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Abstract

Neuroscientific data analysis has classically involved methods for statistical signal and image
processing, drawing on linear algebra and stochastic process theory. However, digitized neu-
roanatomical data sets containing labelled neurons, either individually or in groups labelled by
tracer injections, do not fully fit into this classical framework. The tree-like shapes of neurons
cannot mathematically be adequately described as points in a vector space (eg, the subtrac-
tion of two neuronal shapes is not a meaningful operation). There is therefore a need for new
approaches. Methods from computational topology and geometry are naturally suited to the
analysis of neuronal shapes. Here we introduce methods from Discrete Morse Theory to extract
tree-skeletons of individual neurons from volumetric brain image data, or to summarize collec-
tions of neurons labelled by localized anterograde tracer injections. Since individual neurons are
topologically trees, it is sensible to summarize the collection of neurons labelled by a localized
anterograde tracer injection using a consensus tree-shape. This consensus tree provides a richer
information summary than the regional or voxel-based ”connectivity matrix” approach that has
previously been used in the literature.

The algorithmic procedure includes an initial pre-processing step to extract a density field
from the raw volumetric image data, followed by initial skeleton extraction from the density
field using a discrete version of a 1-(un)stable manifold of the density field. Heuristically, if the
density field is regarded as a mountainous landscape, then the 1-(un)stable manifold follows the
”mountain ridges” connecting the maxima of the density field. We then simplify this skeleton-
graph into a tree using a shortest-path approach and methods derived from persistent homology.
The advantage of this approach is that it uses global information about the density field and
is therefore robust to local fluctuations and non-uniformly distributed input signals. To be
able to handle large data sets, we use a divide-and-conquer approach. The resulting software
DiMorSC is available on Github[40]. To the best of our knowledge this is currently the only
publicly available code for the extraction of the 1-unstable manifold from an arbitrary simplicial
complex using the Discrete Morse approach.

1 Introduction

Understanding the neuronal connectivity architecture of brains is an important goal in neuroscience.
The primary approach brought to bear on this goal is the reconstruction of neuronal projections
following injections of tracers within the brain. With the development of high throughput pipelines
and technologies that can deal with large digital data sets, it is now possible to analyze whole
brain datasets at a cellular resolution. However, there is a need for developing new methods that
can facilitate the modeling and understanding of neuronal morphology and thus aid in extracting
connectivity information from brain image volumes. The typical approach is to summarize the
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results in the form of regional, or voxel to voxel ”connectivity matrices” or directed graphs, with the
source region given by the tracer injection site and the target region containing tracer labelled axons
or retrogradely labelled neurons. However, this connectivity matrix summary loses all information
about the tree-like structure and shape of the projection neurons that constitute the tracer-labelled
set. Here we introduce a conceptually distinct summary of an anterograde tracer injection (which
labels a collection of neuronal somata concentrated at the injection site, together with the projecting
axons and dendrites) in the form of a consensus tree that provides a geometrically and topologically
meaningful summary of the collection of neurons labelled by the tracer injection.

The methodology developed here is general and applies also to the idealized case of a single
labelled neuron, and therefore provides an additional method for skeletonization individually la-
belled neurons from volumetric image data sets. A large number methods exist for automatic
neuron tracing, mostly for reconstructing single neurons, such as [4, 6, 8, 10, 13, 14, 24, 28, 29, 35,
36, 44, 43, 47, 46, 49, 48, 50, 55, 57, 58, 59, 61, 60]; see also surveys [2, 19, 31] and book [5] for
more comprehensive discussions on neuron tracing methods. The advantage of the Discrete Morse
based skeletonization for single neurons arises from the usage of global (as opposed to purely local)
information, leading to reconstructions that have robustness to local variations and non-uniform
signal distributions.

Current work. In this paper, we propose a pipeline to summarize the 3D image stacks based on
topological methods. We apply the pipeline to trace neuronal projections following the anterograde
injection of AAV tracer. We also provide the details about the accompanying software, DiMorSC.
Our pipeline has three stages (see Figure 1). It first performs a pre-processing step and converts
the input 3D image stack into a density field. It then extracts the skeleton from the density field
using the topological concept of 1-(un)stable manifolds from discrete Morse theory. Previously, 1-
stable manifolds have been successfully applied to extract graph skeletons from 2D/3D data, such as
extracting cosmic web from the simulated density of dark matter in R3 [45] and the reconstruction of
road networks from a large collection of GPS trajectories [52]. We adapt this idea for summarizing
3D mesoscopic AAV tracer images. In order to handle the relative large size of image data, we
propose a scalable divide-and-conquer strategy to compute this skeleton. Finally, after an initial
graph skeleton is extracted, we develop a shortest path based approach to convert the skeleton to
a summary tree which is rooted at the injection site. We further provide a simplification strategy,
via ideas from the persistent homology from computational topology, to control the level of details
of the final summarization. Our proposed method works directly on 3D image volumes. Leveraging
the topological structure behind the density field, our method uses the global information from the
input images and thus can model and summarize global connectivity paths resulting from tracer
injections. It is robust to noise as well as non-uniformly distributed input signals.

The implementation of the algorithm presented here, is based on discrete Morse theory, which
extracts the skeleton in a combinatorial manner rather than in a numerical manner. Overall, our
approach provides a unified framework with a mathematical foundation (based on discrete Morse
theory combined with topological persistence) for extracting a tree skeleton from input images.
The combinatorial nature of our algorithm, combined with the systematic simplification strategy,
allow us to extract a principal backbone from noisy input images containing complex signals.
We compare results obtained from the topological approach to existing methods for skeletonization
single neurons and show that it provides comparable or better performance (Section 4.1). We apply
these methods to the novel summarization of anterograde tracer injection data from the Mouse
Brain Architecture Project to map whole-brain connectivity at a mesoscopic scale. Compared
with previous regional connectivity based data summaries, the tree-summary retains geometrical
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and topological information about the projection patterns lost in the connectivity matrix summary.
This should be also useful in connecting the tracer-injection data with single neuron projection data
from the injection sites, as the tree summary provides a consensus tree structure that captures
information about the population of neurons with somata localized at the injection site. The
resulting software is publicly available at [40].

