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Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data1

before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for2

each new dataset, building upon a large inventory of tools available for each step. The3

complexity of these workflows has snowballed with rapid advances in MR data acquisition and4

image processing techniques. We introduce fMRIPrep, an analysis-agnostic tool that5

addresses the challenge of robust and reproducible preprocessing for task-based and resting6

fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of7

virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By8

introducing visual assessment checkpoints into an iterative integration framework for9

software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse10

fMRI data collection comprising participants from 54 different studies in the OpenfMRI11

repository. We review the distinctive features of fMRIPrep in a qualitative comparison to other12

preprocessing workflows. We demonstrate that fMRIPrep achieves higher spatial accuracy as13

it introduces less uncontrolled spatial smoothness than one commonly used preprocessing14

tool. FMRIPrep has the potential to transform fMRI research by equipping neuroscientists with15

a high-quality, robust, easy-to-use and transparent preprocessing workflow which can help16

ensure the validity of inference and the interpretability of their results.17

Functional magnetic resonance imaging (fMRI) is a commonly used technique to map human brain18

activity 1. However, the blood-oxygen-level dependent (BOLD) signal measured by fMRI is typically19

mixed with many non-neural sources of variability 2. Preprocessing identifies the nuisance sources and20

reduces their effect on the data 3. Other major preprocessing steps 4 deal with particular imaging arti-21

facts and the anatomical location of signals. For instance, slice-timing 5 correction (STC), head-motion22

correction (HMC), and susceptibility distortion correction (SDC) address particular artifacts; while co-23

registration, and spatial normalization are concerned with signal location (see Online Methods, sec.24

Preprocessing of fMRI in a nutshell, for a summary). Extracting a signal that is most faithful to the25

underlying neural activity is crucial to ensure the validity of inference and interpretability of results 6.26

Faulty preprocessing may lead to the interpretation of noise patterns as signals of interest. For example,27

Power et al. demonstrated that unaccounted-for head-motion can generate spurious and systematic cor-28

relations in resting-state fMRI 7, which would be interpreted as functional connectivity. An illustration29

of failed spatial normalization familiar to most researchers is finding significant activation outside of the30
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brain. Other preprocessing choices may result in the removal of signal originating from brain activity.31

The ongoing debate on the need for regressing out global signals 2,8,9 reflects just such concerns. Thus,32

a primary goal of preprocessing is to reduce sources of Type I errors without inducing excessive Type II33

errors.34

Workflows for preprocessing fMRI produce two broad classes of outputs: preprocessed data (as op-35

posed to raw, original data) and measurements of experimental confounds for use in later modeling.36

Preprocessed data generally include new fMRI time-series after the application of retrospective signal37

correction and filtering algorithms. In addition, these data are typically resampled onto a target space38

appropriate for analysis, such as a standardized anatomical reference. The confounds are additional39

time-series such as physiological recordings and estimated noise sources that are useful for analysis (e.g.40

they can be applied as nuisance regressors). Some commonly used confounds include: motion param-41

eters, framewise displacement (FD 7), spatial standard deviation of the data after temporal differencing42

(DVARS7), global signals, etc. Preprocessing may include further steps for denoising and estimation43

of confounds. For instance, dimensionality reduction methods based on principal components analysis44

(PCA) or independent components analysis (ICA), such as component-based noise correction (Comp-45

Cor 10) or automatic removal of motion artifacts (ICA-AROMA 11).46

The neuroimaging community is well equipped with tools that implement the majority of the individ-47

ual steps of preprocessing described so far. These tools are readily available within software packages48

including AFNI 12, ANTs13, FreeSurfer 14, FSL 15, Nilearn16, or SPM 17. Despite the wealth of accessible49

software and multiple attempts to outline best practices for preprocessing 2,4,6,18, the large variety of data50

acquisition protocols have led to the use of ad hoc pipelines customized for nearly every study; for exam-51

ple, Carp 19 found 223 unique analysis workflows across 241 fMRI studies. Thus, current preprocessing52

workflows offer a poor trade-off between the quality of results and robust, consistent performance on53

datasets other than those that they were built for. Alternatively, researchers can adopt the acquisition54

protocols defined by large neuroimaging consortia like the Human Connectome Project (HCP 20) or the55

UK Biobank 21, which then allows the use of their preprocessing pipelines 22,23 developed for those stud-56

ies. Since these pipelines are optimized for particular data acquisition protocols, they are not applicable57

to datasets acquired using different protocols. In practice, the neuroimaging community lacks a prepro-58

cessing workflow that reliably provides high-quality and consistent results on arbitrary datasets.59

Here we introduce fMRIPrep, a preprocessing workflow for task-based and resting-state fMRI. FMRI-60

Prep is built around four driving principles: 1) robustness to the idiosyncrasies of the input dataset; 2)61

quality of preprocessing outcomes; 3) transparency to encourage the scrutiny of preprocessing results62

for quality, and to facilitate accurate communication of the methods; and 4) ease-of-use with the min-63

imization of manual intervention. FMRIPrep is robust by virtue of a flexible, self-adapting architecture64

that combines tools from existing neuroimaging analysis packages. Tools for each processing operation65

are selected through an evidence-driven and community-informed optimization process. Here we also66

report a comprehensive evaluation of the workflow on a large and heterogeneous subsample of the67

OpenfMRI repository, to quantify robustness and quality of the results. This evaluation leverages the68

comprehensive visual reports generated by fMRIPrep, which facilitate assessment and curation of the re-69

sults. These reports exemplify the “glass-box” philosophy with which the software was developed; rather70

than hiding a complex set of operations within a monolithic black box, fMRIPrep exposes interim results71

at multiple steps to encourage active engagement by the scientist.72

RESULTS
FMRIPrep is a robust and convenient tool for researchers and clinicians to prepare both task-based73

and resting-state fMRI for analysis. Its outputs enable a broad range of applications, including within-74

subject analysis using functional localizers, voxel-based analysis, surface-based analysis, task-based75

group analysis, resting-state connectivity analysis, and many others. In the following, we describe the76

overall architecture, software engineering principles, and a comprehensive validation of the tool.77
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Brain atlas
Default:
MNI152
nonlinear
asymmetric
v2009c

Skull-stripping
Atlas-based brain extraction is
performed on the reference T1w image

Spatial normalization
Non-linear, spatial
alignment to the brain
atlas

Brain tissue segmentation
The brain-extracted image is
classified into CSF, GM and
WM

Surface reconstruction
Surfaces of the cortical sheet
are reconstructed from the
anatomical information (T1w
reference, T2w)

Generate reference & brain mask
Time-points showing non-steady state artifacts (excess of

T1 contrast) are aligned and averaged to generate a
reference image in native space

Estimation of head-motion
Parameters representing bulk head motion (due to

involuntary drift, swallowing, etc.) of each timepoint with
respect to the reference are estimated

Slice-timing correction
(Optional) When the acquisition time of 2D axial slices of a

given timepoint is available, temporal dynamics are estimated
and all slices resampled to the mid-timepoint of that TR

Sample on surface
Sample the BOLD signal
on the surfaces
reconstructed from the
anatomical data

Confounds
Calculate and store nuisance regressors such as noise
components, motion parameters, global signals, etc.

