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Abstract
The Gene Ontology (GO) database contains GO terms that describe biological functions of genes.
Previous methods for comparing GO terms have relied on the fact that GO terms are organized
into a tree structure. Under this paradigm, the locations of two GO terms in the tree dictate their
similarity score. In this paper, we introduce two new solutions for this problem, by focusing
instead on the definitions of the GO terms. We apply neural network based techniques from
the natural language processing (NLP) domain. The first method does not rely on the GO tree,
whereas the second indirectly depends on the GO tree. In our first approach, we compare two GO
definitions by treating them as two unordered sets of words. The word similarity is estimated by a
word embedding model that maps words into an N-dimensional space. In our second approach,
we account for the word-ordering within a sentence. We use a sentence encoder to embed GO
definitions into vectors and estimate how likely one definition entails another. We validate our
methods in two ways. In the first experiment, we test the model’s ability to differentiate a true
protein-protein network from a randomly generated network. In the second experiment, we test
the model in identifying orthologs from randomly-matched genes in human, mouse, and fly. In
both experiments, a hybrid of NLP and GO-tree based method achieves the best classification
accuracy.

1 Introduction
The Gene Ontology (GO) project founded in 1998 is a collaborative effort that has been
providing consistent descriptions of genes and proteins across different data sources and
species [6]. The GO database is similar to a dictionary; it contains terms referred to as GO
terms. Each GO term has a definition describing some biological event.

TheGOdatabase is divided into three categories: cellular components (CC), molecular
functions (MF) and biological processes (BP). The CC ontology contains terms describing
the components of the cell and can be used to locate a protein. The MF category contains
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termsdescribing chemical reactions such as catalytic activityor receptor binding. These terms
do not specify the genes or proteins involved in the reactions or the locations of the events.
The BP category contains terms describing a series of biological events. For example, the
BP term GO:0006874 has the definition “Any process involved in the maintenance of an
internal steady state of calcium ions at the level of a cell." In each category, the GO terms
are organized into a tree where there is only one root node [6]. In this tree of GO terms
(or GO tree), a more generic term (i.e. lyase activity) is closer to the root, whereas a more
specific term (i.e. carboxy-lyase activity) is closer to a leaf node.

Because there are three GO categories in the database, there are three GO trees. In-
terestingly, there are edges connecting terms in different GO trees (Figure 1). The GO
database can be represented as three connected GO trees.

One application of the GO database is the comparison of two genes by first comparing
the similarity of the GO terms that annotate them [6]. To this end, we need a good metric
for comparing GO terms. To solve this problem, we need to focus on the GO trees and
the definitions of GO terms. Because of the GO trees, GO terms with a direct ancestor
(i.e. sibling nodes) are deemed to be more related than GO terms with a distal ancestor.
Moreover, because of this design, existing methods to measure the similarity of two GO
terms mostly rely on the GO trees [16]. Very few studies have yet to directly compare the
definitions of GO terms [19].

In this paper, we introduce two new solutions to measure the semantic similarity of
two GO terms, by focusing on the definitions of the GO terms. Our approach is most
similar to Pesaranghader et al. [19]; however, we apply neural network based techniques
from the natural language processing (NLP) domain.

First, we compare words by converting them into word embeddings. We train the
Word2vec model using open access articles on PubMed, so that we can represent a word
as an N-dimensional vector [17]. Cosine similarity is used to compare two words. To
compare two GO terms, we treat their definitions as two unordered sets of words, and use
the weighted Modified Hausdorff Distance to measure the distance between two sets [4].
We name this metric w2vGO. w2vGO is entirely independent of the GO trees.

Second, we consider the word-ordering within the GO definitions. We note that
entailment relationships exist in the GO tree (i.e. two GO terms are linked by a di-
rected edge) (Figure 1). We train the sentence encoder InferSent1 using the definitions
of child-parent and randomly-matched GO terms [2]. InferSent embeds sentences into
an N-dimensional vector space and computes the probability that one sentence entails
another. We name this approach InferSentGO. InferSentGO needs the GO trees for the
training phase. Once the model is trained, only the definitions of GO terms are required
for calculating their semantic similarities.

We compare W2vGO and InferSentGO against simDEF by Pesaranghader et al. [19],
and the following tree-based methods: Resnik, GraSM, Aggregate Information Content
(AIC) [3,23,26]. For Resnik and GraSM, we include the random walk contribution (RWC) to
their scores by using the software GOssTo [1,29]. We will discuss these competing meth-
ods in the Method and Appendix section. We further consider an ensemble approach

1The original authors did not name theirmethod; hence, weuse theirGitHubname. TheNLP community
refers to it as bi-directional long short-term memory with max-pooling.
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AicInferSentGO by averaging the AIC and InferSentGO scores.
To compare these metrics, we conduct two experiments. In the first experiment, we

test these metrics in differentiating the true protein-protein interaction network from a
random network for both human and yeast. In the second experiment, we test the metrics
in identifying orthologs against randomly-matched gene pairs for human, mouse, and fly.
Our results show that the hybrid AicInferSentGO attains the best classification in terms
of the area under the receiver operating characteristic (ROC) curve. Our software, data,
and results are available at our GitHub2.

Figure 1: Terms shown are ancestors of GO:0009055 (yellow). GO:0003674 and
GO:0008150 are root nodes for the MF and BP trees, respectively. Colors denote part of
(blue) and is a (black) relationship. Snapshot is downloaded from ebi.ac.uk/QuickGO.