The remainder of the paper is organized as follows: Below we first briefly discuss some related
work. In Section 2 we introduce our pipeline for neuron tracing and describe details of our method.
In Section 3, we discuss the divide-and-conquer strategy to handle large data set that cannot
fit in the available memory. Finally in section 4, we first demonstrate the effectiveness of our
proposed software on single neuron reconstruction that we tested on datasets freely available from
the DIADEM challenge [39]. We then show results on summarization of anterograde tracer injetions.

Related work. There is a large literature for single neuron reconstruction e.g [4, 6, 8, 10, 13, 14,
24, 28, 29, 35, 36, 44, 43, 47, 46, 49, 48, 50, 55, 57, 58, 59, 61, 60]. We refer the readers to surveys
[2, 19, 31] and a book [5] for more comprehensive discussions on (single) neuron tracing methods,
and we only mention a few representative ones below. We note that many of the algorithms are
incorporated into the publicly available visualization platform Vaa3D [41].

Most of the neuron tracing algorithms either grow a neuron sequentially (such as growing a tree
from the root), or connect (certain special) points in a non-sequential manner. A popular class of
sequential tracing algorithms uses a shortest-path based approach, such as APP[37], APP2 [54] and
SmartTracing [12]. These methods start with a given seed point and grow it into a tree by connecting
new nodes to the existing tree through the shortest paths. For example, in APP2, all pixels with
intensity lower than a predefined threshold are treated as background and the foreground pixels are
processed by a fast marching method, which computes for every pixel its shortest distance to the
background. The distance field of foreground is then used as the new 3D image, and intuitively, the
intensity of pixels lying in the middle of a neuron cell is higher than those close to the boundary.
After fast marching, APP2 sets a base point and computes the shortest path tree to the base point
as an initially reconstructed neuron tree. The tree is then pruned according to the lengths of the
branches. In SmartTracing [12], the result is further improved by a machine learning approach
that better classifies a pixel as background, foreground or unknown. APP2 is efficient, however,
the algorithm could stop at a gap in the signal. The authors resolve this issue by developing a
search procedure to explore around the gap. The machine learning based SmartTracing potentially
generates more accurate results, but is significantly slower than APP2. For our comparisons, we
assume that APP2 and SmartTracing represent the state-of-the-art algorithms for single neuron
tracing.

The tracing can also be performed sequentially only at the branch level. For example, in the
active contour based approach [53] proposed by Wang et. al., a gradient vector is computed for
each pixel in 3D. The authors then define an energy function using the gradient vector as the
external force and a smoothness function as the internal force. The method iteratively identifies
a foreground point using Frangis vesselness measure [23] and grows it to an arc on the neuron
tree while minimizing the energy function. Upon obtaining a maximal arc, all nearby points are
removed and this growing procedure is repeated until all foreground points are traced. Compared to
the global sequential tracing methods such as APP2, this type of “semi-sequential tracing” (at the
branch level) may be more accurate in generating individual branches, but assembling the branches
into a single tree can be challenging.

The above approaches usually require the segmentation of the foreground from the background
within the image. The quality of the reconstruction is dependent on the quality of this segmenta-
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Input:

2D/3D Images

Step 1: Step 2: Step 3:

Image pre-processing Skeleton extraction
and Simplification

Tree summary extraction
and Simplification

Output: Density field Output: Graph G ⊂ I Output: Summary tree

ρ : I → R T ⊂ I

Figure 1: Computational fipeline for our tree-summarization framework of an input image.

tion. For images that are noisy, i.e., where intensity of signals are not always homogeneous, the
segmentation quality often is problematic and tends to cause gaps and can even lead to broken
branches.

As described in Our work, our approach resolves this issue by taking a global view of the
entire data, and traces the neuron based on the topological structure behind the given input 3D
image data. Our neuron tracing approach builds upon the algorithm developed by Yuan et al.
[56], which traces neurons by connecting the critical points in the input. However, there are major
differences. (1) In Yuan et al, the critical points are connected by the trace induced by moving the
saddle points along the gradient using a numerical method, while our approach uses the topological
concept of “1-stable manifold” from Morse theory to connect them in a theoretically well-founded
manner. Furthermore, we use the discrete Morse theory to compute such 1-stable manifolds in a
robust combinatorial manner (in contrast to a numerical approach). (2) Yuan ]it et al simplifies the
initial result using a shortest path tree and further prunes the tree by an erosion scheme, while our
approach uses topological persistence simplification in a systematic manner, and less important
features are removed first. In summary, our approach provides a unified, conceptually simple,
and mathematically sound framework to extract a tree skeleton from input image volumes. The
combinatorial nature of our algorithm, combined with the systematic simplification strategy, allows
us to extract the main backbone from noisy input images with complex signal content.

From a computer science perspective, our apporach builds upon prior work on using discrete
Morse based methodology for extracting skeletons of images; see e.g, [1, 16, 42, 45, 52]. Our
software is based on the work of Gyulassy [1, 26], of Sousbie [45], and Wang et al. [52]. Our
algorithm focuses on the specific case of extracting graph skeletons from input data, and simplifies
the previous approaches for this specific case (e.g., we do not need to handle the cancellation of
edge-triangle pairs during the simplification stage). Our implementation can also take an arbitrary
simplifical complex as input, while the previous implementation works for 2D / 3D images or
Delaunay triangulations (which is a specific type of simplicial complex). This apporach of using
an arbitrary simplicial complex input, improves the efficiency in handling large images, as the
arbitrary simplicial complex allows us to consider only regions around signal, which can be rather
sparse within the input images. Finally, this graph skeleton reconstruction step is combined with
a tree-extraction and simplification step to produce the final summary.

