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Abstract

Seasonal influenza surveillance is usually carried out by sentinel general practitioners
who compile weekly reports based on the number of influenza-like illness (ILI) clinical
cases observed among visited patients. This practice for surveillance is generally
affected by two main issues: i) reports are usually released with a lag of about one week
or more, ii) the definition of a case of influenza-like illness based on patients symptoms
varies from one surveillance system to the other, i.e. from one country to the other. The
availability of novel data streams for disease surveillance can alleviate these issues; in
this paper, we employed data from Influenzanet, a participatory web-based surveillance
project which collects symptoms directly from the general population in real time. We
developed an unsupervised probabilistic framework that combines time series analysis of
symptoms counts and performs an algorithmic detection of groups of symptoms,
hereafter called syndromes. Symptoms counts were collected through the participatory
web-based surveillance platforms of a consortium called Influenzanet which is found to
correlate with Influenza-like illness incidence as detected by sentinel doctors. Our aim is
to suggest how web-based surveillance data can provide an epidemiological signal
capable of detecting influenza-like illness’ temporal trends without relying on a specific
case definition. We evaluated the performance of our framework by showing that the
temporal trends of the detected syndromes closely follow the ILI incidence as reported
by the traditional surveillance, and consist of combinations of symptoms that are
compatible with the ILI definition. The proposed framework was able to predict quite
accurately the ILI trend of the forthcoming influenza season based only on the available
information of the previous years. Moreover, we assessed the generalisability of the
approach by evaluating its potentials for the detection of gastrointestinal syndromes.
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We evaluated the approach against the traditional surveillance data and despite the
limited amount of data, the gastrointestinal trend was successfully detected. The result
is a real-time flexible surveillance and prediction tool that is not constrained by any
disease case definition.

Author summary

This study suggests how web-based surveillance data can provide an epidemiological
signal capable of detecting influenza-like illness’ temporal trends without relying on a
specific case definition. The proposed framework was able to predict quite accurately
the ILI trend of the forthcoming influenza season based only on the available
information of the previous years. Moreover, we assessed the generalisability of the
approach by evaluating its potentials for the detection of gastrointestinal syndromes.
We evaluated the approach against the traditional surveillance data and despite the
limited amount of data, the gastrointestinal trend was successfully detected. The result
is a real-time flexible surveillance and prediction tool that is not constrained by any
disease case definition.

Introduction 1

Seasonal influenza is an acute contagious respiratory illness caused by viruses that can 2

be easily transmitted from person to person. Influenza viruses circulate worldwide 3

causing annual epidemics with the highest activity during winter seasons in temperate 4

regions and produce an estimated annual attack rate of 3 to 5 million cases of severe 5

illness and about 250 to 500 thousand deaths around the world [1]. National surveillance 6

systems monitor the influenza activity through a network of general practitioners (GPs) 7

who report the weekly number of influenza-like illness (ILI) cases among the overall 8

patients [2]. These traditional surveillance systems for seasonal influenza are usually the 9

primary source of information for healthcare officials and policymakers for monitoring 10

influenza epidemics. However, classification of ILI cases in GPs reports is usually based 11

on common clinical symptoms observed among patients and, as with any 12

syndromic-based disease surveillance, case definitions of “influenza-like illness” can 13

vary [3–7]. They typically include fever, cough, sore throat, headache, muscle aches, 14

nasal congestion and weakness. There are also some works from hospital-based 15

studies [8, 9], age-specific antiviral trials [4, 10,11] and national surveillance 16

activities [12] aimed at exploring suitable ILI case symptomatic descriptions but, so far, 17

no unique definition has been widely adopted by the various national surveillance 18

systems worldwide. For this reason, seasonal influenza surveillance in European 19

countries remains rather fragmented. Only in recent years, some state members have 20

adopted the case definition provided by the European Center for Disease Control and 21

Prevention (ECDC) which defines an ILI case as the sudden onset of symptoms with 22

one or more systemic symptoms (fever or feverishness, malaise, headache, myalgia) plus 23

one or more respiratory symptoms (cough, sore throat, shortness of breath) [13]. 24

Nevertheless, a significant fraction of European countries still adopts their own clinical 25

case definition to compile seasonal influenza surveillance weekly reports. 26

In recent years the availability of novel data streams has given rise to a variety of 27

non-traditional approaches for monitoring seasonal influenza epidemics [14–16]. Such 28

new digital data sources can be exploited to capture additional surveillance signals that 29

can be used to complement GPs surveillance data [17–20]. In this context, some 30

so-called participatory surveillance systems have emerged in several countries around 31

the world with the aim of monitoring influenza circulation through Internet reporting of 32
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self-selected participants [21–23]. One of these systems, the Influenzanet project [21], 33

has been established in Europe since 2011 and it is now present in ten European 34

countries. The system relies on the voluntary participation of the general population 35

