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Abstract

The brain controls all physiological processes in the organism and regulates its
interaction with the external environment. The way the brain solves mental tasks is
determined by individual human features, which are reflected in neuronal network
dynamics, and therefore can be detected in neurophysiological data. Every human
action is associated with a unique brain activity (motor-related, cognitive, etc.)
represented by a specific oscillatory pattern in a multichannel electroencephalogram
(EEG). The connection between neurophysiological processes and personal mental
characteristics is manifested when using simple psycho-diagnostic tests (Schulte tables)
in order to study the attention span. The analysis of spatio-temporal and time-frequency
structures of the multichannel EEG using the Schulte tables allows us to divide subjects
into three groups depending on their neural activity. The personality multi-factor
profile of every participant can be individually described based on both the Sixteen
Personality Factor Questionnaire (16PF) and a personal interview with an experienced
psychologist. The correlation of the EEG-based personality classification with
individual multi-factor profiles provides a possibility to identify human personality by
analyzing electrical brain activity. The obtained results are of great interest for testing
human personality and creating automatized intelligent programs that employ simple
tests and EEG measurements for an objective estimation of human personality features.

Introduction 1

Every human activity involves a generation of particular patterns in 2

electroencephalographic (EEG) recordings with common properties for different 3

subjects. For instance, the perception of visual stimuli is known to induce an 4

event-related response of the neuronal brain network, in particular, a decrease in 5

alpha-wave (8–12 Hz) and an increase in beta-wave (15–30 Hz) activities. Such a 6

behavior reflects different cognitive functions, namely, the alpha-wave suppression is 7

associated with visual [1] or auditory [2] attention, while the beta-wave activation 8

relates to information processing [3] and an alerted state [4,5]. Similar cognitive activity 9

was observed in the group of motivation-dependent volunteers [6]. 10
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Universal EEG patterns were also identified in patients with pathological brain 11

activity, e.g., epileptic seizures. This type of activity is closely related to global 12

synchronization in the brain’s neuronal network [7], which is manifested as 13

high-amplitude oscillations with a specific waveform (series of well-pronounced spikes 14

and waves) and frequency [8]. Such spike-and-wave oscillations have similar properties 15

for different patients and are only determined by the type of epilepsy. 16

Different physiological and psychological states (e.g., sleep stages, arousal, etc.) are 17

known to possess specific properties of neural activity. For instance, motor-related brain 18

activity is manifested in the brain as a specific scenario of neural activity with 19

well-defined frequency and spatial localization. Particularly, it is characterized by event 20

related desynchronization (ERD) in alpha/mu- and beta-bands [9]. The same features 21

are observed during motor imagery in specially trained subjects [10,11]. However, 22

different scenarios occur in untrained subjects, where EEG patterns can vary from 23

subject to subject [12]. Such a variation is caused by the task complexity when each 24

subject chooses his own strategy to process the task, that results in individual 25

time-frequency and spatio-temporal EEG structures. Along with motor imagery, the 26

personality is more pronounced during mental task processing. It was also shown that 27

human personality causes individual scenarios during decision-making [13] and affects 28

learning performance [14]. 29

We suppose that individual features of human personality, when we wish to define 30

the ways of how a human processes mental tasks, affect neural network dynamics and 31

therefore can be seen in EEG recordings. It should be noted that this problem was 32

attacked yet in 1973. By analyzing resting states, Edwards and Abbott [15] tried to 33

reveal personality traits in EEG signals. However, their attempt was unsuccessful 34

because personality is not manifested when a person is at rest. Until now, this problem 35

remains open [16]. In this context, the research focused on the assessment of personality 36

based on the analysis of EEG data in the resting state has not reached consistent 37

conclusions. While some papers reported a successful assessment [17], others concluded 38

that resting state features could not be used [18]. Based on the previous studies, we 39

hypothesize that the features associated with personality traits are more pronounced 40

during cognitive activity. A similar assumption was made by Fink and Neubauer [19], 41

who studied extraversion personality of subjects by dividing them into two groups 42

according to a psychological test. 43

In the present work, we record multichannel EEG during the completion of mental 44

tasks to reveal individual features of the brain activity related to personality. In order 45

to verify our hypothesis, at the first stage, we analyze spatio-temporal and 46

time-frequency EEG structures of subjects who performed the Schulte table test, in 47

order to classify them according to their neural activity scenario. At the second stage, 48

the personality multi-factor profile is created for every participant on the base of both 49

the Sixteen Personality Factor Questionnaire (16PF) [20,21] and a personal interview 50

with an experienced psychologist. Finally, we compare the results of two classifications. 51

