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Abstract

Chemical named entity recognition (NER) is an active field of research in biomedical natural language
processing. To facilitate the development of new and superior chemical NER systems, BioCreative released the
CHEMDNER corpus, an extensive dataset of diverse manually annotated chemical entities. Most of the
systems trained on the corpus rely on complicated hand-crafted rules or curated databases for data
preprocessing, feature extraction and output post-processing, though modern machine learning algorithms,
such as deep neural networks, can automatically design the rules with little to none human intervention. Here
we explored this approach by experimenting with various deep learning architectures for targeted tokenisation
and named entity recognition. Our final model, based on a combination of convolutional and stateful recurrent
neural networks with attention-like loops and hybrid word- and character-level embeddings, reaches near
human-level performance on the testing dataset with no manually asserted rules. To make our model easily
accessible for standalone use and integration in third-party software, we’ve developed a Python package with a
minimalistic user interface.
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Content
Background

Modern data-generation capabilities have clearly surpassed our capacity to manu-

ally analyse published data, which is ever-more evident in the era of high-throughput

methods. Naturally, this fuels the development of automatic natural language pro-

cessing (NLP) systems capable of extracting and transforming specific information

from a body of literature with human-level precision. Among all the subtasks NLP

introduces, named entity recognition (NER) – aiming to identify objects of partic-

ular semantic value (e.g. chemical compounds) – is one of the most fundamental for

higher level event-focused analyses. Traditionally, chemical NER systems have relied

on curated dictionaries and hand-crafted rules (e.g. regular expressions for system-

atic IUPAC names or databases of trivial names and identifiers), which are hard to

develop and maintain due to diverse morphology and rich vocabulary of biomedical

literature. On the other hand, various machine learning (ML) models can automat-

ically infer efficient rules (input transformations) from annotated corpora reducing

development and maintenance costs. In ML terms named entity recognition is a

supervised labelling problem.
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To facilitate the development of new and superior NER systems, BioCreative

announced the CHEMDNER challenge, which ended in 2015 [1]. As part of this task,

a team of experts has produced an extensive manually annotated corpus covering

various chemical entity types, including systematic and trivial names, abbreviations

and identifiers, formulae and phrases. Due to many difficulties inherent to chemical

entity detection and normalisation [1], even manual annotation yields the inter-

annotator agreement score of 91%, which can be regarded as the theoretical limit

for any automatic system trained on this corpus. Twenty six teams have submitted

their NER systems for the challenge, best of which have reached the F1 score of

∼ 72− 88% [2, 3, 4, 5, 6, 7, 8, 9] on two subtasks: chemical entity mention (CEM)

and chemical document indexing (CDI).

The systems were quite diverse in terms of text preprocessing, which is a separate

NLP problem in its own right. Obviously, it’s possible to represent any text as a

raw sequence of characters (e.g. byte-like sequences or Unicode character codes),

yet it is more common to break the characters into word-like structures known as

tokens, which can be further normalised and/or encoded. Although tokenisation

typically reduces the number of time-steps in the sequence, thus reducing the input

complexity, it can introduce severe artefacts, e.g. merged/overlapping entities [5, 9].

It makes it essential to use an adequate tokeniser with rules finely adjusted for the

task at hand.

While there are many token encoding strategies, they all can be divided into two

major groups: morphology aware (character-level) and unaware (word-level). In the

latter case, one usually builds a vocabulary of all tokens occurring in a corpus and

applies a minimal frequency cutoff to remove noisy entries (e.g. misspelled words and

typos). Consequently, all tokens in the vocabulary get a unique identifier t ∈ N+,

while all out-of-vocabulary (OOV) tokens get a special shared identifier. The vo-

cabulary itself can be represented as a matrix T = (t1, . . . , tT ) of orthogonal unit

vectors (also known as one-hot encodings), both sparse and purely categorical: their

pair-wise distances carry no underlying information about semantical similarity. In

their chemical NER system, Lu et al. [9] successfully used the skip-gram embed-

ding model to overcome these limitations. The model uses context information and

a shallow neural network to embed high-dimensional one-hot encoded vectors in

a lower-dimensional vector space, wherein pair-wise distances represent semantical

similarity [10, 11]. Despite this strategy’s increasing popularity, few CHEMDNER

task participants have employed it for morphology unaware encoding, relying in-

stead on manually selected features to expand token identifiers into feature vectors.