through a dedicated national website in each country involved in the project. Data are 36

obtained on a weekly basis through an online survey [24] where participants are invited 37

to report whether they experienced or not any of the following symptoms since their 38

last survey: fever, chills, runny or blocked nose, sneezing, sore throat, cough, shortness 39

of breath, headache, muscle/joint pain, chest pain, feeling tired or exhausted, loss of 40

appetite, coloured sputum/phlegm, watery/bloodshot eyes, nausea, vomiting, diarrhoea, 41

stomach ache, or other symptoms. Differently from most traditional surveillance 42

systems, this participatory form of online surveillance allows the collection of symptoms 43

in real time and directly from the general population, including those individuals who 44

do not seek health care assistance. The list of proposed symptoms has been chosen to 45

include the various ILI definitions adopted by national surveillance systems in Europe 46

and, at the same time, to get a comprehensive list of symptoms that could be clearly 47

articulated and understood by participants and would allow the detection of various 48

circulating flu-related illnesses. Even though participatory systems generally suffer from 49

self-selection bias, causing the sample to be non-representative of the general 50

population [25], previous works have shown that web-based surveillance data can 51

provide relevant information to estimate age-specific influenza attack rates [26,27], 52

influenza vaccine effectiveness [28], risk factors for ILI [29, 30], and to assess health care 53

seeking behavior [31]. Moreover, it has been largely demonstrated that weekly ILI 54

incidence rates that can be extracted from web-based surveillance data correlate well 55

with ILI incidence as reported by GPs surveillance [27,32,33] (in such approaches, the 56

number of ILI cases among the web platform participants was determined by applying 57

the ECDC case definition [13] to the set of symptoms reported by participants). 58

An additional advantage of collecting symptoms directly from individuals among the 59

general population in the various Influenzanet countries is that it is straightforward to 60

compare the prevalence and the temporal dynamics of specific symptoms and/or groups 61

of symptoms from one country to the other. In this work, we propose an approach 62

which focuses on studying the temporal trends of groups of symptoms, hereafter called 63

syndromes, as collected through the Influenzanet platforms. The goal is to develop a 64

mathematical framework able to extract, in an unsupervised fashion, the groups of 65

symptoms that are in good correlation with the ILI incidence as detected by traditional 66

surveillance systems without imposing a priori a specific ILI case definition. By using 67

the daily occurrence of symptoms (represented as boolean variables, with value 1 if a 68

symptom is present and value 0 otherwise) as reported by the Influenzanet participants, 69

it is possible to build a matrix whose rows are the weekdays during an influenza season 70

and the columns are occurrences of symptoms as reported by the participants. Each 71

matrix element thus corresponds to the number of times a specific symptom has been 72

reported during a specific day of the influenza season. The result is a high-dimensional 73

sparse data set from which meaningful features can be automatically extracted with the 74

use of mathematical tools such as Non-negative Matrix Factorization (NMF) [34]. In 75

particular, we are interested in extracting latent 1 features of the matrix, corresponding 76

to linear combinations of groups of symptoms, that are deemed as relevant by the NMF 77

algorithm. By assuming that a specific combination of reported symptoms is the 78

symptomatic expression of one or more illnesses experienced by the participants, i.e. of 79

the syndromes affecting the individual, we can select those syndromes which better 80

correlate with the traditional surveillance ILI incidence and adopt such linear 81

1Throughout this study we employ the term latent as used in computer science, i.e. referring to
variables that are hidden, not directly observed, but rather inferred through a mathematical model.
There is no reference to the medical use of the term that usually indicates an asymptomatic infection.
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combination of symptoms as the best approximation for the actual influenza-like illness 82

circulating among the general population. 83

For this study, we employed data collected by Influenzanet platforms in several 84

European countries over the course of six influenza seasons (from 2011-2012 to 85

2016-2017). We evaluated the performance of our method by comparing the emerged 86

syndromes against the national surveillance data for the ILI incidence. The evaluation 87

is performed both in a quantitative and in a qualitative way showing that the emerging 88

syndromes closely follow the actual ILI incidence. The emergent syndrome consists of 89

symptoms that are compatible with the traditional surveillance ILI case definition and 90

stable for all the countries and can be employed to monitor fluctuations in the 91

symptomatic expression of influenza across countries. We also assessed the predictive 92

power of the proposed framework; in this case, excluding the data from the final season 93

2016-2017, we employed the models learnt on the previous seasons to decompose the 94

symptoms counts for the season 2016-2017 predicting the forthcoming ILI syndrome. 95