2 Method

2.1 Overview

Our pipeline accepts 3D images and outputs a geometric tree in three steps as shown in Figure 1:
image processing to convert the input image to a density field f : I → R defined on the 3D cube
I; extracting graph skeleton G from f , and tree-summary T extraction and simplification from G.
An example illustrating the pipeline is given in Figure 2.
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(a) (b) (c) (d)

Figure 2: Pipeline overview: the Input image volume in (a) is first converted to the 3D density map shown
in (b). (c): initial graph extraction, and (d): tree extraction and simplification (red and blue trees are the
final two output trees, reconstructing two neurons); all in 3D.

Step 1: Image pre-processing. This step converts the input from 3D image stacks to a density
(grey scale) map. The density map ρ : I → R is a function defined on the 3D cube I = [0, 1]3. In
the discrete case, this domain I is represented by a cubic grid, which is further triangulated and
represented by a so-called simplicial complex K, consisting of a set of vertices, edges, triangles and
tetrahedra. However, as we will see later: (i) we only need the vertices, edges and triangles of K
for our graph skeleton and tree-summary extraction; thus from now on, we assume that K consists
of only the vertices, edges and triangles from the triangulation of I. (ii) In cases when the input
image is large in size, we can restrict K to a sub-complex of it which intuitively captures where
signals lie. Given a triangulation K of I, the density map ρ is defined at vertices of K, and in what
follows, we sometimes refer to it as the density map ρ : K → R. Details of this step are described
in Section 2.2.

Step 2: Graph skeletonization. This step extracts the graph skeleton of the density map ρ :
K → R using the so-called 1-stable manifolds of f , which are computed via the discrete Morse
theory. Intuitively, if we view the graph of the density map as a terrain defined on R3 × R,
the 1-stable manifolds capture the network of “mountain ridges” of this terrain, representing the
“center curves” of the local high density regions (corresponding to signals). This concept and its
computation will be described in Section 2.3.

Step 3: Tree extraction and summarization. Given the graph skeleton G extracted in Step
2, this step converts it to a tree summary T : This tree can be rooted at a specific choice of root if
desired (say the injection site in the input AAV tracer image). We further develop a simplification
strategy to simply this tree and control its level of details in a systematic manner, using ideas from
topological persistence. Details will be presented in Section 2.4.

2.2 Step 1: Preprocessing

The input is a 3D image volume I consisting of a stack of 2D images. The purpose of this step
is to extract a density map from ρ : I → R, where the value of I is given at discrete grid points
(pixels of the input images) and indicates the strength of the signal at this point.

The input image can be of different types. Potentially different image pre-processing techniques
will be needed to handle different type of input images. The procedure we describe here was
developed for fluorescent image stacks of mouse brains injected with a tracer substance (Adeno-
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Figure 3: Preprocessing results for green (top two images) and red AAV tracer (bottom two images). The
green and red signals result from fluorescent tracers visible in part of a tracer injected mouse brain. The
black and white images are resulting density maps.

Associated Viruses carrying a Green or Red Fluorescent Protein payload) scanned on a Whole
Slide Imager (a Hamamatsu Nanozoomer). The raw data consists of a 3D stack of RGB images, 12
bits/color channel, in-plane resolution of 0.46µ and section spacing of 40µ. The preprocessing for
quantifying the green and red tracer are performed separately. For the green tracer, a Laplacian
of Gaussian(LoG) filter is applied first to increase the signal to background ratio and sharpen
the tracer signal. Then the image is converted to HSV and LAB colorspace to filter out noisy
background. Blood vessel artifacts are detected and removed using Circle Hough transform. The
images are registered onto a reference atlas using procedures described elsewhere.

For the red tracer, due to the presence of autofluorescence that is not related to the signal[7] in
the brain, a simple k-nn clustering strategy was used to separate tracer signal from autofluorescence
noise. In addition, the autofluorescence can be regarded as shot noise in direction perpendicular to
the sections, so a median filter is also used. An example of the preprocessing result is demonstrated
in Figure 3. We refer to the initial density field after this pre-processing as ρ1 : I → R.

For later steps, we assume that our input domain is modeled by a triangulation K (consisting
of vertices, edges, and triangles 1) instead of having cubic cells. We consider the pixels as points on
a regular grid and triangulate each cubic cell (the exact triangulation is not important, as long as
triangulating neighboring cubes gives rise to consistent triangulation of the common (square) face
they share).

Now we have a triangulation K of I with an initial density function ρ1 : vert(K) → R defined
at vertices vert(K) of K (which are the grid points in I). By default, our algorithm performs one

1Strictly speaking, the triangulation of the 3D domain also include tetradedral cells. However, for our later
algorithm, only the so-called 2-skeleton, which consists of vertices, edges and triangles, is needed and thus computed.
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more smoothing step, by smoothing ρ1 with a Gaussian kernel within a small neighborhood of each
point. Let ρ : vert(K)→ R be the resulting final density map.

We perform this smoothing stage for the following reason: The initial density map ρ1 might
contain a signal plateau (flat top) area, on which the 1-stable manifold (mountain ridge) in the
next step could be ambiguous. For example, in places where the signal is saturated, there could be
a thick band of pixels with the same (highest) value, form a plateau (flat mountain peak) in the
terrain formed by this function. This gives a degenerate case for defining/tracing “mountain ridges”
in our later steps. The Gaussian smoothing help alleviate the situation: it would strengthen the
signal in the center of such flat regions, while reduce the intensity of pixels in the boundary region.
Furthermore, the preprocessing strategy may segment the input image and output a binary density
field where points in the foreground have value 1 and those in the background having value 0. The
Gaussian smoothing converts such an input into a smoother field, with points along “centerlines”
of the foreground having higher function values, so that the “mountain ridges” of such a terrain
can later be captured by our 1-stable manifolds approach.