2 Method

2.1 Methods to measure similarity between two GO terms
Broadly speaking, existing tree-based methods are divided into two types: node-based or
edge-based [15]. The key focus of node-based methods is the evaluation of the information
content of the common ancestors for two GO terms. In brief, the information content
of a GO term measures the usefulness of the term by evaluating how often the term is
used to annotate a gene. Terms that are used sparingly have high information content
because they are specific at distinguishing genes. Node-based methods have been shown
to work well [14,15,26]. However, we show in section 2.4 that we can improve the accuracy
by including the semantic similarities of the GO definitions.

In this paper, we choose the node-based methods Resnik and AIC as the baselines.
Resnik is a classical approach for quantifying the similarity between two GO terms [23].
Despite being simple, Resnik has been shown to outperform some of its extensions on

2github.com/datduong/NLPMethods2CompareGOterms
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several test datasets [15,21]. AIC is recent. In their paper, Song et al. [26] showed that AIC
outperformspopular node-basedmethodsby Jiang andConrath [9], Lin et al. [13], Resnik [23],
and Wang et al. [28].

Unlike node-based methods, edge-based approaches analyze the paths between two
GO terms. For example, these approaches measures the distance (or the average distance
when more than one path exists). We include the edge-based GraSM as the baseline [3].
We also apply Yang et al. [29] approach (via GOssTo software) to add extra topological
information from the GO tree for both GraSM and Resnik. Yang et al. [29] referred to this
extra information as the random walk contribution (RWC). In the appendix, we describe
Resnik, AIC, GraSM, and RWC in detail.

Recently, Pesaranghader et al. [19] introduced simDEF, a text mining approach to com-
pare the definitions of two GO terms. Their work is most similar to ours; however, they
do not use neural network techniques. We briefly describe the five steps in simDEF. First,
simDEF counts the co-occurrences for words in the MEDLINE corpus to construct a sym-
metric first-order co-occurrence matrix. Values in this matrix represent how many times
the word in its row appears with the word in its column. Second, simDEF extends the
definition of a GO term by concatenating its definition with the definitions of its direct
parents and children. Third, simDEF builds a second-order matrix from the first-order
matrix [8]. Loosely speaking, each row in second-order matrix is an extended GO defini-
tion. Each column is the word count for a word in the definition. Fourth, simDEF applies
the Pointwise Mutual Information (PMI) function on the second-order matrix [8]. In their
paper, Pesaranghader et al. [19] refers to this outcome as the PMI-on-second-order matrix.
Here, each row represents an extended GO definition, and the entry for each row is the
transformed word count for a word in the definition. Fifth, cosine distance is used to
measure the similarity between two GO terms (i.e. two rows in the PMI-on-second-order
matrix).

We now introduce our methods and outline their differences from simDEF.

2.2 Word2vec model
Here, we describe our first metric W2vGO. We use W2vGO as pure NLP technique; that
is, W2vGO focuses strictly on the GO definitions and is completely independent of the
GO-trees. For this reason, unlike simDEF, we do not concatenate a GO definition with
the definitions of its parents and children. This extension of a GO definition requires
information from the GO tree.

To compare two GO terms, W2vGO compares their definitions by treating the defi-
nitions as two unordered sets of words. To solve this problem, we want to first be able
to compare two words. To this end, we use the word embedding model Word2vec [17].
Word2vec is a distributional linguistic model. Loosely speaking, Word2vec analyzes how
often words co-occur. However, Word2vec is very different from simDEF co-occurrences
matrices.

The Word2vec model converts a word into an N -dimensional vector3. These vectors
are known as word embeddings. Word2vec transforms similar words into similar vectors,

3The user specifies N ; in practice, people often set N = 300.
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thus enabling us to quantify the similarity between twowords by computing the Euclidean
distance or cosine similarity. At the heart of theWord2vec is a neural network model with
one input layer, one hidden layer, and one output layer [17].

Loosely speaking, one can view theWord2vec model as a prediction problem [24]. First,
a wordw from the input layer is mapped into anN -dimensional vector at the hidden layer.
Word2vec learns the values for the hidden layer based on the co-concurrences between
w and its neighboring words. The key idea is to predict the vectors for the surrounding
context words based on the vector for w.

The purpose of this paper is not to dissect the Word2vec model; we are interested
in adopting this model to measure the similarity of GO terms and compare it with other
methods. Interested readers are encouraged to read the original paper byMikolov et al. [17],
and the introduction by Rong [24].

2.2.1 Measure similarity of two words using Word2vec

The training data influences the application of word embedding model. Existing pre-
trained Word2vec models are often made by corpora collected from news, books, or the
Internet. To obtain suitable word vectors, in this work, we train theWord2vec to recognize
biological words. We set the dimension N = 300 and use 20 GB of data from open access
articles on PubMed. The raw count of unique and repeated words is 14,526,527,855. We
remove words which appear less than 25 times in the whole training data, thus reducing
the final number of unique words to 986,615. We keep stop-words and symbols like +
and − in the data because they may have important biological meanings. We use the
Python library gensim to train the Word2vec model [22]. A simple Python user interface is
available at our GitHub.