INU Correction
The T1w reference is run through the
N4 algorithm to correct for intensity
nonuniformity (INU)

Fuse & Conform
All T1w images are aligned and averaged
to form a 3D reference image
NIfTI headers are checked for validity

Alignment to T1w reference
Registers activity in BOLD
voxels to anatomical location 

Susceptibility distortion
estimation

(Optional) Find a deformation
field that compensates for the

distortion, when adequate
acquisitions are present

Sample in template
Resample the BOLD
signal in atlas-space,
concatenating all
pertinent
transformations

Sample in native
"One-shot"
resampling of the
BOLD signal in its
original grid, applying
corrections

BOLD run
One run of one task (or resting-state)

time-series of blood-oxygen level
(BOLD) measurements

time
TR

T2-weighted

(Optional)
T1-weighted

One or more (e.g. in
longitudinal studies)
T1w images

Figure 1. FMRIPrep is a fMRI preprocessing tool that adapts to the input dataset. Leveraging the Brain Imaging Data Structure (BIDS 24), the
software self-adjusts automatically, configuring the optimal workflow for the given input dataset. Thus, no manual intervention is required to locate the
required inputs (one T1-weighted image and one BOLD series), read acquisition parameters (such as the repetition time –TR– and the slice
acquisition-times) or find additional acquisitions intended for specific preprocessing steps (like field maps and other alternatives for the estimation of the
susceptibility distortion). Outputs are easy to navigate due to compliance with the BIDS Extension Proposal for derived data (see Online Methods,
Figure S4).

A modular design allows for a flexible, adaptive workflow78

The foundation of fMRIPrep is presented in Figure 1. The workflow is composed by sub-workflows79

that are dynamically assembled into different configurations depending on the input data. These build-80

ing blocks combine tools from widely-used, open-source neuroimaging packages (see Table 1 for a sum-81

mary). Nipype 25 is used to stage the workflows and to deal with execution details (such as resource82

management). As presented in Figure 1, the workflow comprises two major blocks, separated into83

anatomical and functional MRI processing streams.84

Automatically understanding the input dataset. The Brain Imaging Data Structure (BIDS 24) allows85

fMRIPrep to precisely identify the structure of the input data and gather all the available metadata (e.g.86

imaging parameters). FMRIPrep reliably adapts to dataset irregularities such as missing acquisitions or87

runs through a set of heuristics. For instance, if only one participant of a sample lacks field-mapping88

acquisitions, fMRIPrep will by-pass the correction step for that one participant.89
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Table 1. State-of-art neuroimaging offers a large catalog of readily available software tools. FMRIPrep integrates best-in-breed tools for each of the
preprocessing tasks that its workflow covers.

Preprocessing task fMRIPrep includes Alternatives (not included within fMRIPrep)

Anatomical T1w brain-extraction antsBrainExtraction.sh

(ANTs)
bet (FSL), 3dSkullstrip (AFNI), MRTOOL (SPM Plug-in)

Anatomical surface reconstruction recon-all (FreeSurfer) CIVET, BrainSuite, Computational Anatomy (SPM Plug-in)
Head-motion estimation (and
correction)

mcflirt (FSL) 3dvolreg (AFNI), spm_realign (SPM), cross_realign_4dfp
(4dfp), antsBrainRegistration (ANTs)

Susceptibility-derived distortion
estimation (and unwarping)

3dqwarp (AFNI) fugue and topup (FSL), FieldMap and HySCO (SPM Plug-ins)

Slice-timing correction 3dTshift (AFNI) slicetimer (FSL), spm_slice_timing (SPM), interp_4dfp
(4dfp)

Intra-subject registration bbregister (FreeSurfer),
flirt (FSL)

3dvolreg (AFNI), antsRegistration (ANTs), Coregister (SPM
GUI)

Spatial normalization (inter-subject
co-registration)

antsRegistration

(ANTs)
@auto_tlrc (AFNI), fnirt (FSL), Normalize (SPM GUI)

Surface sampling mri_vol2surf

(FreeSurfer)
MNE, Nilearn

Subspace selection methods melodic (FSL),
ICA-AROMA

Nilearn, LMGS (SPM Plug-in)

Confounds in-house implementation TAPAS PhysIO (SPM Plug-in)
Steady-state detection in-house implementation Ad hoc implementations

Preprocessing anatomical images. The T1-weighted (T1w) image is corrected for intensity non-90

uniformity (INU) using N4BiasFieldCorrection 26 (ANTs), and skull-stripped using antsBrainExtrac-91

tion.sh (ANTs). Skull-stripping is performed through coregistration to a template, with two options92

available: the OASIS template 27 (default) or the NKI template 28. Using visual inspection, we have found93

that this approach outperforms other common approaches, which is consistent with previous reports 22.94

When several T1w volumes are found, the INU-corrected versions are first fused into a reference T1w95

map of the subject with mri_robust_template 29 (FreeSurfer). Brain surfaces are reconstructed from96

the subject’s T1w reference (and T2-weighted images if available) using recon-all 30 (FreeSurfer). The97

brain mask estimated previously is refined with a custom variation of a method (originally introduced in98

Mindboggle31) to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray mat-99

ter (GM). Both surface reconstruction and subsequent mask refinement are optional and can be disabled100

to save run time when surface-based analysis is not needed. Spatial normalization to the ICBM 152101

Nonlinear Asymmetrical template 32 (version 2009c) is performed through nonlinear registration with102

antsRegistration 33 (ANTs), using brain-extracted versions of both the T1w reference and the standard103

template. ANTs was selected due to its superior performance in terms of volumetric group level over-104

lap34. Brain tissues –cerebrospinal fluid (CSF), white matter (WM) and GM– are segmented from the105

reference, brain-extracted T1w using fast 35 (FSL).106

Preprocessing functional runs. For every BOLD run found in the dataset, a reference volume and its107

skull-stripped version are generated using an in-house methodology (reported in Online Methods, sec.108

Particular processing elements of fMRIPrep). Then, head-motion parameters (volume-to-reference trans-109

form matrices, and corresponding rotation and translation parameters) are estimated using mcflirt 36
110

(FSL). Among several alternatives (see Table 1), mcflirt is used because its results are comparable111

to other tools 37 and it stores the estimated parameters in a format that facilitates the composition of112

spatial transforms to achieve one-step interpolation (see below). If slice timing information is available,113

