e-4
0.9764 0.8981

Before BWH:

GFA
<0.0001

t=37.59

df=15
0.05982 0.006364

0.05642 to

0.06321
0.9895 0.9658

After BWH:

FA
0.8119 t=0.2423

df=15

-0.00075 0.01238
-0.007348

to 0.005848
0.003898 0.9885

After BWH:

MD
0.9235 t=0.09761

df=15

2.956e-07 1.211e-5

-6.159e-006

to

6.751e-006

6.348e-4 0.9629

After BWH:

GFA
0.7913 t=0.2694

df=15

0.0002844 0.004222
-0.001965

to 0.002534
0.004815 0.9847

CI: confidence interval; r: correlation coefficient (to observe how effective the pairing is); R2: partial eta squared

(to observe how big the difference is); ns: not-significant.

data from all subjects of the target site are updated or harmonized). Any

harmonization technique should preserve the inter-subject biological variability290

and group differences at each site, while only removing scanner related effects.

This can be tested by ensuring that the effect sizes between groups is maintained

before and after harmonization. White matter maturation (as measured by FA)

with age has been well-documented in the literature (Lebel et al., 2008), along

with the differential trajectory of this maturation between males and females295
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(Gur et al., 1999). We use this as a test-bed to demonstrate that the effect sizes

between groups before and after harmonization is maintained. Specifically, we

calculate the effect sizes between groups categorized by age and sex as described

in Table 3.

In our first experiment, we calculate the group differences between males300

and females in FA for each of the three age groups (i.e., matched for age). Our

goal is to test if the effect sizes observed in the original test data are preserved

after harmonization to a target site. In our second experiment, we calculate

the effect sizes due to age before and after harmonization. For both of the

experiments, we set: (1) BWH as the reference site and PNC as the target site305

(see Figure Appendix A.1(a) to see the maturation curves in PNC data); (2)

PNC as the reference site and BWH as the target site (see Figure Appendix

A.2(a) to see the maturation curves in BWH data).

3.2.2.1. Sex differences (effect sizes) before and after harmonization. We com-

pute the effect sizes using Cohen’s d between females and males matched for310

age for each of the three age groups from Table 3. Mathematically, Cohen’s

d can be written as: d =
Mfi−Mmi

Spooled
, where M is the mean FA of the ith

group, f represents females, m represents males. Spooled is given by Spooled =√
(nfi−1)S2

fi+(nmi−1)S2
mi

nfi+nmi−2 where n is the number of subjects and Smi, Sfi are the

standard deviations for the male and female groups respectively.315

BWH reference site: In Figure 7(a), we show plots for white matter

bundles before and after harmonization. Here BWH is the reference site and

PNC is the target site. As can be seen, the effect sizes between the sexes before

and after harmonization are almost the same for all age groups, that is, if the

effect sizes are small before harmonization, they stay small after harmonization320

as well. Similar observations can be made for medium and large effect sizes. We

however note that, in general, the effect sizes after harmonization are slightly

lower than the original, potentially because of some smoothing effects that occur

due to interpolation. Nevertheless, these differences are minor and do not change
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the outcome of statistical analysis.325

In Table B.1, we provide quantitative values for the effect sizes between

groups for BWH as the reference site and PNC as the target site for each major

bundle before and after harmonization. We also report the absolute differences

(∆) between the effect sizes before and after harmonization. Also reported are

results when the effect sizes are grouped into small (d∼0.2), medium (d∼0.5),330

large (d∼0.8), very large (d∼1.1) and extremely large (d∼1.4) effect sizes. We

report the average absolute differences in the effect sizes in each group (Table 6-

cyan rows). As can be seen, the effect sizes are preserved after harmonization

(i.e., absolute differences in effect sizes before and after harmonization are always

close to the original with the average difference being 0.0132).335

PNC reference site: We also perform a similar analysis for PNC as the

reference site and BWH as the target site. At the BWH site, the number of

female subjects is very small. Despite this small sample size, the harmonization

algorithm preserves the maturation trends very accurately (i.e., trends are very

similar to that before harmonization), demonstrating the robustness of the pro-340

posed method. However, as seen in Figure 7(b), (and Figure Appendix A.2),

small sample sizes can provide misleading (and potentially inaccurate) results as

has been shown by several works in the literature. Here, we show these results

only to demonstrate that the inter-subject biological variability is preserved by

our harmonization algorithm despite the small sample size (test samples) used.345

We note that no other inferences about sexual dimorphisms can be made from

these results from the BWH site.