There are two important details here. First, the training data do not contain definitions
of GO terms found in the GO database. This helps us avoid data reusing. Second,
theoretically speaking, Word2vec model can be trained on the GO terms in the PubMed
data, so that one can convert a GO term into a vector. Unfortunately, the IDs of the GO
terms are not used too often in published papers, and detecting definitions of GO terms in
papers is a different type of research problem [27]. For these reasons, we use the Word2vec
model as a metric to compare two biological words.

To compare two vector representations of two words, we use the cosine similarity,
because it is bounded; whereas, Euclideandistance is not. Wedefine the functionw2v(z, v)
as the similarity score of two words z, v.

2.2.2 Measuring similarity of two GO terms using Word2vec

A GO term comes with a definition that is usually one or two sentences describing some
biological feature. For example, GO:0003700 has the definition: “Interacting selectively
and non-covalently with a specific DNA sequence in order to modulate transcription. The
transcription factor may or may not also interact selectively with a protein or macromolec-
ular complex."

When aGO termdefinitionhasmore thanone sentence,we concatenate these sentences
into the same sentence by ignoring the period symbol. For example, the two sentences for
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GO:0003700 is considered as one long sentence.
Thus, the task to compare two GO terms reduces to the problem of comparing their

definitions which are two sentences. Suppose that GO terms a, b have sentences Z, V
as their definitions respectively. We treat two sentences Z = “z1 z2 z3 . . . zN” and V =
“v1 v2 v3 . . . vM” as two unordered sets of words Z = {z1, z2 . . . zN} and V = {v1, v2 . . . vM}.

To measure the similarity of sentences Z and V (or in other words, term a and b), we
use the metric

w2vGO(a, b) = mean

{ ∑
i=1...N

content(zi) max
j=1...M

w2v(zi, vj),

∑
j=1...M

content(vj) max
i=1...N

w2v(zi, vj)

} (1)

where content(w) is the weight of the word w and is often used to distinguish common
words from rare ones. The weights of words can help avoid the influence of hub-words
(i.e. words such as cell, DNA, activity) that are ubiquitously associated with many other
words [11]. content(w) is very similar to the IC function [12]

content(w) = − log

(
frequency word w in training data

training data size

)
. (2)

Because GO definitions are often short, we hope that the accuracy of w2vGO does not
suffer too much from the removal of word-ordering. Surprisingly, this assumption holds
true in several instances (Table 2). There are more sophisticated models that consider the
word-ordering in the sentences; we will consider one of these methods in the next section.

In any case, we have defined ametric tomeasure the twoGO terms a, bwith definitions
Z, V under the Word2vec paradigm. w2vGO(a, b) ranges from −1 to 1 because w2v(z, v)
ranges from −1 to 1.

2.3 InferSent model
In the previous section, we have ignored theword-ordering in the sentences, treating them
as sets of words. In this section, we briefly explain InferSent, a model that focuses not only
on the word embeddings but also on the word-ordering in the sentences [2]. InferSent is
thus different from simDEF which also ignores the word-ordering.

Loosely speaking, InferSent is similar in spirit toWord2vec; instead of words, InferSent
identifies the relationship between two sentences. One training sample for InferSent
consists of two sentences having some relationship R. Consider a simple classification
where R = entailment or neutral. In this case, InferSent expect two classes of input.
The first class entailment will have two sentences where the first entails the second; for
example, “cat is napping on the mat" entails “cat is not running". Entailment is a one-
directional relationship, because “cat is not running" does not entail “cat is napping on
the mat". The second class neutral will have two unrelated sentences like “cat is napping
on the mat" and “boy is watching the cat". Unlike entailment, neutral is a bi-directional
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relationship.
InferSent is a classification model based on the neural network architecture; its full

description is at Conneau et al. [2]. Here, we briefly mention the first layer of this network.
InferSent’s first layer is the word vectors for words in the entire training dataset. Conneau
et al. [2] uses the GloVe word vectors [18]. However, to obtain the best result, these word
vectors should be specific to biology. In this paper, we use theWord2vec vectors in section
2.2.1.

2.3.1 Measuring similarity of two GO terms using InferSent

InferSent takes two sentences as one training sample. In this paper, the two sentences
will be the definitions of two GO terms a, b. We will define two categories entailment and
neutral, and estimate the probability P(a entails b). This metric allows us to gauge the
semantic similarity for a and b. We choose this option because entailment relationship
exists in the GO tree. Child-parent GO terms are linked by a one-directional relationship
like “is a", “part of", “regulates", “negatively regulates", and “positively regulates". For ex-
ample, the termGO:1900237 “positive regulation of induction of conjugation with cellular
fusion" entails the term GO:0010514 “induction of conjugation with cellular fusion."

To prepare the entailment dataset, for all three ontology categories, we randomly pair
each GO term with one of its parents. To ensure that these child-parent GO terms are
indeed similar inmeaning, we compute themedianAIC score for each category and retain
pairs having scores above the median. Our final dataset contains 17,226 pairs. We treat
the three ontology categories as one single dataset when training the InferSent model.

To create the neutral dataset, we make two types of unrelated pairs. For the first type,
we randomly pick about half the number of GO terms in the entailment dataset. For each
term c in this set, we pair it with a randomly chosen GO term d in the same ontology
category. For the second type, we pair the same term d with another randomly chosen
term e. This sampling scheme improves the training by allowing some GO terms to be
seen more than once under different circumstances.