BOLD runs are (optionally) slice time corrected using 3dTshift (AFNI 12). When field map information is114
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available, or the experimental “fieldmap-less” correction is requested (see Highlights of fMRIPrep within115

the neuroimaging context), SDC is performed using the appropriate methods (see Online Methods, Fig-116

ure S3). This is followed by co-registration to the corresponding T1w reference using boundary-based117

registration 38 with nine degrees of freedom (to minimize remaining distortions). If surface reconstruc-118

tion is selected, fMRIPrep uses bbregister (FreeSurfer). Otherwise, the boundary based coregistration119

implemented in flirt (FSL) is applied. In our experience, bbregister yields the better results 38 due to120

the high resolution and the topological correctness of the GM/WM surfaces driving registration. To sup-121

port a large variety of output spaces for the results (e.g. the native space of BOLD runs, the correspond-122

ing T1w, FreeSurfer’s fsaverage spaces, the atlas used as target in the spatial normalization step, etc.),123

the transformations between spaces can be combined. For example, to generate preprocessed BOLD124

runs in template space (e.g. MNI), the following transforms are concatenated: head-motion parame-125

ters, the warping to reverse susceptibility-distortions (if calculated), BOLD-to-T1w, and T1w-to-template126

mappings. The BOLD signal is also sampled onto the corresponding participant’s surfaces using mri_-127

vol2surf (FreeSurfer), when surface reconstruction is being performed. Thus, these sampled surfaces128

can easily be transformed onto different output spaces available by concatenating transforms calculated129

throughout fMRIPrep and internal mappings between spaces calculated with recon-all. The composi-130

tion of transforms allows for a single-interpolation resampling of volumes using antsApplyTransforms131

(ANTs). Lanczos interpolation is applied to minimize the smoothing effects of linear or Gaussian ker-132

nels 39. Optionally, ICA-AROMA can be performed and corresponding “non-aggressively” denoised runs133

are then produced.134

Extraction of nuisance time-series. FMRIPrep is analysis-agnostic and thus, it does not perform any135

temporal denoising. Nonetheless, it provides researchers with a diverse set of confound estimates that136

could be used for explicit nuisance regression or as part of higher-level models. This lends itself to de-137

coupling preprocessing and behavioral modeling as well as evaluating robustness of final results across138

different denoising schemes. A set of physiological noise regressors are extracted for the purpose of per-139

forming component-based noise correction (CompCor 10). Principal components are estimated after high-140

pass filtering the BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor141

variants: temporal (tCompCor) and anatomical (aCompCor). Six tCompCor components are then calcu-142

lated from the top 5% variable voxels within a mask covering the subcortical regions. Such subcortical143

mask is obtained by heavily eroding the brain mask, which ensures it does not include cortical GM re-144

gions. For aCompCor, six components are calculated within the intersection of the aforementioned mask145

and the union of CSF and WM masks calculated in T1w space, after their projection to the native space146

of each functional run (using the inverse BOLD-to-T1w transformation). Frame-wise displacement 40
147

is calculated for each functional run, using the implementation in Nipype. DVARS are also calculated148

using Nipype. Three global signals are extracted within the CSF, the WM, and the whole-brain masks us-149

ing Nilearn16. If ICA-AROMA11 is requested, the “aggressive” noise-regressors are collected and placed150

within the corresponding confounds files. In addition, a “non-aggressive” version of preprocessed data151

is also provided since this variant of ICA-AROMA denoising cannot be performed using only nuisance152

regressors.153

Visual reports ease quality control and maximize transparency154

Users can assess the quality of preprocessing with an individual report generated per participant.155

Figure 2 shows an example of such reports and describes their structure. Reports contain dynamic156

and static mosaic views of images at different quality control points along the preprocessing pipeline.157

Many visual elements of the reports, as well as some of the figures in this manuscript are generated158

using Nilearn 16. Only a web browser is required to open the reports on any platform, since they are159

written in hypertext markup language (HTML). HTML also enables the trivial integration within online160

neuroimaging services such as OpenNeuro.org, and maximizes shareability between peers. These reports161

effectively minimize the amount of time required for assessing the quality of the results. They also help162

understand the internals of processing by visually reporting the full provenance of data throughout the163
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workflow. As an additional transparency enhancement, reports are accompanied by a citation boilerplate164

(see Online Methods, Box S1) that follows the guidelines for reporting fMRI studies by Poldrack et165

al.41. Meant for its inclusion within the methodological section of papers using fMRIPrep, the boilerplate166

provides a literate description of the processing that includes software versions of all tools involved in167

the particular workflow and gives due credit to all authors of all of the individual pieces of software used168

within fMRIPrep.169

Highlights of fMRIPrep within the neuroimaging context170

FMRIPrep is not the first preprocessing pipeline for fMRI data. The most widely used neuroimaging171

packages generally provide workflows, such as afni_proc.py (AFNI) or feat (FSL). Other alternatives172

include C-PAC42 (configurable pipeline for the analysis of connectomes), HCP Pipelines or the Batch173

Editor of SPM. In this section, we highlight some additional features beyond robustness and quality that174

will likely incline scientists to find in fMRIPrep the best fit for their fMRI preprocessing needs.175

Analysis-agnostic: fMRIPrep is meant to support all kinds of analysis. To some extent, all alternative176

workflows limit the possible analyses that can be performed on the preprocessed data. These limitations177

mostly derive from the coordinates space of the outputs and the regular (volume) vs. irregular (surface)178

sampling of the BOLD signal. For example, HCP Pipelines supports surface-based analyses on subject179

or template space. Conversely, afni_proc.py, C-PAC and feat are volume-based only. FMRIPrep allows180

a multiplicity of output spaces including subject-space and atlases for both volume-based and surface-181

based analyses. While fMRIPrep avoids including processing steps that may limit further analysis (e.g.182

spatial smoothing), other tools are designed to perform preprocessing that supports specific analysis183

pipelines. For instance, C-PAC performs several processing steps towards the connectivity analysis of184

resting-state fMRI.185

Susceptibility distortion correction (SDC) in the absence of field maps. Many legacy and current186

human fMRI protocols lack the MR field maps necessary to perform standard methods for SDC. FMRIPrep187

adapts the “fieldmap-less” correction method for diffusion echo-planar imaging (EPI) images introduced188

by Wang et al. 43. They propose using the same-subject T1w reference as the undistorted target in a189

nonlinear registration scheme. To maximize the similarity between the T2⋆ contrast of the EPI scan190

and the reference T1w, the intensities of the latter are inverted. To regularize the optimization of the191

deformation field only displacements along the phase-encoding (PE) direction are allowed, and the192

magnitude of the displacements is modulated using priors. To our knowledge, no other existing pipeline193

implements “fieldmap-less” SDC to the BOLD images.194

FMRIPrep is thoroughly documented, community-driven, and developed with high-standards of195

software engineering. Preprocessing pipelines are generally well documented, however the extreme196

flexibility of fMRIPrep makes its proper documentation substantially more challenging. As for other large197

scientific software communities, fMRIPrep contributors pledge to keep the documentation thorough and198

updated along coding iterations. Packages also differ on the involvement of the community: while fMRI-199