Materials and methods 52

Participants 53

Twenty two conditionally healthy men (33± 7 years), right-handed, amateur 54

practitioners of physical exercises, and non-smokers participated at the experiment. All 55

of them were asked to maintain a healthy life regime with an 8-hrs night rest during 48 56

hrs prior the experiment. All volunteers provided informed written consent before 57

participating in the experiment. The experimental procedure was performed in 58

accordance with the Helsinki’s Declaration and approved by the local Ethics Committee 59
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of the Yuri Gagarin State Technical University of Saratov. 60

Experimental design 61

The experiments were carried out with each subject independently. The participants 62

were not previously informed about the experiment conditions. The experimental 63

research was conducted by independent researchers of various specializations and 64

included two separate stages for each volunteer. 65

The first experimental stage was based on accepted techniques for the definition 66

of a person’s psychological type. For every participant, a personality multi-factor profile 67

was described on the base of both the Sixteen Personality Factor Questionnaire 68

(16PF) [20,21] and a personal interview with an experienced psychologist. The 16PF 69

contained 185 items organized into 16 primary factor scales and was adapted for 70

Russian language and cultural context features [22–26]. We used the fully automated 71

version of the 16PF, i.e., no paper-and-pencil materials were used. In this automated 72

version, the items appeared on the screen one by one. There was the option to return to 73

the immediately preceding item to correct inadvertent keying errors. However, the 74

participant was not able to browse through the items. The program saved raw scale 75

scores for every test and item responses. 76

The second stage of experimental work was carried out during the first half of 77

the day at a specially equipped laboratory where the volunteer was sitting comfortably. 78

The influence of external stimuli, such as extraneous sounds and bright light, was 79

minimized as much as possible. All participants performed a series of simple 80

psycho-diagnostic tests using the Schulte tables [27–30]) to study their attention 81

features (see Fig. 1 (a)), under direct supervision of a professional psychologist. The 82

Schulte table is a 5× 5 matrix of random numbers from 1 to 25, as shown in Fig. 1 (b). 83

The psychological task was to find all numbers in a reverse order. During these active 84

experimental phases, each person had to complete R = 5 tables. For every i testing 85

series, the completion time Ti was registered. Between the active phases, each volunteer 86

had a short resting interval referred to as a passive experimental phase. The 87

experimental design is shown in Fig. 1 (c). 88

Simultaneously, the EEG signals of the brain activity were recorded. The 89

multi-channel EEG data were acquired by using the amplifier BE Plus LTM 90

manufactured by the EB Neuro S.P.A., Italy (www.ebneuro.com). The data from 19 91

electrodes with two reference electrodes (A1 and A2) were recorded with a 8-kHz 92

sampling rate using a standard monopolar method. Adhesive Ag/AgCl electrodes 93

attached to a special pre-wired head cap were used. The ground electrode N was 94

located above the forehead, while two reference electrodes A1 and A2 were located on 95

the mastoids. The EEG signals were filtered by a band-pass filter with cut-off points at 96

1 Hz (HP) and 300 Hz (LP), and a 50-Hz Notch filter. During the experiment, a video 97

was recorded to save the time intervals corresponding to the active and passive 98

experimental phases. 99

The analysis of psycho-diagnostic tests 100

The current analysis of the 16PF answered items was based on 15 personality scales: 101

Warmth (reserved vs. warm), Emotional Stability (reactive vs. emotionally stable), 102

Dominance (deferential vs. dominant), Liveliness (serious vs. lively), Rule-Consciousness 103

(expedient vs. rule-conscious), Social Boldness (shy vs. socially bold), Sensitivity 104

(utilitarian vs. sensitive), Vigilance (trusting vs. vigilant), Abstractness (grounded vs. 105

abstracted), Privateness (forthright vs. private), Apprehension (self-assured vs. 106

apprehensive), Openness to Change (traditional vs. open to change), Self-Reliance 107
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Fig 1. Experimental design. (a) Illustration of experimental procedure. (b) Typical
Schulte 5× 5 table. (c) Experimental design: completion of R Schulte tables (i-th active
phase with length τi) followed by i-th passive phase with length ρi (waiting and
preparing for next task). (d) Layout of EEG electrodes arranged according to standard
international 10–20 system.