The predicted trend of the ILI component was quite accurate for all countries with 96

correlations ranging from 0.60 to 0.85. As a final step, we evaluated the generalisation 97

ability of this approach employing the proposed framework for the identification of 98

gastrointestinal syndromes based on the same data stream of Influenzanet and 99

comparing against the data from the traditional surveillance system. The overall 100

encouraging results suggest that such methodology can be employed as a real-time 101

flexible surveillance and prediction tool that is not constrained by any disease case 102

definition which can be employed to monitor a wide range of symptomatic infectious 103

diseases or to nowcast the influenza trend, devising public health communication 104

campaigns. 105

Materials and Methods 106

Ethics Statement 107

This study was conducted in agreement with country-specific regulations on privacy and 108

data collection and treatment. Informed consent was obtained from all participants 109

enabling the collection, storage, and treatment of data, and their publication in 110

anonymized, processed, and aggregated forms for scientific purposes. In addition, 111

approvals by Ethical Review Boards or Committees were obtained, where needed 112

according to country-specific regulations. In the United Kingdom, the Flusurvey study 113

was approved by the London School of Hygiene and Tropical Medicine Ethics 114

Committee (Application number 5530). In France, the Grippenet.fr study was approved 115

by the Comité consultatif sur le traitement de l’information en matière de recherche 116

(CCTIRS, Advisory committee on information processing for research, authorization 117

11.565) and by the Commission Nationale de l’Informatique et des Libertés (CNIL, 118

French Data Protection Authority, authorization DR-2012-024). In Portugal, the 119

Gripenet project was approved by the National Data Protection Committee and also by 120

the Ethics Committee of the Instituto Gulbenkian de Ciência. 121

Data Collection 122

Since the winter season of 2011-2012, the Influenzanet platforms share a common and 123

standardized data collection approach throughout the nine European countries involved, 124

namely: Belgium (BE), Denmark (DK), France (FR), Ireland (IE), Italy (IT), 125

Netherlands (NL), Portugal (PT), Spain (ES) and United Kingdom (UK). In each of 126

the Influenzanet countries, the national platform is coordinated by a team of local 127

researchers from Universities, Research Institutions or Public Health Institutions and 128
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consists of a website where individuals can register and have access to a personal 129

account where they can insert and update their data. The platforms are disseminated 130

among the general population through press releases, general media campaigns, specific 131

dissemination events (e.g. science fairs) or word of mouth. Participation is voluntary 132

and anonymous and all the residents of the participating countries can enrol. Upon 133

registration, individuals are asked to complete an online Intake Questionnaire covering 134

basic questions such as age, gender, household size and composition, home location, 135

workplace, etc. [35]. Participants can also create accounts on behalf of other members of 136

their family or household, thus enabling, for instance, parents to record data for their 137

children. Registered participants are then reminded weekly, via an e-mail newsletter, to 138

fill in a Symptoms Questionnaire [35] in which they are presented with a list of general, 139

respiratory and gastrointestinal symptoms (18 in total, reported in Table 1) and asked 140

whether since the last time they visited the platform they experienced any symptoms 141

among those listed. In this study, we analyzed the data collected by the various national 142

platforms from November 2011 to April 2017. 143

Seasonal influenza is traditionally monitored by national networks of general 144

practitioners (GPs) who report the weekly number of visited patients with influenza-like 145

illness symptoms according to the national ILI case definition. Despite some practical 146

limitations, mainly due to an heterogeneous population coverage and to considerable 147

delay in disseminating data, such traditional surveillance data are generally considered 148

as ground truth. In this study, we collected the weekly ILI incidence data for 6 influenza 149

seasons, from 2011-2012 to 2016-2017, from the ECDC dedicated web page [36] for all 150

countries, expect France, for which, instead, we obtained the weekly data on the ILI 151

incidence and gastrointestinal infections directly from the national network, called 152

Réseau Sentinelles [37]. All reports were accessed and downloaded in March 2017. 153

List of Symptoms

Fever Chills Runny/blocked nose Sneezing

Sore throat Cough Shortness of breath Headache

Muscle/joint pain Chest pain Feeling tired (malaise) Loss of appetite

Coloured Sputum/
Phlegm

Watery, bloodshot eyes Nausea Vomiting

Diarrhoea Stomachache Sudden Onset

Table 1. Symptoms included in the weekly questionnaire. List of the 18 symptoms presented to participants in the weekly
Symptoms Questionnaire, plus the sudden onset, i.e. if symptoms appeared suddenly over a few hours.