Finally, we remark that in our pipeline, instead of using the triangulation K of the entire 3D
image I, we can also use a subcomplex K′ ⊂ K spanned by only pixels whose density value is larger
than a threshold to reduce the size of input. Note that if needed, a very low threshold can be
used to remove the points that are obviously background, so as not to cause gaps in the remaining
subcomplex. Allowing for adequate computing resources, this method would be more reliable on
the full image without the removal of any data point.

2.3 Step 2: Graph skeletonization

The input to this step is a density field ρ : K→ R where K is a triangulation of I ⊂ R3. Below we
first explain the main idea for the continuous setting where ρ is assumed to be a smooth function
defined on the domain (3D cube) ρ : I → R.

Formally, given any smooth function f : R3 → R, the gradient of a point p ∈ R3, ∇f(p) =
−[∂f∂x ,

∂f
∂y ,

∂f
∂z ]T indicates the direction at p along which the rate of change of the function f is largest.

A point p ∈ R3 is critical if the gradient at p is the zero vector, otherwise p is regular. In Morse
theory [32], if the input function ρ is sufficient nice (more formally, it is a Morse function, ie with
non-zero Hessians at the critical points), then there are four types of non-degenerate critical points
for ρ defined on R3 - maxima, minima and two types of saddles of index 1 and 2, respectively.

(a) (b)

Figure 4: (a) An example of a 2D image converted to a density function with the graph (terrain) of this
function shown in the right. (b) An example of 2D terrain (graph of 2D function): red points are maxima,
green points are saddles, while blue points are minima. The white paths are some example of integral paths
ending in minima. The black curves are a collection of 1-stable manifolds (between maxima and saddles).

Intuitively, if we view the graph of the density function f : R3 → R as a terrain defined on
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R3 × R, then maxima are the mountain peaks, while minima indicate valley basins. See Figure 4
where for illustration purpose, we provide an example for a 2D density function f : R2 → R: In this
case, the terrain (graph of this function) is defined on R2 × R, consisting of points (x, y, f(x, y))
(that is, the height of a point (x, y) ∈ R2 represents its function value f(x, y)). For a function
defined on R2, there are three types of non-degenerate critical points: maxima, minima and saddle
points; see Figure 4 (b), where red dots are maxima, blue ones are minima, while the green dots are
saddle points. We will use certain curves connecting maxima and index-2 saddle points in 3D case
(or connecting maxima and saddle points for the 2D case) as a way to capture the hidden graph
skeleton of this density function f . Below, we will first introduce the notations, and then provide
the intuition behind the procedure.

An integral line L : (0, 1)→ Rd is a maximal path in Rd, where tangent vectors are consistent
with the gradient for all points on the line. Imagine putting a drop of water on the terrain: it will
flow downwards following the gradient direction at any moment; if we negate the function value,
then it will move upwards following the negation of the gradient direction. The trajectory of it (both
downwards and upwards) forms the integral line passing through that point. The destination of
an integral line is dest(L) = limp→1 L(p) and the origin of an integral line is ori(L) = limp→0 L(p).
We also set by dest(x) (resp. ori(x)) to be the destination (resp. the origin) of the integral line
passing through x. The origin and destination of an integral line are necessarily critical points. See
Figure 4 (b) for a 2D illustration. The stable manifold of a critical point p is defined as:

S(p) = {p} ∪ {x ∈ Rd | dest(x) = p}.

In other words, the stable manifold of a critical point p is the union of itself and all points whose
integral lines eventually flow into p. Generically, for most points, the integral line passing through
them will end at a minimum, forming a basin around this minimum. However, some of the integral
line (starting from within a neighborhood of a maximum) will end at an index-(d−1) saddle point,
forming the separation between different basins around valleys. These integral lines are exactly
the union of stable manifolds of index-(d − 1) saddle points. They form a network of connections
between mountain peaks (maxima) to saddles then to other mountain peaks, separating different
valley basins around minima. See Figure 4 (b) for a 2D example.

We use the stable manifolds of the index-2 saddles of f as the graph skeleton of the input density
field f : R3 → R. Intuitively, along a hidden neuron branch, the density values should be higher
than points off the neuron branch. Using this terrain illustration, this means that intuitively the
mountain ridges of this terrain (connecting mountain peaks to saddles then to neighboring mountain
peaks) correspond to where hidden neuron branches lie, as off the mountain ridges, the function
values will decrease (flow into different minima / valley basins). The 1-stable manifolds of the
index-2 saddle points capture such mountain ridges.