Prep includes researchers in the decision making process and invites their suggestions and contributions,200

other packages have a more closed model where the feedback from users is more limited (e.g. a mailing201

list). In contrast to other pipelines, fMRIPrep is community-driven. This paradigm allows the fast adop-202

tion of cutting-edge advances on fMRI preprocessing. For example, while fMRIPrep initially performed203

STC before HMC, we adapted the tool to the recent recommendations of Power et al. 18 upon a user’s204

request*. This model has allowed the user base to grow rapidly and enabled substantial third-party con-205

tributions to be included in the software, such as the support for processing datasets without anatomical206

information. The open-source nature of fMRIPrep has permitted frequent code reviews that are effective207

in enhancing the software’s quality and reliability 44. Finally, fMRIPrep undergoes continuous integration208

testing (see Online Methods, Figure S5), a technique that has recently been proposed as a mean to209

ensure reproducibility of analyses in computational sciences 45,46.210

*https://neurostars.org/t/obtaining-movement-estimates-before-slice-time-correction/1007
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Figure 2. Anatomy of the visual reports generated by fMRIPrep. The visual reports ease quality control of the results and help understand the
preprocessing flow.
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Ensuring reproducibility with hard versioning and containers. For enhanced reproducibility, fMRI-211

Prep fully supports execution via the Docker (https://docker.com) and Singularity 47 container platforms.212

Container images are generated and uploaded to a public repository for each new version of fMRIPrep.213

This helps address the widespread lack of reporting of specific software versions and the large variabil-214

ity of software versions, which threaten the reproducibility of fMRI analyses 19. These containers are215

released with a fixed set of software versions for fMRIPrep and all its dependencies, maximizing run-216

to-run reproducibility in an easy way. Except for C-PAC, alternative pipelines do not provide official217

support for containers. The adoption of the BIDS-Apps 45 container model makes fMRIPrep amenable to218

a multiplicity of infrastructures and platforms: PC, high-performance computing (HPC), Cloud, etc.219

FMRIPrep yields high-quality results on a diverse set of input data220

Figure 3 presents the validation framework that we applied to iteratively maximize the robustness221

of the tool and validate the quality of the results. The validation framework implements a testing plan222

elaborated prior the release of the version 1.0 of the software (see Online Methods, sec. Evaluation of223

fMRIPrep). The plan is divided in two validation phases in which different data samples and validation224

procedures are applied. Table 2 describes the data samples used on each phase and emphasizes how225

these data are collected from a large number of different, unrelated studies. In Phase I, we ran fMRIPrep226

on a manually selected sample of participants that are potentially challenging to the tool’s robustness,227

exercising the adaptiveness to the input data. Phase II focused on the visual assessment of the quality of228

preprocessing results on a large and heterogeneous sample.229

Validation Phase I – Fault-discovery testing. We tested fMRIPrep on a set of 30 datasets from OpenfMRI230

(see Table 2). Included participants were manually selected for their low quality as visually assessed by231

two experts using MRIQC 105 (the assessment protocol is further described in in Online Methods, sec.232

Evaluation of fMRIPrep). Data showing substandard quality are known to likely degrade the outcomes233

of image processing 105, and therefore they are helpful to test software reliability. Phase I concluded with234

the release of fMRIPrep version 1.0 on December 6, 2017.235

Validation Phase II – Quality assurance and reliability testing. We extended the evaluation data236

up to 54 datasets from OpenfMRI (see Table 2). Participants were selected randomly as described in237

Online Methods, sec. Evaluation of fMRIPrep. Validation Phase II integrated a protocol for the screening238

of results into the software testing (Figure 3). As shown in Figure 4, this effectively contributed to239

substantive improvements on the quality of results. Three raters (authors CJM, KJG and OE) evaluated240

the 213 visual reports at six quality control points throughout the pipeline, and also assigned an overall241

score to each participant. Their ratings are made available with the corresponding reports for scrutiny.242

The scoring scale has three levels: 1 (“poor”), 2 (“acceptable”) and 3 (“excellent”). A special rating of 0243

(“unusable”) is assigned to critical failures that hamper any further processing beyond the quality control244

checkpoint. After Phase II, 50 datasets out of the total 54 were rated above the “acceptable” average245

quality level. The remaining 4 datasets were all above the “poor” level and in or nearby the “acceptable”246

rating. Figure 4 illustrates the quality of results, while Online Methods, Figure S6 shows the individual247

evolution of every dataset at each of the seven quality control points. Phase II concluded with the release248

of fMRIPrep version 1.0.8 on February 22, 2018.249

FMRIPrep improves spatial precision through reduced smoothing250

We investigate whether the focus on robustness against data irregularity comes at a cost in quality251

of the preprocessing outcomes by comparing it to the commonly used FSL feat workflow. Using all252

the scans of the “stopsignal” task in DS000030 (N=257 participants) from OpenfMRI, we ran fMRIPrep253

and a standard feat workflow. We chose feat because DS000030 had successfully been preprocessed254

and analyzed with FSL tools previously 55. Smoothing is intentionally excluded from both preprocessing255

routes with the aim to apply it early within a common (identical) analysis workflow. We calculated256

standard deviation maps in MNI space 106 for the temporal average map of the “stopsignal” task derived257

from preprocessing with both alternatives. Visual inspection of these variability maps (Figure 5) reveals258
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Figure 3. Combining visual assessment within the software testing flow. We complement well-established
techniques for software integration testing with manual assessment of the outputs. The evaluation framework is
designed with two subsequent testing phases. Phase I focuses on fault-discovery and visual reports are used to better
understand the issues found. The top box (Example fix 1) shows an example of defect identified and solved during
this testing cycle. After addressing a total of 21 issues affecting 7 datasets, and the release of fMRIPrep version 1.0.0,
the next testing stage is initiated. Phase II focuses on increasing the overall quality of results as evaluated visually by
experts. Following an inspection protocol, reports from 213 participants belonging to 58 different studies were
individually assessed. We found 12 additional issues affecting 11 datasets that have been addressed with the release
of fMRIPrep version 1.0.3 on January 3, 2018. The bottom box (Example fix 2) illustrates one of these issues, which
produced errors in the brain extraction process from BOLD data.
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1.0.0 1.0.7

Critical

Poor

Acceptable

Excellent

DS000114 was rated
substantially worse as
the T1w masks
became too liberal
with the introduction of
a mask refinement that
worked correctly for
other datasets