(group-oriented vs. self-reliant), Perfectionism (tolerates disorder vs. perfectionistic), 108

and Tension (relaxed vs. tense). All these scales were estimated for each participant. 109

The Schulte tables are frequently used as a psychodiagnostic test for studying 110

properties of human attention. This is one of the most objective methods to determine 111

working effectiveness and ability, as well as resistance to external interference. The time 112

τi of the i-th table completion was used to evaluate three standard test personal criteria: 113

(1) work efficiency WE (the arithmetic mean of the table completion time), (2) 114

warming-up work indicator WU (the ratio of the working time for the first table to 115

WE), and (3) psychological stability PS (the ability to sustain the operational activity 116

for a long time). These criteria are described by the following formulas: 117

WE =
τ1 + τ2 + · · ·+ τR

R
, (1)

118

WU =
τ1

WE
, (2)

119

PS = τR −
1

WE
. (3)
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The work efficiency illustrates the attention consistency and performance. The resulted 120

WU close to or lower than 1 indicates good warming-up, while 1 and higher means that 121

the subject needs longer preparation time (warm-up) for the main work. The PS results 122

close to 1 and less indicate a good psychological stability. 123

EEG analysis 124

We analyzed the EEG signals recorded by 19 electrodes placed on the standard 125

positions of the 10–20 international system [31] (see Fig. 1, (d)), using the continuous 126

wavelet transform. The wavelet energy spectrum En(f, t) =
√
Wn(f, t)2 was calculated 127

for each EEG channel Xn(t) in the frequency range f ∈ [1, 40] Hz. Here, Wn(f, t) is the 128

complex-valued wavelet coefficients calculated as [32] 129

Wn(f, t) =
√
f

t+4/f∫
t−4/f

Xn(t)ψ∗(f, t)dt, (4)

where n = 1, ..., N is the EEG channel number (N = 19 being the total number of 130

channels used for the analysis) and “*” defines the complex conjugation. The mother 131

wavelet function ψ(f, t) is the Morlet wavelet often used for the analysis of 132

neurophysiological data, defined as [32] 133

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)

2/2, (5)

where ω0 = 2π is the central frequency of the mother Morlet wavelet. 134

Energy spectrum En(f, t) was considered separately in the following frequency bands: 135

delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta–1 (13–23 Hz), beta–2 (24–34 Hz), 136

and gamma (34–40 Hz) [33]. For these bands the values of wavelet energy Enδ (t), Enθ (t), 137

Enα(t), Enβ1
(t), Enβ2

(t), and Enγ (t) for each n-th EEG channel were calculated as 138

Enδ,θ,α,β1,β2,γ(t) =
1

∆f

∫
f∈δ,θ,α,β1,β2,γ

En(f, t)df. (6)

As a result, we considered the percentage of the spectral energy distributed in these 139

bands, and calculated coefficients 140

enδ,θ,α,β1,β2,γ(t) = Enδ,θ,α,β1,β2,γ(t)/En0 (t) (×100%), (7)

where E0(t) was defined as the whole energy and calculated as 141

En0 (t) =
1

∆f

40Hz∫
1Hz

En(f, t)df. (8)

Finally, to describe the ratio between high frequency and low frequency brain 142

activity for each channel, we introduced coefficient εn defined as 143

εn = EnHF/E
n
LF, (9)

where 144

EnHF (t) =
1

∆f

∫
f>10Hz

En(f, t)df, (10)