TwounrelatedGOterms shouldhaveP(term1 entails term2) andP(term2 entails term1)
near zero. For each neutral pair, we create two different samples for InferSent. The first
sample will be the pair (definition of term1, definition of term2), and the second sample
will be the pair (definition of term2, definition of term1). Our final neutral dataset contains
35,044 pairs of sentences. Since theneutral dataset is nearly twice as large as the entailment
dataset, when training InferSent, we weigh ratio 1:2 for the class neutral and entailment.

The code to train InferSent is available at our GitHub. We attained 96.93% accuracy in
the validation set. We emphasize that InferSent relies on the GO tree only for its training
phase. Once the model is trained, it requires only the GO definitions as the input for
prediction.

When terms a and b are unrelated, we expect P(a entails b) ≈ P(b entails a) ≈ 0. When
GO term a is the child of term b, we expect P(a entails b) to be high, whereas P(b entails a)
may be low. However, in this case, we still want the similarity between a, b to be high. For
this reason, to measure the semantic similarity for two GO terms, we use the metric

InferSentGO(a, b) = max {P(a entails b), P(b entails a)} . (3)
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InferSentGO(a, b) ranges from 0 to 1.

2.4 Combining node-based and NLP methods

Table 1: A fewexamples to compareGOsimilarity scores. ∗Fractionof sharedancestors,
with 0 indicates terms share only the root node.

Term 1 Term 2 Ancestor∗ Resnik AIC W2vGO InferSentGO
GO:0016021 The com-
ponent of a mem-
brane consisting of the
gene products and pro-
tein complexes having
at least some part of
their peptide sequence
embedded in the hy-
drophobic region of the
membrane.

GO:0005887 The com-
ponent of the plasma
membrane consisting
of the gene products
and protein complexes
having at least some
part of their peptide
sequence embedded in
thehydrophobic region
of the membrane.

5/9 2.493 0.588 0.982 0.999

GO:0006814 The di-
rected movement of
sodium ions (Na+) into,
out of or within a cell,
or between cells, by
means of some agent
such as a transporter or
pore.

GO:0006874 Any pro-
cess involved in the
maintenance of an in-
ternal steady state of
calcium ions at the level
of a cell.

0 0 0.107 0.590 0.920

GO:0005829 The part of
the cytoplasm that does
not contain organelles
but which does con-
tain other particulate
matter, such as protein
complexes.

GO:0005615 That part
of a multicellular or-
ganism outside the
cells proper, usually
taken to be outside the
plasma membranes,
and occupied by fluid.

0 0 0.212 0.449 0.845

GO:0004620 Catalysis
of the hydrolysis of a
glycerophospholipid.

GO:0019905 Interact-
ing selectively and
non-covalently with
a syntaxin, a SNAP
receptor involved in
the docking of synap-
tic vesicles at the
presynaptic zone of a
synapse.

0 0 0.264 0.333 0.001

In this section, we discuss a few examples and motivate the need for combining node-
based and NLP methods. Here, we choose the node-based Resnik and AIC, because
GraSM and RWC do not yield good results (Table 2).

In essence, both Resnik and AIC focus on the fraction of shared ancestors and weigh
this ratio by the IC values. Sometimes, even when two terms are very similar in meaning,
they can have a low score. For example, consider the terms GO:0005887 and GO:0016021
in the CC ontology (Table 1 Row 1). This is a child-parent pair, having almost identical
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definition. However, the Resnik and AIC score are not high enough. In a sample of 3,244
child-parent pairs in the CC ontology, we found the median score to be 5.5933 and 0.9278
for Resnik and AIC, respectively.

In the second example (Table 1 Row 2), GO:0006814 and GO:0006874 are unrelated,
sharing only the root node. Interestingly, one can argue that both terms are not entirely
distinct because they both mention the regulation of ions. Similarly, in the third example
(Table 1 Row 3), GO:0005829 and GO:0005615 share only the root node, but both mention
fluid containing protein complexes. In both examples, W2vGO on its own or an average
of AIC and InferSentGO may give a more satisfying score. InferSentGO and AIC on their
own may underestimate and overestimate the similarity, respectively. Resnik on its own
is not the best because when terms share only the root node, the similarity score is the IC
of the root which is 0.

In the final example (Table 1 Row 4), GO:0004620 and GO:0019905 share only the
root node and truly are different in meaning. Here, Resnik and InferSentGO give more
reasonable scores than AIC and W2vGO do.

These examples suggest that no one method is always the best, and that we need to
combine node-based and NLP approaches. To this end, taking an average of AIC and
InferSentGO is reasonable. Empirically, from the examples, we have seen that this average
produces a reasonable value. Theoretically, only AIC and InferSentGO scores are in the
same [0, 1] range; whereas Resnik and W2vGO range are [0,∞] and [−1, 1]. We note that
simDEF range is [−1, 1], making it incompatible with node-based Resnik and AIC.

For two GO terms a, b, we introduce the metric

AicInferSentGO(a, b) =
AIC(a, b) + InferSentGO(a, b)

2
. (4)

From AIC’s perspective, AicInferSentGO improves the distinction between child-parent
and randomly-matched GO terms, especially in the CC andMF ontology (Figure 2). From
InferSentGO’s perspective, AicInferSentGO gives a more continuous score, allowing for a
better resolution when comparing terms. InferSentGO on its own tends to give a stiff 0/1
score.

2.5 Measuring similarity of two genes
To assess the performance of the different GOmetrics, wewill use them to compare genes.
A gene is annotated with several GO terms from the three GO categories. For example,
the gene HOXD4, which is important for morphogenesis, is annotated by these GO terms
GO:0003677, GO:0003700, and GO:0006355. Thus, we can view any gene A as a set of GO
terms. A GO term a is in the set A (i.e. a ∈ A) if a is used to annotate A.