DS000108 and DS000148 improved the
most after addressing particular issues

1 dataset
4 datasets
10 datasets
30 datasets

Figure 4. Integrating visual assessment into the software testing framework effectively increases the quality
of results. In an early assessment of quality using fMRIPrep version 1.0.0, the overall rating of two datasets was
below the “poor” category and four below the “acceptable” level (left column of colored circles). After addressing
some outstanding issues detected by the early assessment, the overall quality of processing is substantially improved
(right column of circles), and no datasets are below the “poor” quality level. Only two datasets are rated below the
“acceptable” level in the second assessment (using fMRIPrep version 1.0.7).

a higher anatomical accuracy of fMRIPrep over feat, likely reflecting the combined effects of a more259

precise spatial normalization scheme and the application of “fieldmap-less” SDC. FMRIPrep outcomes260

are particularly better aligned with the underlying anatomy in regions typically warped by susceptibility261

distortions such as the orbitofrontal lobe, as demonstrated by close-ups in Online Methods, Figure S7.262

263

We also compared preprocessing done with fMRIPrep and FSL’s feat in two common fMRI analyses.264

First, we performed within subject statistical analysis using feat –the same tool provides preprocessing265

and first-level analysis– on both sets of preprocessed data. Second, we perform a group statistical analy-266

sis using ordinary least squares (OLS) mixed modeling (flame 107, FSL). In both experiments, we applied267

identical analysis workflows and settings to both preprocessing alternatives. Using AFNI’s 3dFWHMx, we268

estimated the smoothness of data right after preprocessing (unsmoothed), and after an initial smooth-269

ing step of 5.0mm (full-width half-minimum, FWHM) of the common analysis workflow. As visually270

suggested by Figure 5, we indeed found that feat produces smoother data (Figure 6A). Although pre-271

processed data were resampled to an isotropic voxel size of 2.0×2.0×2.0 [mm], the smoothness estima-272

tion (before the prescribed smoothing step) for fMRIPrep was below 4.0mm, very close to the original273

resolution of 3.0×3.0×4.0 [mm] of these data. The first-level analysis showed that the thresholded ac-274

tivation count maps for the go vs. successful stop contrast in the “stopsignal” task were very similar275

(Figure 6B). It can be seen that the results from both pipelines identified activation in the same regions.276

However, since data preprocessed with feat are smoother, the results from fMRIPrep are more local and277

better aligned with the cortical sheet.278

To investigate the implications of either pipeline on the group analysis use-case, we run the same279

OLS modeling on two disjoint subsets of randomly selected subjects. We calculate several metrics of280

spatial agreement on the resulting maps of (uncorrected) 𝑝-statistical values, and also after binarizing281

these maps with a threshold chosen to control for the false discovery rate at 5%. The overlap of statistical282

maps, as well as Pearson’s correlation, were tightly related to the smoothing of the input data. In Online283

Methods, sec. Comparison to FSL feat we report the group-level analysis in full. We ran two variants of284
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Figure 5. Maps of between-subjects variability of the averaged BOLD time-series resampled into MNI space.
We preprocessed DS000030 (N=257) with fMRIPrep and FSL feat. This figure shows greater between-subject
variability of the averaged BOLD series obtained with feat, in MNI space. The top box of the panel shows these
maps at different axial planes of the image grid, with reference contours from the MNI atlas. The map summarizing
feat-derived results displays greater variability outside the brain mask delineated with the black contour. This effect
is generally associated with a lower performance of spatial normalization 106. The histogram at the right side plots
the normalized frequency of variability (arbitrary units) for both maps, within the brain mask. The distribution
corresponding to FSL feat shows a heavier tail. See Online Methods, Figure S7 for close-ups into regions affected by
susceptibility-derived distortions.
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Figure 6. A | Estimating the spatial smoothness of data before and after the initial smoothing step of the analysis
workflow confirmed that results of preprocessing with feat are intrinsically smoother. Therefore, fMRIPrep allows
the researcher for a finer control over the smoothness of their analysis. B | Thresholded activation count maps for
the go vs. successful stop contrast in the “stopsignal” task after preprocessing using either fMRIPrep or FSL’s feat,
with identical single subject statistical modeling. Both tools obtained similar activation maps, with fMRIPrep results
being slightly better aligned with the underlying anatomy.
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the analysis: with a prescribed smoothing of 5.0mm FWHM, and without smoothing step. These results285

showed that, at the group-level analysis, fMRIPrep and feat perform equivalently.286

DISCUSSION
FMRIPrep is a fMRI preprocessing workflow developed to excel at four aspects of scientific software:287

robustness to data idiosyncrasies, high quality and consistency of results, maximal transparency in the288

assessment of results and subsequent communication, and ease-of-use. We describe how using the Brain289

Imaging Data Structure (BIDS 24) along with a flexible design allows the workflow to self-adapt to the290

idiosyncrasy of inputs (sec. A modular design allows for a flexible, adaptive workflow). The workflow291

(briefly summarized in Figure 1) integrates state-of-art tools from widely used neuroimaging software292

packages at each preprocessing step (see Table 1). Some other relevant facets of fMRIPrep and how293

they relate to existing alternative pipelines are presented in sec. Highlights of fMRIPrep within the neu-294

roimaging context. To note some, the analysis-agnostic nature of the tool, or the uniqueness of the295

“fieldmap-less” SDC method. We highlight that fMRIPrep is developed with the best software engineer-296

ing principles, which are fundamental to ensure software reliability. The pipeline is easy to use for297

researchers and clinicians without extensive computer engineering experience, and produces compre-298

hensive visual reports (Figure 2). These automated reports exemplify the “glass-box” principle, which299

requires that software allows scientists to understand how it works internally. This is in contrast to300

typical “black-box” applications that perform valuable services without providing a way to understand301

how the tool has transformed their data into the desired output. These reports maximize transparency302

by allowing scientists to critically inspect and better understand the underlying mechanisms of their303

preprocessing.304

We demonstrate the robustness of fMRIPrep on a data collection from datasets associated with differ-305

ent studies (Table 2), representing the variety of input data in the field (sec. FMRIPrep yields high-quality306

results on a diverse set of input data). We then interrogate the quality of those results with the individual307

inspection of the corresponding visual reports by experts (sec. Visual reports ease quality control and308

maximize transparency and the corresponding summary in Figure 4). A comparison to FSL’s feat (sec.309

FMRIPrep improves spatial precision through reduced smoothing) demonstrates that fMRIPrep achieves310

higher spatial accuracy and introduces less uncontrolled smoothness (Figures 5, 6). Group 𝑝-statistical311

maps only differed on their smoothness (sharper for the case of fMRIPrep). The fact that first-level and312

second-level analyses resulted in small differences between fMRIPrep and our ad hoc implementation of313

a feat-based workflow indicates that the individual preprocessing steps perform similarly when they are314

fine-tuned to the input data. That justifies the need for fMRIPrep, which autonomously adapts the work-315

flow to the data without error-prone manual intervention. To a limited extent, that also mitigates some316

concerns and theoretical risks arisen from the analytical degrees-of-freedom 19 available to researchers.317