While word-level encodings are efficient for morphologically rigid corpora (e.g. stan-

dard English texts), morphologically rich biomedical and chemical literature intro-

duces many infrequent words and word-forms, resulting in high out-of-vocabulary

(OOV) rates [12, 13]. Consequently, most CHEMNDER participants have addition-

ally (or exclusively) used morphology aware-encodings, targeting various manually

designed character-level features. Machine-learning models were far less diverse:

since textual data are sequential, that is a value ti at time-step i can be conditioned

on the values occurring before and after the time-step, it is only natural to use

sequential models for NER problems. Although many such models exist, most of

the top-scoring ML-based tools submitted for the CHEMDNER task utilised con-

ditional random fields (CRF), which are traditionally used for sequence labelling.
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CRFs are graphical models related to hidden Markov models (HMMs). They take

a sequence of feature vectors as inputs and generate a sequence of labels, which

can be further modified during post-processing. The participants used hand-crafted

post-processing rules as diverse as the preprocessing procedures.

From this brief overview of the NER systems submitted for the CHEMDNER

task, it becomes quite evident that, despite the introduction of machine learning

methods, in many ways these systems remain conceptually close to manually cu-

rated sets of rules (feature extractors). This might explain why LeadMine [8] (an-

other contender), a purely rule-based system, outperforms most of the submitted

ML-based counterparts. At the same time, it is possible to reduce manual inter-

ventions to the bare minimum by treating tokenisation, word encoding and feature

extraction as subtasks in a global machine learning task, and this is exactly the

kind of problems that deep artificial neural networks (ANNs) excel at. As we have

already mentioned, neural networks can automatically learn morphology unaware

word representations, and the same is true about morphology aware encodings. Fur-

thermore, deep convolutional neural networks can automatically optimise feature

extraction during training [14]. Most importantly, the labelling itself can be done by

recurrent neural networks. Recurrent networks are naturally sequential and Turing-

complete, extremely powerful in sequence-to-sequence (also known as seq2seq or

many-to-many) modelling (including labelling) [15]. In an unreviewed paper by Rei

et al. [16] the authors have experimented with deep-learning applications in NER

on several datasets, including CHEMDNER. Some of their models used a bidirec-

tional RNN for character-level word embedding combined with a variation of the

attention technique used to choose between word-level and character-level embed-

dings, though the labelling itself was done by a CRF. Convolutional networks have

also been used for biomedical NER. Zhu et al. [17] have applied a deep CNN to

automatically infer local context-sensitive features fed into a CRF classifier. In an

unreviewed article Chiu and colleagues have showcased a complete ANN-only de-

sign, based on a combination of convolutional and recurrent layers [18]. The model

uses word-level and character-level token embeddings. While the former were pre-

trained, the latter were optimised during training by transforming a word’s matrix

of per-character linear embeddings into a single vector using a bidirectional RNN.

Concatenated word-level and character-level embeddings were then fed into a CNN

to extract local features. In contrast with the former examples, this model opted for

a deep RNN instead of a CRF for sequence labelling. The authors claim state-of-

the-art performance on the datasets they’ve used, though quite unfortunately they

have not tried to apply their model to a chemical dataset. All these examples make

it self-evident that a pure ANN specifically targeting the CHEMDNER CEM sub-

task can perform as well (if not better) that conventional models, whilst relying on

no imposed rules or databases whatsoever. Having set this as the main purpose of

this study, we have developed a highly modular deep-learning model incorporating

multiple novel features, including trainable targeted tokenisation.