Data Preprocessing 154

In general, inclusion criteria of participants in the data analysis vary depending on the 155

specific aim of the study [25,33,38, 39]. In our case, we included only those individuals 156

who are registered on the national platforms and have filled in at least one survey per 157

season. Specifically, we consider only one survey per participant for each week, keeping 158

the last one if multiple surveys were submitted during the same week. This choice 159

corresponds to a loss of approximately 5% of the total number of surveys and will allow 160

assuming that symptoms reported in a week are proportional to the number of 161

participants in that week. Moreover, to reduce the noise due to low participation rates 162

at the beginning of the influenza season, we included in the analysis only those weeks in 163

which the number of surveys corresponded at least to 5% of the total number of the 164

surveys filled during the week with the highest participation for that season. In S1 165
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Table in the supporting information, we present some descriptive statistics for each 166

country, including: (i) the number of seasons available, (ii) the average number of 167

participants per season, (iii) the average number of weekly surveys per season, (iv) the 168

average percentage of surveys with at least one symptom, and (v) the average number 169

of surveys per participant per season. 170

Temporal Syndrome Modeling and Non-negative Matrix 171

Factorization 172

In this section, we describe the methodology employed to extract the latent features
from the self-reported symptoms collected by the various Influenzanet platforms of the
participating countries. Our approach relies on the assumption that a specific group of
self-reported symptoms corresponds to the symptomatic expression of one or more
illnesses, hereafter called syndromes, circulating among the population sample
participating in the study. In our study we consider a total of 19 symptoms,
corresponding to the 18 symptoms presented in the weekly Symptoms Questionnaire
plus an additional symptom, called “Sudden onset”, referring to the sudden appearance
of symptoms, typically over the course of the previous 24 hours (see Table 1).
Symptoms are treated as binary boolean variables having value 1 if the symptom is
present and 0 if the symptom is absent.; then, we aggregated across all participants to
build a matrix X = [xij ], whose elements contain the occurrences of each symptom
j ∈ {1, .., J} during each day i ∈ {1, .., I}. In other words, each element of the matrix
corresponds to the number of times each symptom has been reported on each day of the
influenza seasons under study. The result is a high-dimensional sparse matrix that can
be linearly decomposed through a Non-negative Matrix Factorizations (NMF)
technique [34]. We opted for NMF since its non-negativity constraint offers the
advantage of a straightforward interpretation of the results as positive quantities that
can then be associated with the initial symptoms. This approach is equivalent to a
“blind source separation” problem [40] in which neither the sources nor the mixing
procedure is known, but only the resulting mixed signals are measured. In our case, the
time series corresponding to the daily symptoms counts are measured by the
Influenzanet platforms and can be considered as the result of a linear mixing process
driven by unknown sources, i.e. the latent syndromes. In the following we will use
interchangeably the terms syndrome, source or component. According to this
consideration, each element xij of the matrix X can be expressed as follows:

xij =
∑

k∈{1,..,K}

wik hkj + eij , (1)

where the coefficients hkj describe the set of the unknown K sources, the factor wik 173

represents the time-dependent mixing coefficients, and the terms eij correspond to the 174

approximation error. The mixing equations Eq. (1) can be equivalently expressed in 175

matrix notation as: 176

X = WH + E (2)

where:

W = [wik] , H = [hkj ] , E = [eij ] (3)

It is worth stressing that in this representation the matrix X is known, while the 177

matrices W and H are unknown and determined by the NMF algorithm. In particular, 178
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we used a variation of the NMF algorithm that minimizes the Kullback-Leibler 179

divergence loss function [41] defined as follows: 180

argmin
W,H

∑
i,j

xij log

(
xij
x̂ij

)
− xij + x̂ij , (4)

where: 181

x̂ij =
∑
k

wikhkj . (5)

To minimize this function, we adopted the multiplicative update rules described 182

in [42]. Note that different initializations of the matrices W and H might lead to 183

different local minima, making the interpretation of the results not straightforward. To 184

overcome this issue, we use an initialization technique called Non-negative Double 185

Singular Value Decomposition [43], that is based on a probabilistic approach equivalent 186

to the probabilistic latent semantic analysis (pLSA) [44], employed in the context of 187

semantic analysis of text corpora. Since the two approaches of NMF and pLSA are 188

equivalent (see [45] for more details), the results of our matrix decomposition can be 189

probabilistically interpreted as a mixture of conditionally independent multinomials, 190

that we call p(i, j). We can then write: 191

π(i, j) ≈ p(i, j) =
∑
k

p(k) p(i, j|k)

=
∑
k

p(k) p(i|k) p(j|k),
(6)

where:

π(i, j) = xij/N, N =
∑
i,j

xij (7)

and N is the total number of symptoms counts. 192

According to Eq. (6), the total number of symptoms counts will be proportionally 193

split among K latent sources according to p(k), which is the probability to observe a 194

specific component k; p(i|k) is the probability to observe a component k in a day i and 195

p(j|k) is the probability to observe a specific symptom j in a component k, and they 196

can be expressed as follows: 197

p(i|k) = wik/
∑
i

wik ,
∑
i

p(i|k) =1,

p(j|k) = hkj/
∑
j

hkj ,
∑
j

p(j|k) =1,

p(k) =
∑
i

wik

∑
j

hjk/N ,
∑
k

p(k) =1.