FMRIPrep stands out amongst pipelines because it automates the adaptation to the input dataset without318

compromising the quality of results.319

One limitation of this work is the use of visual (the reports) and semi-visual (e.g. Figure 5 and320

Figure 6) assessments for the quality of preprocessing outcomes. Although some frameworks have been321

proposed for the quantitative evaluation of preprocessing on task-based (such as NPAIRS 108) and resting-322

state109 fMRI, they impose a set of assumptions on the test data and the workflow being assessed that323

severely limit their suitability. The modular design of fMRIPrep defines an interface to each processing324

step, which will permit the programmatic evaluation of the many possible combinations of software325

tools and processing steps. That will also enable the use of quantitative testing frameworks to pursue326

the minimization of Type I errors without the cost of increasing Type II errors.327

The range of possible applications for fMRIPrep also presents some boundaries. For instance, very328

narrow field-of-view (FoV) images oftentimes do not contain enough information for standard image329

registration methods to work correctly. Reduced FoV datasets from OpenfMRI were excluded from the330

evaluation since they are not yet fully supported by fMRIPrep. Extending fMRIPrep’s support for these331

particular images is already a future line of the development road-map. FMRIPrep may also under-332

perform for particular populations (e.g. infants) or when brains show nonstandard structures, such as333
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tumors, resected regions or lesions. Nonetheless, fMRIPrep’s architecture makes it straightforward to334

extend the tool to support specific populations or new species by providing appropriate atlases of those335

brains. This future line of work would be particularly interesting in order to adapt the workflow to336

data collected from rodents and nonhuman primates. By contrast, fMRIPrep performed robustly on data337

from a simultaneous MRI/electrocorticography (ECoG) study, which is extremely challenging to analyze338

due to the massive BOLD signal drop-out near the implanted cortical electrodes (see Online Methods,339

Figure S10).340

Approximately 80% of the analysis pipelines investigated by Carp 19 were implemented using either341

AFNI 12, FSL 15, or SPM 17. Ad hoc pipelines adapt the basic workflows provided by these tools to the342

particular dataset at hand. Although workflow frameworks like Nipype 110 ease the integration of tools343

from different packages, these pipelines are typically restricted to just one of these alternatives (AFNI,344

FSL or SPM). Otherwise, scientists can adopt the acquisition protocols and associated preprocessing345

software of large consortia like the Human Connectome Project (HCP) or the UK Biobank. This option346

allows scientists to shortcut the intricacies of preprocessing by applying a “black-box” that has been347

validated on similar data by a third party. The off-the-shelf applicability of these workflows is contravened348

by important limitations on the experimental design. Therefore, researchers typically opt to recode349

their custom preprocessing workflows with nearly every new study 19. That practice entails a “pipeline350

debt”, which requires the investment on proper software engineering to ensure an acceptable correctness351

and stability of the results (e.g. continuous integration testing) and reproducibility (e.g. versioning,352

packaging, containerization, etc.). A trivial example of this risk would be the leakage of magic numbers353

that are hard-coded in the source (e.g. a crucial imaging parameter that inadvertently changed from one354

study to the next one). Until fMRIPrep, an analysis-agnostic approach that builds upon existing software355

instruments and optimizes preprocessing for robustness to data idiosyncrasies, quality of outcomes, ease-356

of-use, and transparency, was lacking.357

The rapid increase in volume and diversity of available data, as well as the evolution of more so-358

phisticated techniques for processing and analysis, presents an opportunity for significantly advancing359

research in neuroscience. However, the influx of new data, new analysis methods, and new modeling360

strategies represents a risk as well as an opportunity. The inferential promises of big data, and the361

sophisticated analysis tools that can leverage it, incentivize researchers to progressively build on more362

complex analysis pipelines that rely on more complex and more obscure models of the data to pro-363

duce interpretable results. This way of moving forward risks producing a future generation of cognitive364

neuroscientists who have become experts in using sophisticated computational methods, but have little365

to no working knowledge of the biological processes underlying brain’s function 111. It also obscures366

important steps in the inductive process mediating between experimental measurements and reported367

findings. Easy-to-use, off-the-shelf tools that function as black boxes –providing scientists with limited368

insight into how the tool functions, and developed primarily behind closed doors– may only exacerbate369

this problem. FMRIPrep offers a novel “glass-box” approach for the development, maintenance and use370

of computational tools that mitigates these risks. By standardizing preprocessing, fMRIPrep allows re-371

searchers to focus their attention and expertise on the inferentially significant stages of data production,372

analysis and interpretation. Additionally, fMRIPrep mitigates concerns about black-box processing by373

being thoroughly documented, producing reports and visualizations at critical quality control points in374

the workflow, and being developed according to the best practices of open source engineering. These375

features of fMRIPrep make it possible for researchers to learn how the tool works, develop an understand-376

ing of each step in the workflow, and even reconstruct the preprocessing pipeline from first principles.377

FMRIPrep aims to better equip fMRI practitioners to perform reliable, reproducible, statistical analyses378

with a high-standard, consistent, and adaptive preprocessing instrument.379

CONCLUSION
Despite efforts to achieve high-quality preprocessing of idiosyncratic fMRI datasets, doing so reliably380

has remained an open problem. FMRIPrep is an analysis-agnostic, preprocessing workflow that yields381

consistent results across a wide range of input datasets. FMRIPrep is built on top of the best neuroimaging382
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tools selected from various software packages. These tools are integrated into workflows that can be383

dynamically combined to compose a full preprocessing workflow adapted to the input data. The optimal384

workflow for the input dataset is constructed at runtime, blending a set of heuristics with the Brain385

Imaging Data Structure (BIDS) to read the inputs. FMRIPrep excels in four design goals: robustness,386

high-quality of results, transparency and ease-of-use. To validate and demonstrate these features, we387

integrate the individual screening of preprocessing results with continuous integration techniques of388

software testing. The process is aided by comprehensive, portable reports that inform the scientist about389

the workflow, ease the quality control of results and maximize the shareability of research outcomes.390

We highlight the aspects that justify the development of fMRIPrep with respect to currently available391

preprocessing workflows. We quantitatively demonstrate that fMRIPrep does not introduce uncontrolled392

smoothing as compared to one alternative software. FMRIPrep aims to better equip fMRI practitioners393

to perform reliable, reproducible statistical analyses with a high-standard, transparent, and verifiable394

instrument.395
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Table 2. Data from OpenfMRI used in evaluation. S: number of sessions; T: number of tasks; R: number of BOLD runs; Modalities: number of runs for
each modality, per subject (FM indicates acquisitions for susceptibility distortion correction); Part. IDs (phase): participant identifiers included in testing
phase; N: total of unique participants; TR: repetition time; #TR: length of time-series (volumes); Resolution: voxel size of BOLD series.