145

EnLF (t) =
1

∆f

∫
f<10Hz

En(f, t)df. (11)
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The coefficients εn were calculated for each EEG channel for both the active and the 146

passive phases. The obtained values of εn were averaged over the channels located on 147

the left and right hemispheres, defined respectively as 148

εLH =
1

NLH

∑
n

EnHF
EnLF

, n = {Fp1,F3,F7,C3,T3,P3,T5,O1}, NLH = 8, (12)

149

εRH =
1

NRH

∑
n

EnHF
EnLF

, n = {Fp2,F4,F4,C4,T4,P4,T8,O2}, NRH = 8. (13)

Results 150

In the present work, we calculated the values of enδ,θ,α,β1,β2,γ
(t) using Eq. (7)), for 151

n = 1, . . . 19 EEG channels, which determined the percentage of the spectral energy 152

belonging respectively to delta, theta, alpha, beta–1, beta–2, and gamma frequency 153

bands, and characterized the degree of participation of the neural ensemble, located in 154

the vicinity of the n-th recording electrode, in generation of the corresponding type of 155

activity [7]. In Fig. 2 (b), we plot the values of eF4δ,θ,α,β1,β2,γ
(t) calculated for a single 156

EEG trial recorded from the frontal lobe, specifically, from the F4 electrode. One can 157

see, that when the active phase was replaced by the passive phase, the values of eF4δ,θ(t) 158

calculated for low frequencies (namely, delta, and theta frequency bands) rapidly 159

increased, while the values of eF4α,β1,β2,γ
(t), calculated for alpha, beta–1, beta–2, and 160

gamma frequency bands, pronouncedly decreased. Such a dynamical behavior repeated 161

itself during subsequent completions of the Schulte tables. 162

Figure 2 (c) shows the mean values of eF4δ,θ,α,β1,β2,γ
over the time intervals 163

corresponding to N = 5 consecutive active and passive sessions. The distinctive features 164

between the mean values obtained for the active and passive phases are displayed in 165

Fig 2 (d), where the differences ∆eF4 between the mean values eF4 associated with the 166

active and passive phases are plotted for each frequency band. One can see that in the 167

low frequency range, which includes delta and theta frequency bands, such difference is 168

positive (∆eF4 > 0), while in the high frequency range (alpha, beta–1, beta–2, and 169

gamma frequency bands) it is negative (∆eF4 < 0). 170

According to this result, one can easily distinguish active and passive phases, based 171

on the consideration of EEG properties, i.e., by comparing the energy of the spectral 172

components belonging either to high (HF) or low (LF) frequency bands. For this 173

purpose, it is convenient to use coefficient εn (Eq. 9), which reflects the ratio between 174

the values of spectral energy in the high and low frequency ranges. In particular, for the 175

considered F4 electrode, the values of εF4, shown in the inset histogram in Fig. 2 (d)) 176

are significantly lower during the passive phase than during the active phase. 177

Thus, the time frequency analysis performed for a single EEG recording 178

demonstrates a pronounced change in the ratio between the energy of high and low 179

spectral components. At the same time, along with the features of time-frequency 180

structure revealed in a single EEG, the spatio-temporal features of electrical brain 181

activity also play an important role. This is mostly reflected in hemispheric differences 182

commonly observed in electrical activity of the brain associated with the completion of 183

mental tasks [34]. For instance, having considered the energy value calculated in alpha 184

and beta–1 frequency bands during the active phase, one can see that these types of 185

activity are localized in opposite hemispheres. Figure 2 (e) shows typical distributions 186

of the spectral energy during the active phase in alpha and beta–1 frequency bands. It 187

should be noted, that such a behavior of alpha activity is typical for arithmetic and 188

visual-spatial tasks [35]. 189

In order to understand this asymmetry, we considered coefficients εLH (12) and εRH 190

(13), which were obtained by averaging coefficients ε calculated for EEG channels, 191
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Fig 2. Quantification of EEG spectral properties. (a) typical EEG fragments,
recorded by electrodes, arranged symmetrically in left and right hemispheres in frontal
(F3, F4), central (C3, C4), and parietal (P3, P4) areas during active and passive phases.
(b) Changes in spectral energy in different frequency bands. (c) Spectral energy
averaged over N = 5 active and N = 5 passive phases (data are shown as mean ±SD).
(d) Change in spectral energy during the transition from active to passive phase,
calculated for each frequency band. ε defines the ratio between spectral energy in high
(f > 10 Hz) and low (f < 10 Hz) frequency bands. (e) Typical distributions of spectral
energy in alpha and beta–1 frequency bands during the active phase.