In Table B.2, we provide quantitative values for the effect sizes for BWH

samples before and after harmonization, and their absolute differences for each

major bundle. Due to smaller data size of the females and a totally different350

age range of females and males in each group, unlike the previous experiment,

we also observe medium, large, very large and extremely large effect sizes prior

to harmonization which are preserved after harmonization (∆ is always < 0.2).

Grouping the fiber bundles based on their effect sizes, we once again observe
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Table 6: Grouped (from small to extremely large) average sex differences in terms of effect

sizes before and after harmonization. Cyan rows: the results for BWH as reference and PNC

as the target site; Gray rows: the results for PNC as reference and BWH as the target site.

∆ is the absolute difference between effect sizes (before and after harmonization); - implies

none of the fiber bundles demonstrated those effect sizes.

Small Medium Large
Very

Large

Extremely

Large

Before PNC 0.068 0.224 - - -

After PNC 0.066 0.212 - - -

∆ PNC 0.002 0.012 - - -

Before BWH 0.102 0.336 0.686 0.947 1.584

After BWH 0.154 0.379 0.720 0.884 1.440

∆ BWH 0.052 0.043 0.034 0.063 0.144

that the effect sizes are preserved after harmonization (Table 6-gray rows), i.e.,355

effect sizes that were small, medium, or large stay small, medium and large

respectively after harmonization.

3.2.2.2. Age related effect sizes before and after harmonization. In this experi-

ment, our aim is to show that the effect sizes due to aging are preserved after

harmonization. For this purpose, we compute the effect sizes (Cohen’s d) be-360

tween the first and the third age group from Table 3 for both males and females

separately. Cohen’s d is calculated in a similar fashion as above.

BWH reference site: In this case, BWH is the reference site and all

data analysis before and after harmonization is done on the PNC site. Since FA

increases in young adolescent subjects during maturation (Lebel et al., 2008), it365

is natural to observe mostly large and positive effect sizes due to aging. Besides,

the effect sizes are highly sensitive to gender (see Figure 8). As can be seen,
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Figure 7: The effect sizes (Cohen’s d) between the sexes for all age groups before and after

harmonization. Note that the effect sizes are maintained by the harmonization procedure.
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Figure 8: Results for age-related differences between groups with BWH as the reference site

and PNC as the target site. The effect sizes (Cohen’s d) between the first and the last group

(see Table 3 for the age distribution of the groups) are shown for each gender separately

(before harmonization (purple) and after harmonization (gray)).

the effect sizes stay almost the same after harmonization in all experiments. In

Table B.3, we report the effect sizes of the first and the third age group before

and after harmonization and their absolute differences ∆ for males and females370

separately. Group differences as measured by effect sizes, which are significantly

different before harmonization for all bundles, still stay significantly different

after harmonization (∆ is always < 0.2). Additionally, the grouped effect size

results stay similar after harmonization (Table 7-cyan rows).

In this regard, we would also like to point the results of age-dependent375
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maturation curves in the PNC data set. As can be seen in Figure Appendix A.1,

the maturation curves are accurately preserved by the harmonization algorithm.

When PNC data is the target site (i.e., PNC data is updated for harmonization),

we see a robust trend in maturation of different white matter bundles consistent

with those reported in the literature (Paus et al., 2001; Paus, 2010).380

PNC reference site: We also perform a similar analysis for PNC as the

reference site and BWH as the target site (i.e., BWH data was harmonized

and analyzed before and after harmonization). Due to small sample size and

differences in age-ranges, the maturation curves and the effect sizes do not match

with those from the much larger PNC data set. However, to clarify once more,385

our aim is only to validate the harmonization performance regardless of the

underlying trends in the data. As can be seen, the harmonization procedure

preserves the trends as well as the effect sizes. In Table B.4, we report the

effect sizes and ∆ for the BWH site before and after harmonization for males

and females respectively. The effect sizes are preserved after harmonization for390

all white matter bundles (see also Figure 9) and for each group (Table 7-gray

rows).