(8)

At this point, Eq. (8) allows to determine the probability p(i, k) that, rescaled on the
total number of symptoms counts N , yields the desired decomposition procedure, yik,
which represents the contribution of a specific component k in a day i, given by the
following expression:

yik = N p(i, k) = N p(k) p(i|k) (9)

Thus, the final step in our approach is to determine the optimal number of 198

components kmin to be used for the decomposition. A natural upper bound for k would 199

be the total number of symptoms, i.e. 19. We need to determine the number of 200
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components with the best tradeoff between a model that best approximates the original 201

matrix X and at the same time does not overfit the data. Each time we minimize the 202

loss function Eq. (4) for a specific number of components k, we obtain a candidate 203

decomposition. 204

To determine the best decomposition, we use an approximated model selection 205

criterion, known as the Akaike Information Criterion [46]. In particular, we employ the 206

corrected version of the Akaike Information Criterion (AIC) proposed in [47], valid for 207

finite sample sizes. For each of the candidate decompositions generated by the various 208

values of k, we estimate the AIC criterion, AICk, expressed as: 209

AICk = −2L(k) + 2P + 2
P (P + 1)

N − P − 1
, (10)

where, L(k) is the log-likelihood of the model with k components, defined in [45] as: 210

L(k) =
∑
i,j

xij log p(i, j). (11)

P , is the number of parameters of the model with: 211

P = K (I + J − 2)− 1, (12)

where K is the upper bound for the number of components, I is the total number of 212

days and J is the total number of symptoms. The best candidate decomposition is the 213

one that minimizes Eq. (10) and we denote as AICkmin . The final result is a model, 214

that we call yikmin
consisting of kmin components that best approximate the original 215

matrix X. 216

Data Analysis 217

We applied the aforementioned framework to the data collected by the Influenzanet 218

platforms in nine European countries over the course of six influenza seasons (from 219

2011-2012 to 2016-2017). For each country, we applied the decomposition algorithm to 220

the symptoms’ matrix X as represented in Eq. (2) and, based on the AIC criterion, we 221

obtain the “optimum” number of components, kmin, for the decomposition. 222

Among the kmin latent components, or syndromes, extracted for each country, we 223

identify by means of Pearson correlation the one that shows a trend similar to the 224

time-series recorded by the sentinel-based surveillance for influenza-like illness. In the 225

following, we denote this component as IN NMF. This component will correspond to 226

the combination of symptoms that more closely represent the ILI time series recorded 227

by the traditional surveillance, and hence, it can be used to build a data-driven, 228

unsupervised ILI case definition, which is the ultimate goal of this study. We performed 229

a weekly aggregation of the daily counts of the emerged syndromes so that we can 230

compare them directly with the weekly incidence reported by the traditional 231

surveillance of sentinel doctors. 232

To estimate the quality of the IN NMF signal selected for each country, we also 233

assessed the Pearson correlation between: (i) IN NMF and the time series obtained by 234

applying the ECDC ILI definition on the Influenzanet data (hereafter called IN ECDC); 235

(ii) the IN NMF and the ILI incidence as reported by the national surveillance systems 236

per country (hereafter called GP); and (iii) the IN ECDC and the ILI incidence 237

reported by the national surveillance systems per country (GP). The reported 238

correlations refer to the time series over the entire period (2011-2017). 239

As a final step, we explored the predictive power of the proposed methodology by 240

applying the decomposition framework only on data collected from 2011 to 2016 241
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(training phase) and predicting the ILI incidence signal for the season 2016-2017 (testing 242

phase). To test the validity of this predicted signal, we have evaluated the Pearson 243

correlation of the predicted time series for 2016-2017 and the ILI incidence reported by 244

the national surveillance systems per country (GP). Moreover, we calculated the 245

Pearson correlation between ILI incidence obtained by applying the ECDC case 246

definition to raw Influenzanet data (IN ECDC) and the respective predicted time series, 247

IN NMF, for the season 2016-2017. 248

To assess the generalisation potential of our framework in identifying syndromes not 249

related to ILI (e.g. respiratory versus gastrointestinal), we used it to identify the 250

syndrome related to gastrointestinal episodes by performing the Pearson correlation 251

with data provided by the traditional official surveillance in France2. The identified 252

component is denoted as IN Gastro. 253

Results and Discussion 254

Selection of Components: Fig. S1 in the supporting information, depicts an exploration 255

on the relative AIC values of a series of candidate models (AICc(k)−AICc(kmin), with 256

k ∈ [1, 6]), estimated according to Eq. (10). For the majority of the countries, the 257

optimal decomposition consisted of kmin = 2 components, with the exceptions of the 258

Netherlands with kmin = 3, Belgium with kmin = 3 and France with kmin = 4. 259

Figures S2, S3, S4 and S5 in the supporting information depict the respective time 260

series of all the emerging kmin components and the symptomatic composition for each 261

country. The component which, according to our framework, expresses the ILI incidence 262