belonging to the right and left hemispheres, respectively. In Fig 3 (a), the values εRH 192

and εLH are shown for each of the 20 participants in the active (closed dots) and passive 193

(open dots) phases. Having considered the obtained values, especially the difference 194
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between the ones calculated for active and passive phases, one can see that the subjects 195

can be promptly divided into three groups. In Fig. 3 (a), the values εRH and εLH are 196

shown for each group by different symbols. In group I (circles), coefficients εRH and εLH 197

have practically the same values during the active and passive phases. In group II 198

(squares), the active phase is associated with an increase in high-frequency activity in 199

the right hemisphere and the passive phase with an increase in high-frequency activity 200

in the left hemisphere. In group III (triangles), the transition from the active to the 201

passive phase is associated with a pronounced increase in εRH and a decrease in εLH. 202

In Fig. 3 (b), the spatio-temporal representations of the values ε are shown for active 203

and passive phases for each of the three groups. One can see that for group I, the brain 204

activity during the active phase is characterized by hemispheric symmetry. In the 205

passive phase, although the spatio-temporal structure of brain activity changes, the 206

hemispheric symmetry persists. In group II, the spatio-temporal structure is 207

significantly different. One can observe hemispheric asymmetry in active and passive 208

phases, with high-frequency activity dominance during the passive phase. In group III, 209

the hemispheric symmetry is observed. However, the high-frequency activity prevails in 210

the right hemisphere as clearly shown in Fig. 3 (b). Thus, the difference in the brain 211

activity in active and passive phases reveals itself as a change in the symmetry caused 212

by a decrease in ε in the left hemisphere during the transition from the active to the 213

passive phase. 214

The distinctive features of brain activity during the active and passive phases, 215

observed in these three groups, are shown in Fig. 3 (c). The horizontal yellow bars 216

indicate the median of ε calculated for the left (LH) and right (RH) hemispheres during 217

the active and passive phases. In group I, the values of ε remain practically the same for 218

different hemispheres in both the active and passive phases. In group II, the active 219

phase is characterized by a sharp increase in ε in the right hemisphere (εRH > 0.5 vs 220

εLH < 0.35). In the passive phase, the dynamics is reversed, namely, an increase in ε is 221

observed in the left hemisphere (εRH < 0.4 vs εLH > 0.45). Finally, in group III, during 222

the active phase, ε in the right hemisphere is slightly higher than that in the left 223

hemisphere (εRH > 0.45 vs εLH < 0.45). During the passive phase, such a difference 224

becomes greater (εRH > 0.6 vs εLH < 0.35). 225

Discussion 226

It is known that the completion of mental tasks is associated with changes in neural 227

activity, which can be detected in the EEG power spectrum. The role of low-frequency 228

delta activity in mental tasks was studied in [36], where the authors reported on 229

increasing delta EEG activity during mental tasks, associated with enhancing attention. 230

Later [37], a relation between delta-oscillations and the performance of mental tasks was 231

also identified. On the other hand, earlier works [38,39] highlighted an increase in 232

theta activity during mental efforts. Recently, a change in the activity level in the 233

low-frequency θ-band was used to evaluate the dynamics of mental workload [40]. The 234

relation between alpha activity and the completion of mental tasks was demonstrated 235

yet in 1984 by Osaka [35], who detected changes in the amplitude and location of the 236

peak alpha frequency in the power spectrum. Later, a significant role of alpha activity 237

in memory and cognitive processes was identified [41]. Changes in the energy of 238

high-frequency brain rhythms are usually related to cognitive activity, in particular, 239

mental task completion [42]. For instance, the account of gamma activity for 240

classification of mental tasks improves the accuracy [43]. 241

According to Fig. 3 (c), one can see that electrical brain activity in each group 242

follows a particular scenario defined, on one hand, by the lateralization of the brain 243

function, and on the other hand, by specific transitions between active and passive 244
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phases. In order to quantitatively describe the observed scenarios, we calculated 245

k = εRH/εLH, which reflects a degree of hemispheric asymmetry. These values are 246

plotted for each group in Fig. 3 (d). One can see that group I is characterized by 247

hemispheric symmetry in active and passive phases, which remains unchanged during 248

active-passive phase transition (∆k ≈ 0), where ∆k = kpassive − kactive. For other 249

groups, asymmetry and transition are observed between active and passive phases, and 250

plotted in terms of k which can be described as ∆k < 0 and ∆k > 0, respectively. 251