3.2.3. Tractography analysis

In order to ensure that our harmonization method (which involves modi-

fying the dMRI signal) does not in any way to change the fiber orientations,

we performed whole brain tractography using a multi-tensor unscented Kalman

filter (UKF) method (Malcolm et al., 2010; Reddy and Rathi, 2016). The same

parameters were used to generate whole brain tracts from the original and har-

monized dMRI data. Next, the White Matter Query Language was utilized

(WMQL) (Wassermann et al., 2016) to extract specific anatomical white mat-

ter bundles from the whole brain tracts. Figure 10 depicts WMQL results for

corticospinal tract (CST) and the inferior occipital-frontal fibers (IOFF) before

(blue) and after (pink) harmonization. After extracting the tracts from a sub-

ject before and after harmonization, the Bhattacharyya overlap distance (B)
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Figure 9: Results for age-related differences between groups with PNC as the reference site

and BWH as the target site. The effect sizes (Cohen’s d) between the first and the last group

(see Table 3 for the age distribution of the groups) are shown for each gender separately

(before harmonization (orange) and after harmonization (gray)).

was used to quantify the overlap between the tracts (Rathi et al., 2013):

B =
1

3

(∫ √
Ph(x)P (x)dx+

∫ √
Ph(y)P (y)dy +

∫ √
Ph(z)P (z)dz

)
, (6)

where P (.) represents the ground truth spatial probability distribution of the

fiber bundle, Ph(.) is the spatial probability distribution of the tracts from the395

harmonized data and (x, y, z) ∈ R3 are the fiber coordinates. B is 1 for a perfect

match between two fiber bundles and 0 for no overlap at all. We observed

very high overlap greater than 0.93 for all fiber bundles indicating that fiber

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314179doi: bioRxiv preprint 

https://doi.org/10.1101/314179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 7: Comparison of the average grouped (from small to extremely large) aging effect sizes

before and after harmonization. Cyan rows: the results for BWH is reference and PNC is the

target site; Gray rows: the results for PNC is reference and BWH is the target site. ∆ is the

absolute difference between effect sizes (before and after harmonization); - means their is no

value for the corresponding effect size.

Small Medium Large
Very

Large

Extremely

Large

Before PNC 0.188 0.389 0.615 0.913 1.324

After PNC 0.153 0.372 0.538 0.844 1.235

∆ PNC 0.035 0.017 0.077 0.069 0.089

Before BWH 0.092 0.315 0.722 0.924 1.381

After BWH 0.090 0.283 0.660 0.822 1.338

∆ BWH 0.002 0.032 0.062 0.102 0.043

orientation is well preserved by the harmonization algorithm.

4. Discussion and Conclusion400

We believe that accurate harmonization of dMRI data is of utmost impor-

tance to allow for a large-scale data-driven way to understand brain disorders.

In this paper, we presented a harmonization method to retrospectively remove

scanner-specific differences from the raw dMRI signal across various sites, even

if acquired with different acquisition parameters. The harmonization procedure405

requires a well-matched set of controls across sites to learn the mapping between

sites.

Acquisition parameters, magnetic field inhomogeneities, coil sensitivity, and

other scanner related effects can cause non-linear changes in the signal in dif-

ferent tissue types. To remove these site effects, we first mapped the b-values410

from each site to a canonical b-value of 1000s/mm2 and resampled the data to

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314179doi: bioRxiv preprint 

https://doi.org/10.1101/314179
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) reference site: PNC, target site: BWH

(b) reference site: BWH, target site: PNC

Figure 10: Significant (> 93%) overlap is seen in CST and IOFF fiber bundles before and

after harmonization. Blue: before harmonization; Pink: after harmonization.

1.53mm3 (Section 2.3.1). Later, we utilized RISH features that are able to cap-

ture different frequency components of the diffusion signal to learn the inter-site

differences (Section 2.3.2). In Figure 3, we showed that the scanner related dif-

ferences are substantially different for sub-cortical gray, versus the neighboring415
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white matter region or the distant cortical gray matter regions. Further, these

differences can be captured selectively by the different frequency bands of the

SH basis (i.e., in different RISH features).

We note that, the methodology proposed here harmonizes the raw dMRI

signal in a model-independent manner. Further, dMRI data harmonization420

has to be done only once. Thus, any subsequent analysis will necessarily be

consistent, unlike methods that work with model-specific measures such as FA,

which are obtained at the last stage of the processing pipeline. Note that, it is

not clear how non-linear scanner effects affect the downstream processing and

model fitting of dMRI data. Consequently, we recommend that dMRI data be425

harmonized at the earliest possible processing stage.