To assess the similarity between two genes A and B, we must compare two sets of GO
terms. There are many metrics for this task [16]. Here, we use the Modified Hausdorff
Distance (MHD) and the Best Max Average distance (BMA). MHD is a traditional metric
for comparing two sets, and was often used in image processing (i.e. to compare two sets
of pixels) [4]. BMA has been shown to be better than taking the maximum or minimum of
all pairwise distances for the elements in the two sets [20].
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Figure 2: Similarity scores for 33020 child-parent GO terms, and 40419 randomly-
matched GO terms. The number of pairs are 51931, 4986, and 16522 for BP, CC, and
MF ontology respectively. FromAIC’s perspective, the hybridmethodAicInferSentGO
improves thedistinctionbetween child-parent and randomly-matchedGOterms. From
InferSentGO’s perspective, AicInferSentGO gives a more continuous score.

MHD(A,B) = min

{
1

|A|
∑
a∈A

max
b∈B

s(a, b),
1

|B|
∑
b∈B

max
a∈A

s(a, b)

}
(5)

BMA(A,B) = mean

{
1

|A|
∑
a∈A

max
b∈B

s(a, b),
1

|B|
∑
b∈B

max
a∈A

s(a, b)

}
(6)

In the above, the function s(a, b) is a generic placeholder for measuring the similarity
of GO terms a and b. For example, if one uses Resnik, AIC, or W2vGO metric then
s(a, b) = Resnik(a, b), AIC(a, b) or w2vGO(a, b) respectively.
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3 Results
We compare the GO metrics. Because genes are annotated by GO terms, good GO met-
rics should differentiate similar genes from unrelated genes well. Hence, we conduct
two experiments. First, we test the GO metrics in identifying true protein-protein in-
teractions. Second, we test the metrics in identifying orthologs in human, mouse, and
fly. We download the GO term definitions and GO annotations from the Gene Ontology
(geneontology.org). We download the orthologs from Ensembl (ensembl.org/biomart).
The source code, data, and results in this section are available at our GitHub.

3.1 Human protein-protein interaction network
We use the 6031 protein-protein interaction (PPI) data prepared by Mazandu and Mul-
der [15]. We trim this data further, keeping only human proteins that can be mapped
to some genes via UniProt (uniprot.org). Next, to avoid data reusing, we remove elec-
tronically inferred GO terms (removing terms with tag IEA, NAS, NA, NR) [20]. To keep
only genes that are well studied, we retain only genes with at least one GO term in each
ontology (BP, CC, and MF). The final data has 2593 pairs.

Like in Mazandu and Mulder [15], we want to compare how well each metric differ-
entiates a true PPI network (positive set) from a randomly made PPI network (negative
set). We follow the procedure by Mazandu and Mulder [15]. We make the positive and
negative sets to have the same number of edges. For the negative set, we randomly assign
edges between proteins that do not interact in the real PPI network. The real and random
PPI network have the same proteins; we only require that they have different interacting
partners. For each PPI network, to compute the similarity scores of the edges (i.e. pairs of
proteins), we use Eq. 5 and 6 with s(a, b) being one of the GO metrics in Table 2.

To compare the performance of the metrics, we find the area under the curve (AUC)
of the Receiver Operative Characteristic (ROC) curve. The real and random PPI networks
serve as a basis to calculate the true positive and false negative rate, respectively. The AUC
is computed by plotting the true positive versus false negative rates at different thresholds
and estimating the area under this curve. AUC value goes from 0 to 1, with 1 being the
best prediction power.

We judge the GOmetrics based on their AUC values. From Fig. 2, because node-based
methods adequately distinguish related BP terms from unrelated ones, the NLPmethods’
improvement is best seen in the CC and MF ontologies (Table 2).

On average, each gene in this experiment is annotated by 20.66 GO terms, with the
composition of 46.25% BP, 24.07% CC, and 29.68% MF terms. Because of these fractions,
when using only the BP ontology to compare GO metrics, on average, we are using only
46.25% of the full description for a gene. The same argument can be made for using
only the CC or MF ontology to compare GO metrics. For this reason, we conduct a joint
analysis. Here, when comparing two genes, we use all the GO terms in their annotations,
allowing for comparison of GO terms across different ontologies. This approach aligns
with the observation that GO terms in different categories are connected (Fig. 1). Table 2
and 3 indeed show that the joint analyses yield the highest AUC for all GO metrics. We
have two explanations for this outcome.
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First, intuitively, when using all BP, CC, and MF terms in the gene annotation, one can
better understand the genes’ functionality. For example, when looking at the CC ontology
terms alone, arguably proteins in the same part of the cell do not necessarily interact.
However, when we consider not only the locations but also the biological and molecular
events taking place, then we can accurately compare the two genes.

Second, empirically, in 46,967 randomly chosen child-parent pairs, we count 2060
pairs (4.38%) having terms in different ontologies. For example, a few terms having
parents in different ontologies are GO:0009055, GO:0035514, GO:0102496, GO:1903198,
and GO:1903934. The fraction 4.38%, despite being small, has a nontrivial repercussion.