DS000XXX Scanner S T R Modalities Part. IDs (Phase I) Part. IDs (Phase II) N TR #TR Resolution

001 48 SIEMENS 1 1 21 1 T1w, 3 BOLD 02, 03, 09, 15 01, 02, 07, 08 7 2.0 6300 3.12×3.12×4.00
002 49 SIEMENS 1 3 48 1 T1w, 6 BOLD 01, 11, 14, 15 02, 03, 04, 10 8 2.0 9510 3.12×3.12×5.00
003 50 SIEMENS 1 1 6 1 T1w, 1 BOLD 03, 07, 09, 11 02, 09, 10, 11 6 2.0 956 3.12×3.12×4.00
005 51 SIEMENS 1 1 21 1 T1w, 3 BOLD 01, 03, 06, 14 01, 04, 05, 15 7 2.0 5040 3.12×3.12×4.00
007 52 SIEMENS 1 3 46 1 T1w, 5 BOLD 09, 11, 18, 20 03, 04, 08, 12 8 2.0 8205 3.12×3.12×4.00
008 53 SIEMENS 1 2 38 1 T1w, 5 BOLD 04, 09, 12, 14 10, 12, 13, 15 7 2.0 6808 3.12×3.12×4.39
009 SIEMENS 1 4 48 1 T1w, 6 BOLD 01, 03, 09, 10 17, 18, 21, 23 8 2.0 10528 3.00×3.00×4.00
011 54 SIEMENS 1 4 41 1 T1w, 5 BOLD 01, 03, 06, 08 03, 09, 11, 14 7 2.0 8041 3.12×3.12×5.00
017 SIEMENS 2 2 48 4 T1w, 9 BOLD 2, 4, 7, 8 2, 5, 7, 8 5 2.0 8736 3.12×3.12×4.00
030 55,56 SIEMENS 1 8 30 1 T1w, 7 BOLD 10[440,638,668,855] 4 2.2 6254 3.00×3.00×4.00
031 57 SIEMENS 107 9 191 29 T1w, 18 T2w,

46 FM, 191 BOLD
01 1 1.2 79017 2.55×2.55×2.54

051 58 SIEMENS 1 1 54 2 T1w, 7 BOLD 03, 04, 05, 13 02, 04, 06, 09 7 2.0 10800 3.12×3.12×6.00
052 59 SIEMENS 1 2 28 2 T1w, 4 BOLD 06, 08, 12, 14 05, 10, 12, 13 7 2.0 6300 3.12×3.12×6.00
053 SIEMENS 1 3 32 1 T1w, 8 BOLD 002, 003, 005, 006 4 1.2 10712 2.40×2.40×2.40
101 SIEMENS 1 1 16 1 T1w, 2 BOLD 06, 08, 16, 19 05, 11, 17, 20 8 2.0 2416 3.00×3.00×4.00
102 60–62 SIEMENS 1 1 16 1 T1w, 2 BOLD 05, 19, 22, 23 08, 10, 16, 20 8 2.0 2336 3.00×3.00×4.00
105 63,64 GE 1 1 71 1 T1w, 11 BOLD 1, 2, 3, 6 1, 4, 5, 6 6 2.5 8591 3.50×3.75×3.75
107 65 SIEMENS 1 1 14 1 T1w, 2 BOLD 02, 05, 20, 29 05, 36, 39, 47 7 3.0 2315 3.00×3.00×3.00
108 66 GE 1 1 41 1 T1w, 5 BOLD 01, 03, 07, 17 03, 10, 24, 26 7 2.0 7860 3.44×3.44×4.50
109 67 SIEMENS 1 1 12 1 T1w, 2 BOLD 02, 10, 39, 47 02, 11, 15, 39 6 2.0 2148 3.00×3.00×3.54
110 68 GE 1 1 80 1 T1w, 10 BOLD 07, 09, 17, 18 01, 02, 03, 06 8 2.0 14880 3.44×3.44×4.01
114 69 GE 2 5 70 2 T1w, 10 BOLD 01, 05, 07, 08 02, 03, 04, 07 7 5.0 10626 4.00×4.00×4.00
115 70,71 SIEMENS 1 3 24 1 T1w, 3 BOLD 31, 68, 77, 78 04, 33, 67, 79 8 2.5 3288 4.00×4.00×4.00
116 72–75 PHILIPS 1 2 36 1 T1w, 6 BOLD 02, 08, 10, 15 08, 12, 15, 17 6 2.0 6120 3.00×3.00×4.00
119 76 SIEMENS 1 1 31 1 T1w, 3 BOLD 10, 51, 59, 74 11, 26, 56, 58 8 1.5 7564 3.12×3.12×4.00
120 77 SIEMENS 1 1 11 1 T1w, 2 BOLD 04, 05, 08, 24 4 1.5 2376 3.12×3.12×4.00
121 78 SIEMENS 1 1 28 1 T1w, 4 BOLD 01, 04, 05, 20 01, 18, 22, 26 7 1.5 5656 3.12×3.12×4.00
133 79 PHILIPS 2 1 24 2 T1w, 6 BOLD 06, 21, 22, 23 4 N/A 3480 4.00×4.00×4.00
140 80 PHILIPS 1 1 36 1 T1w, 9 BOLD 05, 27, 32, 33 4 2.0 7380 2.80×2.80×3.00
148 GE 1 1 12 1 T1w, 1 T2w,