Using several experiments, in this paper, we evaluated our method’s perfor-

mance on two independent sites: PNC with 800 healthy controls and BWH with

70 healthy controls. Our results lead us to conclude the following: (i) At-least

16 to 18 well matched healthy controls from each site were required to learn a430

robust mapping that can capture only site-related differences. (ii) Irrespective

of the effect size (small, medium or large), the proposed harmonization pro-

cedure preserved the effect sizes after harmonization. (iii) The harmonization

procedure also ensured that the fiber orientation directions were left unchanged.

In this paper, we investigated a method to harmonize dMRI data retrospec-435

tively when traveling subjects are not available. Scanner-specific effects from

multiple sites can be best captured by acquiring data in quick succession from

a set of traveling human subjects. In this case, the scanner specific differences

can be obtained from these traveling subjects and subsequently used for data

harmonization, and the learned difference mapping could be applied to the un-440

seen subjects in multi-site studies. Evaluating our algorithm on multi-site data

from traveling human subjects will form part of our future study.
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Appendix A. Age-related trends in FA, before and after harmoniza-710

tion

(a) before harmonization

(b) after harmonization

Figure Appendix A.1: Reference Site: BWH, before and after harmonization female (blue)

and male (orange) age vs FA curves of PNC for each major white matter bundle.
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(a) before harmonization

(b) after harmonization

Figure Appendix A.2: Reference Site: PNC, before and after harmonization female (blue) and

male (orange) age vs FA curves of BWH for each major white matter bundle.
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Appendix B. Effect sizes before and after harmonization for BWH as

the reference site and PNC as the target site

Appendix B.1. Analysis of sex differences

Table B.1: Target site: PNC. Sexual dimorphism effect sizes effect sizes before and after

harmonization for each major bundle. Absolute differences (∆ ) between before and after

harmonization effect sizes are observed to be < 0.2 in all cases.

WM ROIs Age 8-12 Age 13-17 Age 18-22

Before After ∆ Before After ∆ Before After ∆

Lifo 0.079 0.072 0.007 0.028 0.010 0.018 -0.157 -0.162 0.005

Rifo 0.093 0.084 0.009 0.033 0.014 0.019 -0.224 -0.212 0.012

Lcing 0.063 0.059 0.004 0.074 0.061 0.013 -0.027 -0.040 0.013

Rcing 0.063 0.051 0.012 0.085 0.068 0.017 0.006 0.018 0.012

Fmajor 0.073 0.062 0.011 0.032 0.015 0.017 -0.053 -0.077 0.024

Fminor 0.069 0.067 0.002 0.049 0.031 0.018 -0.165 -0.178 0.013

Lilf 0.074 0.067 0.007 -0.002 -0.019 0.017 0.100 0.094 0.006

Rilf 0.081 0.075 0.006 0.002 -0.015 0.017 -0.084 -0.095 0.011

Lslf 0.095 0.085 0.010 0.050 0.027 0.023 -0.125 -0.143 0.018

Rslf 0.066 0.063 0.003 0.083 0.047 0.036 -0.119 -0.147 0.028

Lunc 0.106 0.124 0.018 -0.019 -0.028 0.009 -0.090 -0.100 0.010

Runc 0.131 0.101 0.030 -0.012 -0.020 0.008 -0.107 -0.121 0.014

Lcing2 0.028 0.020 0.008 0.026 0.008 0.018 -0.062 -0.082 0.020

Rcing2 0.053 0.046 0.007 0.047 0.025 0.022 -0.106 -0.121 0.015

Lcst 0.012 0.011 0.001 0.019 0.007 0.012 -0.143 -0.163 0.020

Rcst -0.001 0.002 0.003 0.057 0.036 0.021 -0.127 -0.144 0.017
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Table B.2: Target site: BWH. Sexual dimorphism effect sizes before and after harmonization

for each major bundle. Absolute differences (∆ ) between before and after harmonization

effect sizes are observed to be < 0.2 in all cases.