(IN NMF) for each country is highlighted by a blue square. 263

ILI Component Analysis: In the left panel of Fig. 1, the IN NMF component for 264

each country is shown in comparison to the ILI signal as recorded by the traditional 265

surveillance, GP. To allow for visual comparison, the time series of the IN NMF 266

component was rescaled on the traditional surveillance GP time series with a fixed 267

scaling factor. In the right panel of Fig. 1, the break-down of symptoms for each 268

country’s IN NMF component is expressed in terms of probabilistic contributions, 269

denoted as p(j|k), as described in Eq. (6). In terms of symptoms’ composition, IN NMF 270

appears to be stable across the various countries and consistent with the expected set of 271

symptoms clinically associated with ILI. The top contributing symptoms are fever, chills 272

and feeling tired, often reported in combination with a sudden onset of symptoms. 273

Notably, all these symptoms contribute for more than 10% to the overall component 274

composition. This is consistent across all the countries and it is the most important 275

result of this study since it represents the basis towards the development of a common 276

ILI definition. Small heterogeneities in the component composition across countries are 277

most likely due to differences in the ILI case definitions used by sentinel doctors in each 278

country which are reflected in the data that we use as ground-truth. In principle, this 279

issue could be overcome in the future by using as ground truth seroprevalence data 280

instead than ILI incidence as captured by sentinel doctors which use different ILI 281

definitions. 282

Model evaluation: Table 2 reports all the correlations mentioned in the Data 283

Analysis section. For all countries, the correlation between the IN NMF component and 284

the IN ECDC is very high, more than 0.82 for all cases, showing that the IN NMF 285

signal captures symptoms highly compatible with those present in the ECDC ILI 286

definition applied to the Influenzanet data. However, carefully examining rows (ii) and 287

(iii) of Table 2, we note slight variations per country. For the Netherlands, Belgium, and 288

2We focused on the case of France due to the immediate data availability from the official surveillance.
The Réseau Sentinelles in fact comprises a unique program of data collection about gastrointestinal
illness episodes [48]
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Fig 1. Left panel: qualitative comparison between the IN NMF and the national surveillance incidence (GP) time series. To
allow for an easier visual inspection the depicted IN NMF syndromes are rescaled by a fixed factor to the respective GP
incidence. On the y-axis, the sample size of the GP incidence is reported. Right panel: contribution of each symptom to the
automatically selected IN NMF component. The bars are coloured for readability purposes only.
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Ireland the IN NMF components are a much better fit (higher correlations) to the 289

incidence data (GP) with respect to the time series obtained by applying the traditional 290

ILI definition on the Influenzanet data (IN ECDC). For the UK, Spain, Denmark, and 291

Portugal the IN NMF components perform equally well as the IN ECDC. For Italy and 292

France, the IN NMF component had a slightly lower correlation (about 11% and 7% 293

less respectively) with the ECDC surveillance data than the IN ECDC. Ireland is the 294

only country for which we obtain a low correlation between the surveillance and 295

IN ECDC probably due to the limited number of participants. In spite of this, we note 296

that IN NMF performs much better than the IN ECDC in capturing the incidence 297

trend. This variation in performance is not an issue for the goal of this work since our 298

focus is on paving the way towards a common cross-country ILI definition rather than 299

finding the perfect signal that correlates best with the national traditional surveillance 300

and the loss in performance of IN NMF with respect to IN ECDC for Italy and France 301

is only a small percentage. Prediction Evaluation: The results of the prediction analysis 302

described in the Data Analysis section are shown in the fourth row of Table 2 (iv), 303

which reports the correlations of the predicted IN NMF syndrome and the national 304

surveillance for the season 2016-2017 (GP). The correlation between the two time series 305

is good, ranging from 0.60 to 0.85, for all the countries. We also report, in Table 2 (v), 306

the correlation between the IN NMF predicted component and the time series emerged 307

from applying the ECDC definition on the Influenzanet data for the season (2016-2017). 308

Also in this case, the predicted trend of the ILI component had high correlations, 309