This effect is especially true for Resnik and AIC whose key ideas rely on the number of
common ancestors. For example, consider the term GO:0009055 in the MF ontology with
its parent GO:0022900 in the BP category (Fig. 1). When treating the BP and MF trees
separately, GO:0009055 and GO:0022900 have AIC score zero because they will not have
any shared ancestors. When treating the trees jointly, the AIC score is 0.7197. Thus, we
can better estimate the similarity between genes containing not only these terms but their
descendant terms.

For reasons explained above, in this paper, we select the metric with the highest AUC
in the joint analysis to be the bestmethod. Here, Table 2 shows that BMA+AicInferSentGO
does best. We note that BMA+W2vGO, despite not using information from the GO trees,
works quite well on its own (2nd rank).

We use the Hanley-McNeil test to compare AUCs of the other methods against BMA+
AicInferSentGO [7]. The p-values in column 6 of Table 2 show that BMA+AicInferSentGO
is slightly better than BMA+AIC and BMA+W2vGO, and is statistically above the other
approaches. We provide the ROC plots for the joint analyses at our GitHub.

Our joint analyses did not include ResnikRWC, GraSM, and GraSMRWC because the
software GOssTo does not allow the option to combine the three ontologies. In the
experiment, we reimplemented Resnik and AIC ourselves, and changed the source code
for simDEF (see GitHub).

3.2 Orthologs
Like in section 3.1, we remove electronically inferred GO terms from the gene annotation,
and use genes with at least one GO term in each ontology. We test the following species:
human/mouse and human/fly. For each pair, the positive set contains orthologs from the
two species; whereas, the negative set contains randomly-matched genes. We set the sizes
of the positive set and negative set to be equal. For human/mouse dataset, we have 10,235
pairs for each set; for the human/fly dataset, we have 4880 pairs for each set. We exclude
ResnikRWC, GraSM, and GraSMRWC in this experiment because they did not perform well
for human protein network.

Like before, we consider the best GO metric to be the one with the highest AUC for
the joint analysis. BMA+AicInferSentGO again does best in this experiment (Table 3).
The Hanley-McNeil p-values for comparing AUCs indicate that BMA+AicInferSentGO is
statistically above all other methods.

We also conduct the classification for mouse/fly orthologs. In the joint analysis,
BMA+AicInferSentGO metric gives the highest AUC score 91.52% (full table not shown).
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Table 2: AUCs for classifying human protein-protein interactions. Bold font indicates
the best value in each column. ∗Joint analysis: When comparing genes, we keep their
entire GO annotations, effectively treating the BP, CC, MF ontologies as connected GO
trees. +Pvalue of the Hanley-McNeil test to compare AUCs of other methods against
BMA+AicInferSentGO.

Set metric GO metric BP CC MF Joint∗ (pvalue+)

MHD

Resnik 0.84194 0.77278 0.70436 0.86074 (2.93E-05)
ResnikRWC 0.83743 0.75944 0.68886 NA
AIC 0.84042 0.76218 0.69590 0.85815 (5.93E-06)
GraSM 0.76895 0.67114 0.64938 NA
GraSMRWC 0.76521 0.66967 0.63231 NA
simDEF 0.81356 0.72980 0.72644 0.84686 (1.80E-09)
W2vGO 0.8246 0.79338 0.71915 0.86571 (4.66E-04)
InferSentGO 0.83877 0.76026 0.75343 0.85368 (2.98E-07)
AicInferSentGO 0.84830 0.78263 0.74489 0.86871 (2.05E-03)

BMA

Resnik 0.85434 0.77871 0.70348 0.86766 (1.24E-03)
ResnikRWC 0.84399 0.75626 0.68595 NA
AIC 0.85423 0.77628 0.69902 0.87854 (9.19E-02)
GraSM 0.76895 0.67114 0.64938 NA
GraSMRWC 0.74201 0.64989 0.62591 NA
simDEF 0.83597 0.74432 0.72863 0.86958 (3.05E-03)
W2vGO 0.84296 0.80035 0.71279 0.88170 (2.21E-01)
InferSentGO 0.84600 0.76548 0.76081 0.87503 (2.85E-02)
AicInferSentGO 0.85739 0.79011 0.74139 0.88987

3.3 Yeast protein-protein interaction network
Pesaranghader et al. [19] provided the yeast PPI data without electronically inferred GO
terms. We keep only proteins annotated with at least one term in each ontology. The
final dataset contains 3938 true interactions and 3938 random pairs. We consider the
best GO metric to be the one with the highest AUC for the joint analysis. Here, Resnik
outperforms the other GO metrics. We note that AicInferSentGO is better than both AIC
and InferSentGO by themselves. This observation along with the previous results suggest
that ensemble of node-based and NLP methods improves performance.

We hypothesize that text-based approaches (both ours and simDEF) do worst in part
because PubMed data contains mostly papers on human biology. Evaluating the effect of
training the model on different data sources is beyond the scope of this paper; we reserve
this topic for future research.

4 Discussion
In our results, we do not aim to attain perfect classification; rather, we use the classification
to rank the GO metrics. Other papers have used sequence similarity and co-expression
data to evaluateGOmetrics. However, sequence similarity has a stronger correlation toMF
terms thanBP andCC terms [20]. Also because of alternative splicing, similar sequences can
produce proteins with different functionality [25]. Co-expression data works best with BP
and CC ontology [15,26], but genes are expressed non-uniformly across different tissues [5].
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Table 3: AUCs for classifying orthlogs. Bold font indicates the best value in each
column. ∗Joint analysis: When comparing genes, we keep their entire GO annotations,
effectively treating the BP, CC, MF ontologies as connected GO trees. +Pvalue of the
Hanley-McNeil test to compareAUCs of othermethods against BMA+AicInferSentGO.