The participants belonging to each of the three groups were subjected to 252

psycho-diagnostic tests (see Methods). As a result, the values of WE, WU, and PS, 253

which define the average time of task completion, average performance, and attention 254

preservation, respectively, were estimated for each subject. In addition, the personality 255

of each subject was described on the basis of The Sixteen Personality Factor 256

Questionnaire. According to the results of the psycho-diagnostic test, the subjects were 257

divided into three groups, which matched the classification obtained with the EEG 258

analysis based on the psychological description of the Schulte tables performance. 259

The subjects from group I demonstrated bilateral EEG activity in both hemispheres 260

during the Schulte tables tests. Simultaneously these subjects demonstrated a 261

medium-low efficiency when performing the task. For them, the average time of the task 262

completion was WE = 40.2 seconds, the average performance was WU = 1.07 (the 263

target value was 1), and attention preservation was PS = 0.97 (the target value was 1). 264

The subjects from this group could immediately perform unknown tasks and maintain 265

their working efficiency at a relatively high rate, above a medium-low level. The 266

psychological decryption of the tests included the remarks about the creativity in the 267

test performance and fast switches to new tasks. In the personal test, such subjects had 268

a pronounced tendency to work alone, high intellect, analytical mind, critical thinking, 269

intolerance to uncertainty, and a delay in decision making. Moreover, they exhibited 270

self-control, a lack of anxiety, a pronounced leadership, and a desire to dominate in the 271

group. We hypothesize that the creativity and the attempt to optimize their work led to 272

a decrease of their working efficiency. 273

The subjects in group II tried to develop a strategy to simplify the task performance. 274

During the accomplishment of the first task, a maximum lateralization of high-frequency 275

activity was present, i.e., the activity in the right hemisphere was much more 276

pronounced. This means that during the first task, the strategy was not yet developed. 277

During the next tasks, the burden in the right hemisphere in these subjects was reduced. 278

As a result, the subjects from group II demonstrated higher working efficiency than the 279

subjects from group I. The average time of task completion was WE = 33.6 seconds, the 280

attention preservation was PS = 0.86, and the average performance was WU = 1.07. 281

These subjects needed little time for adaptation and did not tire, being capable to 282

effectively maintain a high working efficiency for a long time. Their personal profiles 283

harmoniously combined high scores in intellect, emotional maturity, and self-control. 284

Unlike group II, the subjects from group III accomplished the task without any 285

attempts to develop a strategy to simplify it. This was confirmed by the psychological 286

test. Their working efficiency remained high: the average time of the task completion 287

was WE = 33 seconds, the attention preservation was PS = 0.9, and the average 288

performance was WU = 1.24. We assume that the subjects from this group would have 289

difficulties to maintain a good working efficiency for a long time. Their personal tests 290

showed a pronounced preference to work alone, low self-control, intolerance to 291

uncertainty, and a delay in decision-making, which can be manifested by anxiety. They 292

also demonstrated high intellect, an analytical mind, critical thinking, and a spirit for 293

experimentation. 294

Figure 4 illustrates the correlation between the results obtained via the EEG study 295

and the results of psycho-diagnostic tests and 16PF Questionnaire. The diagram In 296
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Fig. 4 (a) shows the results of the Cattell’s 16 Personality Factors Test for three groups. 297