Remark. There is a dual concept of unstable manifold U(p) = {p} ∪ {x ∈ Rd | ori(x) = p}
of a critical point p, consisting of all points along integral lines originated from p (i.e, flowing
away from p). In our case, for d = 3, the stable manifold of a p in ρ is identical to the unstable
manifold of p in −ρ (although the index of the critical point p changes from k to 3 − k, for
k = 0, 1, 2, 3). Computationally, as we will implement the above idea via discrete Morse theory in
the discrete setting, it turns out that using the unstable manifolds of index-1 saddle points is much
more efficient and simpler than using the stable manifolds for index-2 saddle points. Hence in our
implementation, we will negate the density map and compute 1-unstable manifold for the function
−ρ : I → R instead. Note that such 1-unstable manifolds connect minima to index-1 saddles to
other minima and separate different mountain peaks for the map −ρ.
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Noise removal. Finally, note that the input images can be noisy, producing spurious critical
points and thus spurious branches in the extracted graph skeleton (1-stable manifolds). Intuitively,
we wish to identify such “spurious” critical points and ignore their corresponding 1-stable manifolds.
To this end, we use the persistent homology, introduced in [20, 62], to identify these critical points.
In particular, using the persistent homology induced by the so-called lower-star filtration w.r.to the
density map ρ : I → R, one can obtain a persistence value for each critical point2. This “persistence”
indicates the importance of the critical point in a meaningful manner, which intuitively corresponds
to the amount of perturbation in the input function ρ one has to introduce in order to remove the
(topological) feature introduced by this critical point. Critical points with small persistence are
potentially caused by noise. Hence to remove noise, we will “smooth” these low-persistence critical
points out, and consider only index-1 saddles whose persistence is larger than a given threshold
τ ≥ 0, and output the union of 1-unstable manifolds of these saddles as the reconstructed graph
skeleton G ⊂ I. For simplicity of illustration, we show an example of persistence induced by a 1D
function in Figure 5. In our pipeline, here we typically use a very low threshold to remove obvious
noise without disconnecting the reconstructed skeleton. More simplification is performed later after
we retrieve the tree summary from this graph skeleton in Step 3.

f f

(a) (b)

Figure 5: An example of the persistence pairing on a 1D function f : R → R as shown in (a): The
persistence algorithm will pair up the critical points of function f (as indicated by dotted ellipses), and the
height difference between each pair is the persistence (importance) of the two critical points involved. In
(b), we simplify those low-persistence critical points and only important peaks/valleys remain.

Implementation in the discrete setting. In practice, we are given a triangulation K of the
domain (3D cube) I ⊂ R3, and the density function ρ is given at the vertices of K. As mentioned
earlier, our implementation only needs the so-called 2-skeleton of K, that is, the collection of
vertices, edges and triangles. Our software DiMorSC(K, ρ, τ) (DiMorSC stands for Discrete Morse
on Simplicial Complex ) will take ρ : K→ R and a persistence threshold τ as input, and output the
graph skeleton consisting of the 1-unstable manifolds for all index-1 saddles with persistence larger
than τ . Following [1, 16, 45], the computation of the 1-unstable manifold for this discrete setting
is done through the use of discrete Morse theory, which is combinatorial in nature – In particular,
it only maintains the so-called discrete gradient vector field on K, which consists of a collection
of vertex-edge and edge-triangle pairs, and never approximates “gradient vectors” in a numerical
manner.

2We note that persistent homology is one of the most important development in the field of topological data analysis
in the past two decades, and has already been applied to a broad range of applications [3, 11, 15, 21, 22, 27, 30, 38]
due to its power in feature characterization and quantification.
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The high-level description of our discrete-Morse based skeleton extraction algorithm in Algo-
rithm 1. We note that this is similar to the persistence-guided discrete Morse based graph recon-
struction framework introduced in [17] which builds upon [1, 16, 45] 3. We thus will only provide
a brief description below and for further details we refer the readers to [17] or to Chapter 5 and
6 of [51]. (We point out that our algorithm and its implementation in fact predates the work of
[17].) To our best knowledge, our software is currently the only publicly available code to extract
the 1-unstable manifold from an arbitrary simplicial complex. In Section 3, we will propose and
incorporate a divide-and-conquer strategy into our software to handle large input images.

Algorithm 1 G = DiMorSC(K, f , τ)

1: Set f̂ = −f
2: P = persistence pairing induced by lower-star filtration of K w.r.t. f̂
3: // P consists a set of vertex-edge and edge-triangle pairs
4: Initialize the discrete gradient vector field W on K
5: for each vertex-edge pair 〈v, e〉 ∈ R s.t. per(v, e) ≤ τ do
6: Cancel (simplify) this pair 〈v, e〉 and update the discrete gradient vector field W
7: end for
8: G = ∅
9: for each critical edge e with per(e) > τ do

10: G = G ∪ { 1-unstable manifold(e) in W}
11: end for
12: return G

In Algorithm 1, line 2 computes the persistence pairing to assign importance (persistence) of
critical simplices (analogous to critical points in the smooth setting). The computation is done
using the library PHAT [9], which provides state-of-the-art performance in computing persistence
homology. Lines 3–7 simplify the discrete gradient vector fields by canceling (thus destroying)
critical simplices with low persistence. This is analogous to the “smooth-out” of low-persistence
critical points in the continuous setting as illustrated in Figure 5. Finally, lines 8–11 collect the
1-unstable manifolds for high-persistence critical edges (corresponding to index-1 saddle points) as
the graph skeleton of density field ρ. The implementation details of Lines 3 – 11 can be found in
the PhD dissertation of one of the co-authors, Suyi Wang [51].

2.4 Step 3: Summary tree extraction and simplification

The output of the above Morse-based skeletonization step is a geometric graph G and we will
convert the graph into a (simplified) tree T as the summarization of the input 3D image I. We
provide a further simplification strategy to control the level details of the final summary tree keeping
in mind the application to skeletonizing tracer injections, so that skeletons that capture more or
less detail can be produced.

Extraction of a rooted tree. Our input is the graph skeleton G extracted in Step 2. Note that
each arc e ∈ E in graph G = (V,E) is realized by a polygonal path, consisting of edges from the
input triangulation K. We now augment G to Ĝ = (V̂ , Ê) so that its node set V̂ includes both those

3The work of [17] builds upon, but simplifies both conceptually and implementation speaking, the work of [1, 16, 45]
for the specific case of extracting graph skeleton. However, those work are more general in the sense that they can
compute higher dimensional (un)stable manifolds as well, while the framework formulated in [17] is specifically for
1-unstable manifolds and simpler.
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Figure 6: A comparison between the output tree extracted (and simplified for more clear view) via the
minimum spanning tree approach, shown in (2), and via the shortest path tree approach, shown in (3);
generated from the same input as shown (1). The two approaches resolve loop differently: a loop is always
cut at a location locally furtherest away from the root for the shortest path tree, while there is less control
of how the loop is cut for the minimum spanning tree.

from V and all vertices of the edges from each arc in E. See Figure 7 for an illustration where black
dots are vertices in V̂ . We now extract a rooted tree T from Ĝ, which is in fact a spanning tree
of Ĝ (that is, T contains all vertices in V̂ , and edges of T are from Ê). Note that here we assume
that Ĝ is connected – if not, we will extract a tree summary for each connected component of Ĝ.