Set metric GO metric BP CC MF Joint∗ (pvalue+)

MHD

Resnik 0.91603 0.89901 0.90462 0.95136 (1.65E-22)
AIC 0.92302 0.88900 0.90912 0.95421 (2.45E-17)
simDEF 0.91007 0.83031 0.9157 0.95338 (8.70E-19)
W2vGO 0.92578 0.92597 0.90765 0.95892 (4.63E-10)
InferSentGO 0.92485 0.88031 0.89590 0.95623 (5.24E-14)
AicInferSentGO 0.93736 0.90680 0.92047 0.96710 (4.91E-02)

BMA

Resnik 0.92149 0.89206 0.90440 0.95275 (6.53E-20)
AIC 0.92800 0.89663 0.91473 0.95798 (2.29E-11)
simDEF 0.91838 0.86009 0.92186 0.96090 (1.58E-07)
W2vGO 0.93032 0.92044 0.91044 0.96110 (2.68E-07)
InferSentGO 0.92648 0.88968 0.90079 0.96036 (3.50E-08)
AicInferSentGO 0.94254 0.91436 0.92486 0.97056

human/mouse orthlogs

Set metric GO metric BP CC MF Joint∗ (pvalue+)

MHD

Resnik 0.87171 0.84201 0.87481 0.93275 (1.14E-08)
AIC 0.85807 0.80918 0.88019 0.92515 (1.91E-14)
simDEF 0.81539 0.65394 0.84339 0.87821 (2.93E-70)
W2vGO 0.86003 0.82902 0.86956 0.92522 (2.18E-14)
InferSentGO 0.85312 0.75015 0.86406 0.89850 (8.98E-43)
AicInferSentGO 0.87280 0.80742 0.89214 0.93813 (2.11E-05)

BMA

Resnik 0.89254 0.84389 0.88155 0.94152 (9.59E-04)
AIC 0.86759 0.83551 0.90173 0.93911 (6.83E-05)
simDEF 0.82088 0.68079 0.87043 0.89663 (4.02E-45)
W2vGO 0.87419 0.83888 0.88311 0.93822 (2.35E-05)
InferSentGO 0.84281 0.77772 0.87323 0.90563 (3.53E-34)
AicInferSentGO 0.87654 0.84318 0.90904 0.95249

human/fly orthlogs

Depending on the data source, experiments using co-expression data can give highly
varying outcomes.

The Word2vec has an extension Sentence2vec that converts a sentence into a vector [10].
Theoretically, one can convert GO definitions into vectors. However, our Word2vec result
contains 986,615 words; so, the number of sentences in the training dataset is larger than
this number. We encountered computer memory problem in training Sentence2vec on a
64GB RAM computer. Therefore, we opted for the InferSent model instead, training the
model in 2 hours with GeForce GTX 1080 Ti 11GB graphic card.

Arguably, the entailment relation in InferSent does not necessarily equate to a perfect
similarity measurement. For example, one can argue that every term in the BP ontology
entails the root node biological processes. Moreover, the NLP approaches in this paper are
yet to fully recognize chemical equations. An expression like 2H2+O2 may not be seen as
strictly equal to 2H2O or theword water. For these reasons, we viewNLPmethods as ways
to refine existing node-based GO metrics. In this paper, we have seen that InferSentGO
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Table 4: AUCs for classifying yeast protein-protein interactions. Bold font indicates
the best value in each column. ∗Joint analysis: When comparing genes, we keep their
entire GO annotations, effectively treating the BP, CC, MF ontologies as connected GO
trees. +Pvalue of the Hanley-McNeil test to compare AUCs of other methods against
BMA+AicInferSentGO.

Set metric GO metric BP CC MF Joint∗ (pvalue+)

MHD

Resnik 0.86739 0.83065 0.72235 0.89697 (1.16E-01)
ResnikRWC 0.83743 0.75944 0.68886 NA
AIC 0.84422 0.78399 0.72323 0.85799 (7.03E-08)
GraSM 0.70718 0.66114 0.66914 NA
GraSMRWC 0.71535 0.70451 0.56931 NA
simDEF 0.85859 0.72473 0.76989 0.87293 (4.38E-03)
W2vGO 0.87192 0.80572 0.74163 0.88503 (4.96E-01)
InferSentGO 0.87525 0.74827 0.74661 0.86655 (7.76E-05)
AicInferSentGO 0.87059 0.77705 0.75379 0.87559

BMA

Resnik 0.88092 0.83759 0.72758 0.90592 (8.22E-04)
ResnikRWC 0.84399 0.75626 0.68595 NA
AIC 0.86341 0.80490 0.73462 0.87426 (8.86E-03)
GraSM 0.70454 0.64772 0.67181 NA
GraSMRWC 0.71198 0.69911 0.57286 NA
simDEF 0.83597 0.74432 0.72863 0.86958 (1.79E-01)
W2vGO 0.87981 0.81583 0.74576 0.89118 (6.42E-01)
InferSentGO 0.87832 0.76679 0.74788 0.87857 (6.40E-02)
AicInferSentGO 0.88179 0.79532 0.76150 0.88870

improves the AIC scores. Moreover, InferSentGO does not need to be paired with AIC; it
can work with any GO similarity metric that gives scores in the range [0, 1].