WM ROIs Age 8-12 Age 13-17 Age 18-22

Before After ∆ Before After ∆ Before After ∆

Lifo -1.089 -0.995 0.094 0.172 0.315 0.143 0.455 0.546 0.091

Rifo -1.125 -0.968 0.157 0.629 0.749 0.120 0.388 0.394 0.006

Lcing -1.431 -1.260 0.171 0.234 0.426 0.192 0.450 0.404 0.046

Rcing -0.736 -0.655 0.081 -0.560 -0.429 0.131 0.281 0.278 0.003

Fmajor -0.288 -0.281 0.007 0.645 0.625 0.020 0.224 0.214 0.010

Fminor -1.851 -1.878 0.027 0.853 0.993 0.140 0.413 0.384 0.029

Lilf -1.818 -1.622 0.196 0.497 0.694 0.197 0.717 0.774 0.057

Rilf -1.104 -0.915 0.189 0.780 0.868 0.088 0.619 0.557 0.062

Lslf -0.814 -0.738 0.076 0.055 0.237 0.182 0.203 0.315 0.112

Rslf -1.018 -0.915 0.103 0.195 0.392 0.197 0.338 0.386 0.048

Lunc -1.675 -1.599 0.076 -0.059 0.115 0.174 -0.008 0.070 0.078

Runc -1.714 -1.524 0.190 0.178 0.142 0.036 0.232 0.217 0.015

Lcing2 -1.462 -1.294 0.168 -0.027 0.037 0.064 0.364 0.393 0.029

Rcing2 -2.073 -1.896 0.177 0.100 0.141 0.041 -0.051 -0.164 0.113

Lcst -0.199 -0.059 0.140 0.703 0.842 0.139 -0.058 0.082 0.140

Rcst -0.962 -0.781 0.181 0.784 0.979 0.195 -0.124 -0.080 0.044
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Appendix B.2. Analysis of aging715

Table B.3: Target site: PNC. Age related effect sizes before and after harmonization for each

major bundle. Absolute differences (∆ ) between before and after harmonization effect sizes

are observed to be < 0.2 in all cases.

WM ROIs Males Females

Before After ∆ Before After ∆

Lifo 0.938 0.891 0.046 0.574 0.588 0.014

Rifo 0.749 0.693 0.056 0.407 0.459 0.052

Lcing 1.459 1.345 0.114 0.929 0.870 0.059

Rcing 1.349 1.245 0.104 1.021 0.942 0.079

Fmajor 0.508 0.491 0.017 0.447 0.486 0.039

Fminor 1.162 1.114 0.048 0.694 0.353 0.341

Lilf 0.703 0.570 0.133 0.575 0.610 0.035

Rilf 0.526 0.425 0.101 0.391 0.434 0.043

Lslf 0.785 0.722 0.064 0.825 0.764 0.061

Rslf 0.979 0.923 0.056 0.877 0.731 0.146

Lunc 0.918 0.868 0.050 0.288 0.248 0.040

Runc 0.818 0.763 0.054 0.188 0.153 0.035

Lcing2 0.351 0.229 0.122 0.532 0.595 0.063

Rcing2 0.468 0.387 0.080 0.541 0.419 0.122

Lcst 0.566 0.467 0.099 0.329 0.400 0.071

Rcst 0.625 0.526 0.099 0.428 0.333 0.095
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Table B.4: Target site: BWH. Age related effect sizes before and after harmonization for each

major bundle. Absolute differences (∆ ) between before and after harmonization effect sizes

are observed to be < 0.2 in all cases.

WM ROIs Males Females

Before After ∆ Before After ∆

Lifo -1.389 -1.443 0.054 0.096 0.036 0.060

Rifo -1.195 -1.143 0.052 0.219 0.135 0.084

Lcing -0.861 -0.769 0.092 1.174 1.084 0.090

Rcing -0.372 -0.332 0.040 0.800 0.750 0.050

Fmajor -0.719 -0.672 0.047 -0.280 -0.241 0.039

Fminor -1.606 -1.580 0.026 0.326 0.312 0.014

Lilf -1.714 -1.661 0.053 0.739 0.595 0.144

Rilf -1.333 -1.170 0.163 0.336 0.246 0.090

Lslf -0.801 -0.812 0.011 0.180 0.234 0.054

Rslf -1.050 -0.872 0.178 0.258 0.381 0.123

Lunc -1.391 -1.408 0.017 0.039 0.035 0.004

Runc -1.244 -1.216 0.028 0.378 0.266 0.112

Lcing2 -0.783 -0.772 0.011 1.019 0.926 0.093

Rcing2 -0.838 -0.789 0.049 1.047 0.903 0.144

Lcst -0.567 -0.509 0.058 -0.352 -0.351 0.001

Rcst -0.852 -0.685 0.167 0.052 0.054 0.002
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