ranging from 0.60 to 0.85 ( Table 2 (iv)). 310

NL BE IT FR UK ES PT DK IE

(i) Correlation between IN ECDC and IN NMF for the seasons 2011-2017

0.91 0.92 0.86 0.83 0.92 0.86 0.84 0.90 0.82

(ii) Correlation between IN NMF and GP for the seasons 2011-2017

0.88 0.80 0.69 0.79 0.74 0.65 0.66 0.71 0.38

(iii) Correlation between IN ECDC and GP for the seasons 2011-2017

0.79 0.72 0.80 0.86 0.75 0.67 0.63 0.68 0.23

(iv) Correlation between IN NMF prediction and GP for the season 2016-2017

0.85 0.82 0.69 0.80 0.60 0.84 0.80 0.76 0.60

(v) Correlation between IN ECDC and IN NMF for the season 2016-2017

0.85 0.82 0.86 0.93 0.67 0.59 0.88 0.80 0.71

Table 2. (i) Pearson correlation between the time series of IN NMF with the respective time series produced when applying
the ILI definition on the Influenzanet data (IN ECDC). The two signals are highly correlated for all countries. (ii) Pearson
correlation between IN NMF and the respective ILI incidence reported by the national surveillance systems per country (GP).
(iii) Pearson correlation between ILI incidence obtained by applying the ECDC case definition to raw Influenzanet data
(IN ECDC) and ILI incidence reported by the national surveillance systems per country (GP). (iv) Pearson correlation
between the predicted 2016-2017 IN NMF and ILI incidence reported by the national surveillance systems per country (GP)
for the season 2016-2017. (v) Pearson correlation between ILI incidence obtained by applying the ECDC case definition to
raw Influenzanet data (IN ECDC) and the respective IN NMF for the 2016-2017. Note that the reported correlations are not
averages per ILI seasons per country but the correlation of the time series of the entire period (2012-2017 for (i),(ii) and (iii)
and 2016-2017 for (iv) and (v)) between the IN NMF and the respective GP time series for each country.

Gastro Component Evaluation: In the left panel of Fig. 2, we show the time series 311
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for the incidence of acute diarrhoea episodes (GP Gastro) as detected by the official 312

national surveillance in France, and the time series of the syndrome identified by our 313

framework (IN Gastro). The Pearson correlation between the extracted syndrome and 314

the official surveillance data is ρ = 0.66. In the right panel of Fig. 2 we depict the 315

probabilistic contribution of each symptom to the IN Gastro syndrome. Emerging 316

symptoms, in this case, include also stomach ache, diarrhoea, and vomiting, which are 317

in line with our expectations. Even if respiratory symptoms like runny nose or sneezing 318

are present, the contribution of fever and chills (which were the main contributors to 319

the IN NMF signal) is almost negligible. This corresponds to a rather good capability of 320

the framework in discriminating between diverse syndromes. Despite limitations of the 321

data availability, these preliminary findings indicate that the remaining latent 322

components of the decomposition may express syndromes related to allergies, 323

common-cold or gastroenteritis. Understandably, adequate surveillance data are 324

required to make a firm statement and reach a robust interpretation of the syndromes. 325

Limitations: The limitations of this approach are two-fold; first, it is based on 326

syndromic data and thus the specificity with respect to measuring the actual circulation 327

of influenza viruses among the population is relatively low. We could overcome this 328

issue with the integration of data from virologically confirmed cases in the analytical 329

framework. Second, information provided by volunteers about self-reported symptoms 330

might be affected by cognitive biases in assessing and recalling the symptoms. This is 331

an unavoidable potential issue in the symptoms reporting which we cannot account for 332

in our framework. 333

0.0
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0.2

0.3

p
(j
|k
)

2012 2013 2014 2015 2016 2017

F
5

600

0

I1_GastrR G3_GastrR

Fig 2. Left panel: Time series comparison between IN Gastro component and the national surveillance data (GP Gastro) for
France. To allow for an easier visual inspection the depicted IN Gastro syndrome is rescaled by a fixed factor on the
respective GP Gastro incidence. On the y-axis, the sample size of the GP incidence is reported. Right panel: symptomatic
contribution of the automatically selected IN Gastro component. The bars are colored for readability purposes only.

Conclusions 334

The practice of seasonal influenza surveillance is generally affected by the fact that case 335

definitions for influenza-like illness based on clinical symptoms are heterogeneous and 336

might vary across different surveillance systems and hence across different countries. To 337

overcome this issue, we propose an unsupervised probabilistic framework based on 338

self-reported symptoms collected daily through a network of participatory Web-based 339

influenza surveillance platforms in Europe. The approach, which relies on a 340

Non-negative matrix factorization of the daily symptoms matrix, is capable to produce 341

an epidemiological signal that does not rely on a specific a priori case definition and 342
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that follows closely the temporal trend of influenza-like illness as detected by sentinel 343

doctors surveillance. The emerging signal, compared against national surveillance data, 344

successfully captures the ILI incidence trend for all countries included in this study. 345

Moreover, the probabilistic contributions of the symptoms in the overall composition of 346

the emerging signal are stable across countries, paving the way towards the development 347

of a common data-driven ILI case definition. We also demonstrate that the proposed 348

approach can be employed to predict the forthcoming ILI incidence and we tackle the 349

generalisation abilities of this approach by using it to identify gastrointestinal 350

syndromes. We can thus conclude that there is great potential in using symptoms 351

directly collected from the general population to inform unsupervised algorithmic 352

approaches aimed at detecting circulating bouts of illnesses without imposing an a 353

priori case definition. The standardized technological and epidemiological framework 354

and the ability to monitor symptoms from the general population, including individuals 355

who don’t seek medical assistance, provided by the Influenzanet participatory 356

surveillance platforms are what enable the application of unsupervised algorithmic 357

approaches such as the one presented in this work. In the next future, we will include 358

data from virologically confirmed influenza cases as ground truth to enhance the 359

specificity of our framework. Moreover, the flexibility provided by the participatory 360

surveillance platforms in terms of symptoms that can be collected from the general 361

population enable the possibility to extend the framework to other diseases, provided 362

that traditional surveillance data are available to train the framework. 363
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Supporting Information 364

S1 Table. Descriptive statistics regarding the available Influenzanet data 365

for each country.