We acknowledge that the literature contains many other methods for measuring GO
terms’ semantic similarity which were not tested here. There has been much debate re-
garding which measure should be preferred over the others. However, no clear consensus
has been reached [29]. In this paper, as a proof of concept, we show that NLP methods can
work together with node-based models to achieve higher accuracy.

To our knowledge, this paper is the first to apply neural network basedNLP techniques
to compare the semantic meaning of GO terms. Our application suggests that there are
great promises in developing NLP methods for this research area.
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5 Appendix

5.1 Resnik method
Themost basic node-basedmethod introduced by Resnik in 1999 relies on the information
content (IC) of a GO term [23]. The IC of a GO term t is computed as IC(t) = − log(p(t))
where p(t) is the probability of observing a term t in the ontology. p(t) is computed as
p(t) = freq(t)

freq(root) . freq(t) is defined as the cumulative count of term t and its descendants,
where freq(t) = count(t) +

∑
c∈child(t) freq(c). count(t) is the number of genes annotated

with the term t, and child(t) are the children of t. Based on this definition, IC(root) = 0,
and a node near the leaves has higher IC than nodes at upper levels. To compute a
similarity score of the GO terms a and b, one finds the most informative common ancestor
of these two terms.

Resnik(a, b) = max
p∈{par(a)∩par(b)}

IC(p) , (7)

where par(t) denotes all the ancestors of term t. Resnik(a, b) ranges from 0 to∞ because
the probability p(t) ranges from 0 to 1.

In thismodel, the similarity score between aGO term t and itself is not 1. Second, when
a, b have only the root as a common ancestor, then Resnik(a, b) = 0. This is problematic
because leaf nodes are more informative than other types of nodes. Consider the example
in Song et al. [26]. Here, the root is the only common ancestor of the pair a, b and the pair
c, d. Next, suppose that a, b are leaf nodes, c is the parent of a, d is the parent of b, and root
is the parent of both c, d. One would then expect that Resnik(a, b) < Resnik(c, d); however,
one would obtain Resnik(a, b) = Resnik(c, d) = 0.

5.2 Aggregate Information Content (AIC) Method
The AIC method by Song et al. [26] amends the two problems in the Resnik method. To
encode the fact that leaf nodes are more informative, AIC defines a knowledge function
of term t as k(t) = 1/IC(t) which is used to measure its semantic weight sw(t) = 1/(1 +
exp(−k(t))). Here sw(root) = 1. Semantic value sv(t) of t is then defined as sv(t) =∑

p∈path(t) sw(p). Function path(t) contains every ancestor of t and the term t itself. Usually,
sv(a) < sv(b)when term a is nearer to the root than b. Song et al. [26] define their similarity
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score of two GO terms a, b as

AIC(a, b) =
2
∑

p∈{path(a)∩path(b)} sw(p)

sv(a) + sv(b)
. (8)

AIC(a, b) ranges from 0 to 1. In this model, AIC(a, a) = 1. When a, b have only the root as
the common ancestor, then AIC(a, b) = 2/(sv(a) + sv(b))which depends on where a, b are
on the GO tree.

5.3 Graph-based Similarity Measure (GraSM)
GraSM is an extension of Resnik, and can be classified as an edge-based method. GraSM
analyses more than just the most informative common ancestor of two GO terms, by
looking at their disjunctive common ancestors [3]. For one GO term a, two of its ancestors
are disjunctive if there are different paths from both ancestors to the GO term.

DisjAnc(a) = {c1, c2 | ∃path(a, c1) not containing c2 AND ∃path(a, c2) not containing c1}
(9)

For two GO terms a and b , suppose the term c1 is in the union set U=DisjAnc(a)∪
DisjAnc(b). c1 is a common disjunctive ancestor of a, b if for each common ancestor c2 of
a, bwhere IC(c1) < IC(c2)we have both c1, c2 ∈ U . The similarity measurement for a, b is

GraSM(a, b) = mean IC(c)where c is common disjunctive ancestor of a, b (10)

We use the software GOssTo to implement GraSM [1].

5.4 RandomWalk Contribution (RWC)
We briefly describe RWC’s key idea. Unlike many other methods which inspect the
ancestors of two given GO terms, RWC is an edge-based approach that analyzes the
shared children of two GO terms a and b [29]. In brief, in the RWC paradigm, GO terms
with more common children are more deemed to be more similar.

Define Nc as the number of genes annotated by term c. In RWC, the random walker
moves fromtheparentnode p to its direct child cwithprobabilityP(p→ c) = Nc/

∑
u:∃p→u Nu.

As the randomwalkermoves for a very long time, we can denote the probability of ending
at a node i from a to be W a

∞(i). Let L be the set of all leaf nodes in the GO tree. The RWC
for two terms a and b is

RWC(a, b) =
∑
i,j∈L

W a
∞(i)W

b
∞(j)score(i, j) (11)

score(i, j) is a generic place holder. For example, score(i, j) can be Resnik(i, j). Yang
et al. [29] uses their RWC to improve score(a, b) by taking the average

scoreRWC(a, b) =
1

2
(RWC(a, b) + score(a, b)) (12)
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In this paper, we use the software GOssTo to implement RWC with score(a, b) being
Resnik and GraSM [1]. Currently, GOssTo is unable to take any generic score function as
its argument.
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