Materials and methods
Problem formulation

We consider named entity recognition as a combination of two problems: segmen-

tation and sequence labelling. Given:

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2018. ; https://doi.org/10.1101/321224doi: bioRxiv preprint 

https://doi.org/10.1101/321224
http://creativecommons.org/licenses/by-nd/4.0/


Korvigo et al. Page 4 of 13

• an ordered set of N character sequences X = (X1, . . . , XN ), where Xi =

(ic1, . . . ,
i cn) is a character sequence;

• an ordered set of N annotations Y = (Y1, . . . , YN ), where Yi is a sequence

Yi = (iy1, . . . ,
i yn) and iyj is a tuple of two boolean labels (isj ,

i ej) showing

whether the corresponding character is the beginning of a chemical entity

and/or part of one, respectively;

our task is to create a predictor P : X → Ŷ , where Ŷ is a set of inferred annotations

similar to Y . We also introduce a tokeniser T : X → X̃, where X̃ is an ordered

sequence of character subsequences (tokens), thus slightly redefining the objective

function to target per-token annotations. Provided that the tokeniser is fine enough

to avoid tokens with overlapping annotations, this redefined problem is equivalent

to the original one.

Datasets

We used the CHEMDNER corpus [1] to train and validate our models. The corpus

contains ten thousand abstracts from eleven chemistry-related fields of science with

over 84k manually annotated chemical entities (20k unique) of eight types:

• ABBREVIATION (15.55%)

• FAMILY (14.15%)

• FORMULA (14.26%)

• IDENTIFIER (2.16%)

• MULTIPLE (0.70%)

• SYSTEMATIC (22.69%)

• TRIVIAL (30.36%)

• NO CLASS (0.13%)

The MULTIPLE class represents phrases containing several entities of other classes

separated by non-chemical words. The CHEMDNER corpus comprises three parts:

training (3.5k abstracts), development (3.5k) and testing (3k) datasets. We joined

the first two datasets, randomly shuffled the result and separated 10% for a valida-

tion dataset to monitor overfitting. The other part of the split was used for training.

We only used the official test dataset to estimate performance upon training com-

pletion.

Design choices

Deep-learning models. We have utilised three types of neural networks: one-

dimensional (1D) convolutional neural networks (CNN), recurrent neural networks

(RNN) and time-distributed dense (fully-connected) networks (TDD). In their

essence, one-dimensional convolutional neural networks are trainable feature ex-

tractors applied along a sequence evolving in time. A deep CNN [14] trains to

extract time-invariant hierarchies of features at each time-step while optimising an

objective function. Since texts are sequential, that is a value ti at time-step i can be

conditioned on the previous and/or the following time-steps, a time-invariant model

alone is not sufficient. We used recurrent neural networks – highly powerful trainable

state machines theoretically capable of modelling relationships of arbitrary depth –

to process CNN-extracted features. These networks train by back-propagating the

error through time, which in deep sequences may lead to vanishing or exploding
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gradients. Several types of RNNs have been developed to better handle long-term

dependencies, most notably the long short time memory network (LSTM) and gated

recurrent unit network (GRU) [19]. Both architectures use trainable gates control-

ling the data flow and memory updates. The GRU architecture is a newer and lighter

alternative to the widely adopted LSTM, with two trainable gates instead of the

latter’s three resulting in less parameters to optimise, a desirable trait when training

data are scarce. Comparative studies haven’t found any consistent performance ad-

vantages of either GRUs or LSTMs, though the former tend to converge faster [20].

To further improve performance, it is common to use bidirectional RNNs (biRNNs)

“reading” sequences in both directions. Finally, we used a time-distributed fully

connected network [21] (also known as dense networks or multilayer perceptrons)

with the sigmoid activation function to generate label probabilities. In contrast with

traditional bulky dense networks that process the entire input at once, TDDs ap-

ply a lightweight multi-layer perceptron (MLP) to each time-step in a sequence,

drastically reducing the number of parameters and making it possible to analyse

variable-length inputs.