3 BOLD
09, 26, 28, 33 4 1.8 3162 3.00×3.00×3.00

157 81 PHILIPS 1 1 4 1 T1w, 1 BOLD 04, 21, 23, 28 4 1.6 1485 4.00×4.00×3.99
158 82 SIEMENS 1 1 4 1 T1w, 1 BOLD 064, 081, 122, 149 4 2.0 1240 3.00×3.00×3.30
164 83 SIEMENS 1 1 4 1 T1w, 1 BOLD 006, 012, 019, 027 4 1.5 1480 3.50×3.50×3.50
168 84 SIEMENS 1 1 4 1 T1w, 1 BOLD 08, 27, 30, 49 4 2.5 2112 3.00×3.00×3.00
170 85–87 GE 1 4 48 1 T1w, 12 BOLD 1700, 1708, 1710, 1713 4 3.0 2160 3.44×3.44×3.40
171 88 SIEMENS 1 2 20 1 T1w, 5 BOLD control0[4,8,14], mdd03 4 3.0 2066 2.90×2.90×3.00
177 89 SIEMENS 1 1 4 1 T1w, 1 BOLD 04, 07, 10, 11 4 3.0 920 3.00×3.00×3.00
200 90 SIEMENS 1 1 4 1 T1w, 1 BOLD 2004, 2011, 2012, 2014 4 2.5 480 3.28×3.28×4.29
205 91 SIEMENS 1 2 12 1 T1w, 3 BOLD 01, 05, 06, 07 4 2.2 4103 3.00×3.00×3.00
208 92 SIEMENS 1 1 4 1 T1w, 1 BOLD 27, 45, 56, 69 4 2.5 1200 3.44×3.44×3.00
212 93,94 SIEMENS 1 2 40 1 T1w, 10 BOLD 07, 13, 20, 29 4 3.0 5808 3.12×3.12×4.00
213 95 SIEMENS 1 1 4 1 T1w, 1 BOLD 06, 10, 12, 13 4 2.0 1120 3.00×3.00×3.99
214 96 SIEMENS 1 1 4 1 T1w, 1 BOLD EESS0[06,31,33,34] 4 1.6 1364 3.44×3.44×5.00
216 97 GE 1 1 16 1 T1w, 4 BOLD

(ME)
01, 02, 03, 04 4 3.5 2688 3.00×3.00×3.00

218 98 PHILIPS 1 1 12 1 T1w, 3 BOLD 02, 07, 12, 17 4 1.5 6709 2.88×3.00×2.88
219 98 PHILIPS 1 1 14 1 T1w, 3 BOLD 04, 09, 10, 12 4 1.5 7807 2.88×3.00×2.88
220 99 PHILIPS,

SIEMENS
3 1 12 3 T1w, 3 BOLD tbi[03,05,06,10] 4 N/A 1728 3.00×3.00×4.00

221 SIEMENS 2 1 15 1 MP2RAGE,
9 FM, 3 BOLD

010[016,064,125,251] 4 2.5 9855 2.30×2.30×2.30

224 100 SIEMENS 12 6 399 4 T1w, 4 T2w,
10 FM, 79 BOLD

MSC[05,06,08,09] MSC[05,08,09,10] 5 2.2 88528 4.00×4.00×4.00

228 SIEMENS 1 1 4 1 T1w, 1 BOLD pixar[001,017,103,132] 4 2.0 672 3.06×3.06×3.29
229 101 SIEMENS 1 1 12 1 T1w, 3 BOLD 02, 05, 07, 10 4 2.0 4680 3.44×3.44×3.00
231 102 SIEMENS 1 1 12 1 T1w, 3 BOLD 01, 02, 03, 09 4 2.0 4548 2.02×2.02×2.00
233 103 PHILIPS 1 2 80 2 T1w, 10 BOLD rid0000[12,24,36,41] rid0000[01,17,31,32] 8 2.0 15680 3.00×3.00×3.00
237 104 SIEMENS 1 1 41 1 T1w, 5 BOLD 03, 08, 11, 12 01, 03, 04, 06 7 1.0 19844 3.00×3.00×3.00
243 40 SIEMENS 1 1 13 1 T1w, 1 BOLD 012, 032, 042, 071 023, 066, 089, 094 8 2.5 2884 4.00×4.00×4.00

Total 2176 120 202 304 551769
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Brain atlas
Default:
MNI152
nonlinear
asymmetric
v2009c

Skull-stripping
Atlas-based brain extraction is
performed on the reference T1w image

Spatial normalization
Non-linear, spatial
alignment to the brain
atlas

Brain tissue segmentation
The brain-extracted image is
classified into CSF, GM and
WM

Surface reconstruction
Surfaces of the cortical sheet
are reconstructed from the
anatomical information (T1w
reference, T2w)

Generate reference & brain mask
Time-points showing non-steady state artifacts (excess of

T1 contrast) are aligned and averaged to generate a
reference image in native space

Estimation of head-motion
Parameters representing bulk head motion (due to

involuntary drift, swallowing, etc.) of each timepoint with
respect to the reference are estimated

Slice-timing correction
(Optional) When the acquisition time of 2D axial slices of a

given timepoint is available, temporal dynamics are estimated
and all slices resampled to the mid-timepoint of that TR

Sample on surface
Sample the BOLD signal
on the surfaces
reconstructed from the
anatomical data

Confounds
Calculate and store nuisance regressors such as noise
components, motion parameters, global signals, etc.

INU Correction
The T1w reference is run through the
N4 algorithm to correct for intensity
nonuniformity (INU)

Fuse & Conform
All T1w images are aligned and averaged
to form a 3D reference image
NIfTI headers are checked for validity

Alignment to T1w reference
Registers activity in BOLD
voxels to anatomical location 

Susceptibility distortion
estimation

(Optional) Find a deformation
field that compensates for the

distortion, when adequate
acquisitions are present

Sample in template
Resample the BOLD
signal in atlas-space,
concatenating all
pertinent
transformations

Sample in native
"One-shot"
resampling of the
BOLD signal in its
original grid, applying
corrections

BOLD run
One run of one task (or resting-state)

time-series of blood-oxygen level
(BOLD) measurements

time
TR

T2-weighted

(Optional)
T1-weighted

One or more (e.g. in
longitudinal studies)
T1w images
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1.0.0 1.0.7

Critical

Poor

Acceptable

Excellent

DS000114 was rated
substantially worse as
the T1w masks
became too liberal
with the introduction of
a mask refinement that
worked correctly for
other datasets

DS000108 and DS000148 improved the
most after addressing particular issues

1 dataset
4 datasets
10 datasets
30 datasets
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Additional acquisitions
with alternative PE
directions available?

Field-map acquisition
available?

"Fieldmap-less"
correction enabled?

"PE-Polar" SDC

A highly constrained nonlinear
registration process is used to map
images with opposing realizations of
distortion in an intermediate,
undistorted reference.

Direct field map estimation

Certain MR schemes allow for the
estimation of a field inhomogeneity
map, that can then be used to
calculate the displacement along the
PE each voxel has suffered.

"Fieldmap-less" SDC

The T1w image can be used as
"anatomically unwarped" reference.
The intensities of the T1w image are
inverted to maximize the similarity to
the T2* contrast of BOLD images.

Additional acquisitions
Extra acquisitions are generally included
within the imaging protocol to inform the
susceptibility distortion correction (SDC)
process.

Original BOLD image

BOLD data acquired with EPI schemes
typically present nonlinear distortions along
the phase-encoding (PE) axis.

Yes Yes

Low-frequency distortion

SDC compensates for the small
displacements across the brain
caused by the low-frequency
component of the map of field
inhomogeneity

Drop-out
Regions where higher frequency
components of the field map are
present are not, generally,
recoverable. As a result, signal is lost
and a considerable amount of
distortion may remain.
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