Ĝ

T

Figure 7

We also assume that we are given the choice of the
tree root v – in our experiments, this is typically set to
be the injection site, which is easy to infer due since the
neuronal somata are concentrated at the injection site.
In general, the choice of the root v can also be taken as
the soma of a neuron in the single neuron reconstruction.
We then take the shortest path tree w.r.to source v as
the initial tree summary T , where the length of a path
is measured by the number of edges in it. (That is, we
assume that all edges in graph Ĝ has weight 1.) It is
possible to weight the edge by a quantity proportional to
the inverse of the density ρ along this edge. Our software
provides this option. However, our current choice appears
to work well in current experiments.

Note that it may also be possible to use the maximum
spanning tree of Ĝ (where the weight of each edge (u, v) ∈ Ê equals (ρ(u)+ρ(v))/2). This strategy
also makes sense as it encourages to include high density edges in the spanning tree. Indeed, we
tested both methods in our experiments. The two strategies often generate similar results, although
we observe that shortest path tree strategy tends to produce more natural trees while maximum-
spanning-tree strategy sometimes introduces breaks in the middle of a long branch. Specifically,
when a branch contains relatively weak signal (noise) in the middle resulting in its end point being
mis-connected to other branches and thus forming a loop, making the maximum spanning tree
more likely to cut the branch in the middle. In contrast, the shortest path tree (starting from a
reliable choice of root) would cut the branch in the far end, which is more consistent to neuron
morphology. An example is shown in Figure 6. In cases when there is no obvious choice of tree
root, we have utilized the maximum spanning tree strategy.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2018. ; https://doi.org/10.1101/321489doi: bioRxiv preprint 

https://doi.org/10.1101/321489
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tree simplification. The initial tree T constructed above may contain an excess of detail. We
further develop the following simplification strategy to allow the users to control the desired level
of detail in the tree summary.

Specifically, given the tree T = (V̂ , ET ) rooted at v, we first assign a function g : V̂ → R for all
nodes in V̂ by, for any vertex v ∈ V̂ ,

g(v) =
∑

e∈π(v,v)

length(e) ∗ weight(e),

where π(v, v) is the unique tree path from the root v to node v. The length of an edge e, length(e),
is simply the Euclidean distance between the two endpoints of e. As for the weight of e, i.e,
weight(e), we provide two choices: (i) a uniform weight where weight(e) = 1 for all edges e ∈ ET ;
and (ii) an intensity-based weight weight(e) = (ρ(v1) + ρ(v2))/2, where v1, v2 are adjacent vertices
of edge e. Note that the function g is monotonically increasing along any root-to-leaf path in the
tree T , and g(v) = 0.

Let a leaf node refer to any degree-1 node that is not the root, and a junction node denote
any node with degree larger than 2. We now describe a natural branch decompositon procedure
that partitions the tree T into a set of branches, and also assigns a measure of importance to each
branch. During the simplification process, we simply remove those branches with small “impor-
tance”. Interestingly, this decomposition as well as the importance assigned to each branch are
exactly the information encoded in the persistent homology induced by the so-called super-level set
filtration w.r.to the function g (viewed as a piecewise-linear function on T ). This relation holds as
the function g is monotone along any root-to-leaf path in T . Hence our simplification procedure
essentially removes those branches (topological features) less important under persistent homology
w.r.t. g. While we point out this connection to persistent homology here, in what follows, we will
only describe the branch decomposition / persistence-assignment procedure.

Figure 8: Branch decomposition of a
rooted tree, where for simplicity assume
g(v) simply equals to distance (along the
tree) to the root (white dot). The color
paths are the decomposed branches, with
indices indicate their persistence order (so
number 1 indicates the branch with largest
persistence).

Let L = {`1, `2, . . . , `t} ⊂ V̂ denote the leaf set.
We will partition T into a set of t = |L| branches
Π = {π1, . . . , πt}, each each branch πi is a path from the
leaf node `i to a junction node or to the root. The union
of paths in Π equals T , while all branches are disjoint
other than potentially at their two end points.

Specifically, at the beginning, we have a single tree T
with root v. Let `1 be the leaf node with largest g function
value, and let π1 be the unique path from v = root(T ) to
`1. To continue, remove path π1 from T , which will de-
compose T into a set of disjoint trees T1, . . . , Tk, the root
of each of them will necessarily be a junction node in T .
If k = 0, then this process terminates. Otherwise, we re-
peat the same procedure for each tree Ti, i ∈ [1, k], recur-
sively; and let Π denote the collection of all the branches
obtained along the way. See Figure 8 for an example.

After we compute the branch decomposition Π, we
assign the persistence (importance) of each branch πi as
follows: Let `i and si be the two endpoints of πi where `i
is a leaf node and si is either a junction node or the root v
of T . We set per(πi) = per(`i) = per(si) = g(`i) − g(si).
As said earlier, it turns out that the set of pairings {(`i, si) | i ∈ [1, t]} is exactly the set of
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Figure 9: Simplification with branches of 100, 50, 25, 10 and 5, respectively.

persistence pairing produced by the persistent homology induced by the super-level set filtration
of g, and the persistence of the corresponding branch equals to the persistence of the pair (`i, si).