NL BE IT FR UK ES PT DK IE

Number of seasons

6 6 6 6 6 5 6 4 4

Average participants per season

13, 450 4, 209 1, 830 5, 757 4, 676 526 1, 663 1, 391 406

Average # surveys per season

206, 987 67, 420 17, 807 68, 567 45, 543 5, 894 17, 852 22, 782 3, 220

Average % of surveys with symptoms

20% 16% 19% 20% 29% 22% 17% 18% 25%

Average of surveys per participant per season

15 16 9 12 9 11 10 16 8

Table S1. In this Table we present a few statistics regarding the available Influenzanet data for each country; (i) the number
of seasons available, (ii) the average number of participants per country in a season, (iii) the average number of surveys of
weekly surveys, (iv) the average percentage of surveys with at least one symptom and (v) the average number of surveys per
participant per season.

366

S2 Appendix. AIC Criterion. 367

For each country, we generated a series of models by increasing the number of 368

syndromes with k ∈ [1, 6]. For each of the models, we estimated the AIC criterion, 369

AICc(k) (Eq. 10). The best model was the one to minimize the Eq. 10, denoted as 370

AICc(kmin), consisting of kmin syndromes. Fig. S1 depicts, for each country, the 371

relative likelihood (AICc(k)−AICc(kmin)) of each candidate model with k syndromes 372

(AICc(k)), as compared to the model with the minimum AICc score (AICc(kmin)). 373

S3 Appendix. Complete Set of the Extracted Latent Components. 374

Comparative Analysis of the consistency and time series of the amount yik which refers 375

to the total number of counts associated to a syndrome k in the day i for all the 376

emerged syndromes for each country. The green box indicates selected IN NMF by the 377

algorithm. 378
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Supplemental Information, Figure S1. The best model is the one that minimizes Eq. 10, denoted as AICc(kmin), and
consist of K syndromes. For each country we depict the relative likelihood of each candidate model (AICc(k)−AICc(kmin)),
where the AICc(k) scores for each candidate model are compared against the AIC score of the best model AICc(kmin). We
depict only models with k up to 6 and not 19 for easier visual inspection. The best model per country, with optimal number
of syndromes is: (a) The Netherlands K = 3, (b) Belgium K = 3, (c) Italy K = 2, (d) France K = 4, (e) UK K = 3, (f) Spain
K = 2, (g) Portugal K = 2, (h) Denmark K = 2, (i) Ireland K = 2. The best model is presented with dashed line.
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Supplemental Information, Figure S2. Comparative Analysis of the consistency and time series of the amount yik
which refers to the total number of counts associated to a syndrome k in day i for all the emerged syndromes for the
Netherlands and Belgium. The blue box indicates the syndrome selected as IN NMF by the algorithm.
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Supplemental Information, Figure S3. Comparative Analysis of the consistency and time series of the amount yik
which refers to the total number of counts associated to a syndrome k in day i for all the emerged syndromes for Italy and
France. The blue box indicates the syndrome selected as IN NMF by the algorithm. Note that for France the syndrome
selected as IN Gastro is the second component.
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Supplemental Information, Figure S4. Comparative Analysis of the consistency and time series of the amount yik
which refers to the total number of counts associated to a syndrome k in day i for all the emerged syndromes for UK and
Spain. The blue box indicates the syndrome selected as IN NMF by the algorithm.

PLOS 19/24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314591doi: bioRxiv preprint 

https://doi.org/10.1101/314591
http://creativecommons.org/licenses/by/4.0/


# 
of

 c
as

es

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

50
100
150

Component (

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

20
40
60

Component 1

(a) Portugal

# 
of

 c
as

es

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

50

100

150
Component (

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

20
40
60
80

Component 1

(b) Denmark

# 
of

 c
as

es

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

20
40
60

Component (

0.0

0.1

0.2

p
(j
|k
)

2012 2013 2014 2015 2016 2017
0

10

20

30
Component 1

(c) Ireland

Supplemental Information, Figure S5. Comparative Analysis of the consistency and time series of the amount yik
which refers to the total number of counts associated to a syndrome k in the day i for all the emerged syndromes for Portugal,
Denmark and Ireland. The blue box indicates the syndrome selected as IN NMF by the algorithm. Note that for Denmark
and Ireland we have data only for the period 2014 - 2017.
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