The data are displayed as the values of all primary factors of the 16PF Questionnaire, 298

averaged over all subjects in each group. One can see that most of the factors have 299

similar values in each group. At the same time, for some factors the corresponding 300

values vary significantly from one group to another. Among these factors, one can 301

distinguish Warmth (A), Reasoning (B), Emotional Stability (C), and Dominance (E), 302

which are tabled and compared with the results of the EEG study and the 303

psycho-diagnostic test in Fig. 4 (b). 304

According to the results of personality classification based on the psycho-diagnostic 305

test, one can see that different features of the EEG structure, i.e., lateralization and the 306

ratio between energy of high- and low-frequency waves, reflects different personal 307

qualities. It is important to note, that while EEG activity varied among different 308

groups, it represented the same scenario inside each group. A similar behavior was 309

observed in psychological classification, where three groups of subjects with similar 310

personal profiles were identified. 311

Usually, majority of the scientific publications which aimed to reveal the EEG 312

signatures of the cognitive activity describe the scenario, which is repeated from one 313

subject to another. At the same time, we show that the differences occurred from one 314

subject to another, can also be systematized. Different scenarios of cognitive activity 315

can be identified among the subjects depending on the personality. 316

Our results confirm the hypothesis raised by Vingiano and William [44] about the 317

existence of a relation between brain hemisphericity and personality. Our results are 318

also in accordance with the work of [45], where the anxiety-related properties of 319

personality, estimated via Cattel’s technique, were shown to correlate with the spectral 320

power density (SPD) of EEG rhythms, in particular, beta–1 and beta–2. The authors 321

claimed that the intense beta EEG rhythm correlates with highly situational and 322

individual anxieties. At the same time, an individual’s emotional stability was found to 323

be related to the alpha rhythm power. 324

Thus, the obtained results provide new knowledge in understanding the features of 325

human personality by analyzing the relation between spatio-temporal and 326

time-frequency EEG structure. 327

Conclusion 328

We have analyzed the correlation between neurophysiological processes and personal 329

characteristics during complicated mental tasks using a series of simple 330

psycho-diagnostic tests to study human personality (the Schulte tables). To solve this 331

task, we have considered spatio-temporal and time-frequency structures of multichannel 332

EEGs in humans, who completed the Schulte tables. We have shown that EEG activity 333

during the mental tasks varied from one subject to another. At the same time, three 334

groups of subjects exhibiting similar features of neural activity were selected. The data 335

of all subjects were independently analyzed with the help of psycho-diagnostic tests in 336

order to study their attention features and classify their personality profiles. As a result 337

of this psychological classification, the subject were divided into three different groups. 338

We have shown that the classification obtained via EEG study strongly correlated with 339

the results of psycho-diagnostic tests. This, in turn, provided a possibility to 340

characterize personality profiles based on the analysis EEG data. 341

We believe that our results can help in testing and diagnostic of personal skills and 342

abilities to perform complex operational tasks. On the base of our findings, automatic 343

intelligent systems can be developed to examine subject’s strong and weak points for 344

high demanding purposes. 345
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Fig 3. Three scenarios of cognitive activity during mental tasks processing.
(a) Relation between energy of high- and low-frequency spectral components in the left
(εLH) and right (εRH) hemispheres, calculated for active (closed dots) and passive (open
dots) experimental phases. The distributions are shown for three subjects, each
belonging to a particular group. (b) Coefficient ε showing the relation between energies
of high-and low-frequency spectral components, calculated for each EEG channel during
active (left-hand columns) and passive (right-hand columns) phases. (c) The ratio ε
between energies of high-and low-frequency spectral components calculated for EEG
channels belonging to left (LH) and right (RH) hemispheres during active and passive
phases: medians (yellow bars), 25–75 percentiles (box), and outlines (whiskers). (d) The
ratio k between the values of ε calculated for left and right hemispheres during active
and passive phases: medians (yellow bars), 25–75 percentiles (box), and outlines
(whiskers). Groups I and III contain n = 8 subjects, group II contains n = 6 subjects.
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Fig 4. Sixteen personality factor questionnaire. (a) Values of primary factors of
16PF Questionnaire, averaged over subjects in each group: group I (dotted line), group
II (solid line), and group III (dashed line). The dashed area highlights the factors for
which significant changes between the groups are observed. (b) Correlation between
results obtained via EEG and results of psycho-diagnostic tests and 16PF Questionnaire.
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