Given a threshold τ , to remove unnecessary details in T , we simply output the subtree Tτ
formed by the union of branches from Π with persistence larger than τ . It is easy to show that the
union of these branches is necessarily connected (i.e, a single tree) if the input tree T is connected.
See Figure 9 for examples.

3 Divide-and-conquer strategy for handling large images

The tracer-injected data sets have around 300 images of brain sections in each brain volume. Each
of these section images have 18000 ∗ 24000 pixels creating a rather large dataset. This type of data
is too large to fit into memory and to be processed all together at the same time. Hence we have
developed the following divide-and-conquer approach to handle such large images.

In the high level, our approach (i) partitions the input image stack I into k small tiles (cubes)
Ωi, i ≤ k, (ii) extracts graph skeleton Gi in tile Ωi and (iii) merges all the results Gi into a single
graph skeleton G.

In our experiments, the size of each tile is chosen to be 512∗512 in xy-direction and we have not
partitioned in the z-direction as the number of slices is typically only a few hundreds. (However,
one can easily perform partitioning in z-direction as well if the needs arise.) This tile size represents
a good trade off between information encoded in each tile and the processing time. we have also
set a small overlapping area (5 pixels) between adjacent tiles.

See Figure 10 for an example, where different colors indicate different tiles and they share an
overlapping area. Then the 1-stable manifold is extracted for each tile using Algorithm 1 presented
in the previous section. The key step is (iii), the merging of the graph skeletons Gis into a single
graph G representing the skeleton of the merged tiles. We describe how to perform the merging
step now.

Let Ki ⊆ K denote the subtriangulation of tile Ωi, i ∈ [1, k]. Let Vi be the set of internal
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(a) (b)

Figure 10: (a) The original domain is divided into four tiles (different colors). The blue graphs are the
reconstruction within each tile, and the blue cells are those in Kmerge. (b) Blue curves/cells are Kmerge and
the red graph is the merged graph and then simplified.

vertices for Ωi and let V b
i be the set of vertices in all overlapping area,

⋃
j Ωi ∩Ωj , between Ωi and

any neighborhing tile Ωj . Recall that the graph skeleton Gi is extracted from the density function
ρi : Ki → R, which is the restriction of ρ to Ki. Let Ei be the set of edges in Gi.

To merge Gis in a natural manner, we will leverage the 1-unstable manifold based framework
again: First, we will build a new simplicial complex Kmerge ⊆ K as follows: For each i ∈ [0, k],
we take a small neighborhood (a small triangulated cubic region) around every vertex v ∈ V b

i ; let
Ci denote the union of such triangulated neighborhoods for all vertices in V b

i . We set Kmerge =⋃
i (Gi ∪ Ci); see Figure 10 (a).

Next, we diffuse the function values of ρ(v), for all v ∈ ⋃
i V

b
i , to vertices in Kmerge using a

Gaussian kernel, and establish a function ρ′ : Kmerge → R on Kmerge. In other words, for any

u ∈ Kmerge, ρ
′(u) =

∑
v∈∪iV bi

e−
‖v−u‖2

2σ2 ρ(v), where σ2 is the variance of the Gaussian kernel.

Finally, we perform Algorithm 1 on ρ′ : Kmerge → R, and extract the final merged graph G.
Note that compared to the size of each tile Ωi, the extracted 1-skeletons Gi from it is much

smaller (as it intuitively only represents potential signals in input image). Hence the size of Kmerge
is potentially far smaller than the size of K, and the memory cost for processing an individual tile as
well as the merging process is controlled at a reasonable amount, allowing our algorithm to handle
large data not fit in memory. This approach is only a small modification of the original pipeline,
but can greatly increase the size of data it can handle.

4 Results

4.1 Single neuron tracing

As proof of principle demonstration of our proposed pipeline, we first show the performance of our
discrete Morse based framework in reconstructing neurons from the Olfactory Projection Fibers
dataset (OP dataset) provided as part of the DIADEM challenge [39]. The dataset contains nine
stacks of drosophila olfactory axonal fibers in Olfactory Bulb and the roughly 512*512*60 resolution
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Figure 11: The result (blue) superpose on ground truth (red) of Olfactory Projection dataset in DIADEM
challenge [39].

(a) (b)

Figure 12: (a) The input signal has non-uniform strength with gaps (the dataset is OP-9 from DIADEM
dataset). However, the reconstruction (as shown in (b)) based on global topological structure of the signal
density field can still connect through them.
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images are acquired by 2-channel confocal microscopy method. This dataset is accompanied by
manual tracing results which can serve as ground truth, allowing for qualitatively comparison of
the output of reconstruction with the ground truth, called DIADEM score [25]. Below, we show
our reconstruction visually, and compare them qualitatively with other popular methods using the
DIADEM score.

(a) (b)

Figure 13: In the data set OP-2 from DIADEM, there are actually two neurons shown in the image, with
the ground truth given for the front one. Our method reconstructs both neurons.

Figure 11 shows the tracing results of DiMorSC for OP dataset No. 1, 3, 5, 6, 7, and 8. Datasets
OP-2 and OP-9 will be reported later in Figure 12 and 13. As we can see that even though the
input signal may not always uniform (see Figure 12 for a detailed example on dataset No. 9 referred
to as OP-9), as our method relies on the global structure of the signal density field, it still connect
through these gaps. We also show the input and reconstruction of OP-2 data set in Figure 13,
where as we can see that interestingly, there are actually two neurons in this image. The ground
truth is given only for the front one. Our method can reconstruct both neurons as shown in blue
and black colors.

Set DiMorSC APP2 Smart tracing SNAKE

1 0.914 0.796 0.853 0.827
3 0.765 0 0.605 0.766
4 0.804 0.727 0.79 0.704
5 0.755 0.389 0 0
6 0.858 0.857 0.779 0.667
7 0.923 0.773 0.906 0.788
8 0.849 0.373 0.696 0.725
9 0.833 0.786 0.739 0.657

Table 1: DIADEM scores for various OP datasets.

For quantitative evaluation, in Table 1 we report the DIADEM score of our algorithm and that
of the output by APP2 [54], SmartTracking [12] and SNAKE [53] algorithms (which are three state-
of-the-art algorithms in single neuron tracing). The DIADEM score [25] is a metric in range (0,1)
that measures the similarities between reconstruction and ground truth, where the higher the value
is the more similar they are. This score has been used to evaluate the algorithms in the DIADEM
challenge. As we can see, we obtained similar or better DIADEM score in all datasets. We note
that the DIADEM score could be sensitive to both the root location and the geometric information
of branches. For example, simply smoothing our result sometimes increases the DIADEM score,
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Set Data DM DM DM APP2 Smart tracing SNAKE
Loading Step1 Step2 Step3

1 0.67 8.6 19.07 0.37 <1s 6min 24
3 0.70 5.51 12.7 0.26 <1s 8min -
4 0.73 6.76 16.51 0.35 <1s 8min13s -
5 0.83 4.85 6.99 0.24 <1s 6m15s -
6 1.02 5.60 6.49 0.29 <1s 4m07s 35
7 0.71 5.08 7.94 0.28 <1s 6m42s 20
8 0.95 7.56 13.28 0.30 <1s 13min13s 28
9 0.96 6.74 10.89 0.33 <1s 2m55s 31

Table 2: Running time in seconds for various OP datasets. “DM” stands for our DiMorSC algorithm, and
columns 3–5 show the running time for step 1, 2, and 3 respectively.

Figure 14: LSc injection (in the left image) and signal detection (right images)

however, the smoothed branches are visually less aligned with the ground truth. The root location
provided in the data sometimes lies obviously in the middle of a long branch.

we also report the running time of our algorithm, as well as for the three algorithms mentioned
above in Table 2. In general, our algorithm finishes in 15s for the OP dataset, which is slower than
that of APP2 (< 1s), comparable to SNAKE (average 25s) and faster than Smart tracing (average
6 min). However, we note that this is a simple implementation of our algorithm and we believe
that it can be further improved. Indeed, we note that recent observations in [18] can significantly
simplify our algorithm and improve its time efficiency.

4.2 Mesoscopic summarization

We also report our results anterograde tracer injected data from the Mouse Brain Architecture
Project[33], which will be referred to as an ’MBAP’ brain. The MBAP brain dataset is obtained
from whole mouse brains where specific brain areas have been injected with an AAV florescent
tracer. The example brain dataset contains a stack of about 270 images of brain sections with
18000*24000 pixels per section. In every image slice (2D image), each pixel is 0.46 microns in
both dimensions and vertically, the distance between two consecutive image slices is 20 microns.
In the example below, a brain with a single injection (green fluoroscence) in the brain area, the
Lateral septal nucleus-caudal part(LSc) is shown. In addition to the large size of the data and the
anistropic sampling, there is background florescence in the image. Although it may be possible to
identify the neuron signal visually in the images by careful inspection, automatic tracing of the
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Figure 15: Skeletonization result on the preprocessing data

Figure 16: Neuron connectivity atlas
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Figure 17: Motor Cortex injection and summarization

trajectories of bundles of axons presents a significant challenge.
The specific pre-processing procedure described in section 2.2 is applied to remove the back-

ground. See Fig 14 for fluorescence injection region and preprocessing result.
Our pipeline allows for the MBAP data to be processed in full resolution and also at a downsam-

pled resolution. When processed at full resolution, the images are partitioned into tiles of 512*512
pixels with 5-pixels of overlapping area between adjacent tiles. The 1-stable manifolds are extracted
from the tiles and the extraction results are merged using the stitching strategy described above.
(Diffusing range 5 pixels) We also report the results on the downsampled image (with a resolution
of 2850*3000*250) where there is no need for the divide-and-conquer approach to optimize the
computing requirements. The results on this particular example shows that down-sampled data
appears to be sufficient for summarization purposes. Figure 15 shows the results of the example
LSc injection, the injection summarized tree (after simplification to show only the main trend) is
shown superposed on the preprocessed input image. We have also added the specific brain areas
(blue arrows) to denote the targets of the injection. The input is a 3D point cloud generated from
2D pre-processing detection.

This summarization is annotated and aligned with BAMS database [34], which is considered
as a trust worthy standard of connectivity in rodent brains. Specifically in Figure 16, each color
in BAMS data represents a region connected to the injection site and our neuron summary is
consistent with the BAMS data.

We have applied our tree summarization framework to a collection of MBAP datasets; two
examples of brains with injections in the motor cortex are shown in Figure 17.

In Figure 18, we compare our output with that of APP2 (computed via software platform
Vaa3D): We note that APP2 also captures the four major branches from the injection site. However,
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(a) (b)

(c) (d)

Figure 18: Comparison of the result of (a) APP2, and (b) our output. We note that APP2 captures the
four major branches. However, it does not capture the details: horizontal small branches are traced instead
of tracing the vertical signals which are visible in the input; we show a zoomed-in view in (c). In contrast,
as we increase the number of branches, our output trace those different bundles of the downwards signals
better. A more simplified output by our algorithm is shown in (d).
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the additional branches tend to be local (semi-horizontal small branches in 18 (a) and (c)), and miss
significant axonal bundles (instead, the small semi-horizontal branches cut across those bundles).
We suspect that this could be partially due to the gaps in signal. In contrast, as our algorithm uses
a global view of data, our reconstruction traces the axonal bundles better; see Figure 18 (b) and
(d) for two different levels of simplification. (We note that our output are guaranteed to be trees,
although due to occlusion and 2D projection in the pictures it may appear that there are loops.)
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