Stateful learning. Texts come in all sizes, which is quite problematic for most

machine-learning methods. Although one of the RNNs’ key selling points is their

ability to naturally handle variable-size inputs, it’s hard to implement an RNN in

a way that takes full advantage of this feature whilst staying computationally effi-

cient. Two mainstream solutions exist. The most natural – and arguably the least

computationally efficient – solution implies grouping and encoding (i.e. representing

as numeric tensors) equally sized texts together. This method introduces a lot of ex-

tremely small sample batches greatly increasing gradient variance and, by extension,

hindering model convergence. Alternatively, one can use zero-padding (artificially

increasing length by appending zeros to numerically encoded sequences). This pro-

cedure greatly increases sparsity and the memory overhead, because full-sized texts

can vary greatly in length. It is thus more efficient (and common) to break texts into

individual sentences. Despite being more computationally efficient, this method is

less flexible, because it introduces a sentence length limit and requires a sentence

segmentation model. It also strips aways text-wide context. Quite fortunately, there

is another relatively novel technique known as stateful learning. Although it has not

yet gained any noticeable adoption in the community (partly due to complicated

data handling described below), it combines the best of both aforementioned meth-

ods: no text-size restrictions, no sentence segmentation model dependencies and

negligible memory overhead. Normally RNNs only keep their state within a single

batch of samples and reset it between batches, because there is no guarantee that

the next batch is somehow related to the previous one. In contrast with conventional

setups, an RNN configured for stateful learning treats a sample (row) j in batch

i + 1 as the direct continuation of sample j in batch i, making it possible to break

long sequences into fixed-size windows without resetting the context when moving

from one batch to another. Simply put, stateful learning allows RNNs to transcend

the batch barrier and, in theory, keep track of the context as long as required.

To make it technically possible, the batch-size must be fixed at construction time

and the data must be preprocessed to satisfy the aforementioned property. We ve

developed a bin packing-based data preprocessing algorithm to achieve this goal.
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Given a batch size of n, we distribute input texts into n bins while trying to keep

the accumulated lengths equal between all bins. We then concatenate texts inside

each bin into super-sequences, stack them and break into chunks of l time-steps.

This procedure is easily reversible, making it possible to recover annotations for

individual texts. Additionally, since in bidirectional RNNs it only makes sense to

keep track of the forward-evolving state, we have developed a “half-stateful” bidi-

rectional RNN wrapper layer (HS-biRNN) that takes care of forward inter-batch

state transfers and can be used with any RNN architecture (e.g. LSTM or GRU).

Text preprocessing
We have done no text-preprocessing except for tokenisation. Accurate tokenisation
is highly important in token-level NLP tasks [5]. On the one hand, this process
can isolate semantically and morphologically stable character sequences, making
it easier for the model to focus on the data. On the other, tokenisation may lead
to overlapping annotations if the rules fail to separate several adjoint entities or
non-entity characters from entities. Most popular tokenisers rely on a hierarchy of
rules optimised for standard English, though there are some specifically designed
for biomedical and chemical texts. For example, the tokeniser implemented in the
ChemDataExtractor package [22] overrides some rules in the Penn Treebank policy
to better handle chemical entities:

Tokens are split on all whitespace and most punctuation characters, with exceptions
for brackets, colons, and other symbols in certain situations to preserve entities such
as chemical names as a single token.

In other words, as with any rule-based technique, it’s notoriously hard to create

an optimal tokeniser equally adequate for recovering standard vocabulary and di-

verse chemical entities, because they have different underlying morphology – a to-

keniser has to be context-aware. We believe that instead of trying to manually

create a general-purpose tokeniser one can use an alternative specifically trained to

accurately recover target entities. Such a tokeniser will only be used to preprocess

text for a subsequent NER model alleviating the need to recover irrelevant words.

Since we have found little to no research on trainable tokenisers, we have devel-

oped our own model based on a “break and stitch” strategy: a primary extra-fine

segmentation followed by a refinement step trying to recover target entities (Fig.

1). We have used the following Perl-style regular expression to carry out the first

step: \w+|[^\s\w]. The expression groups together Unicode word characters (i.e.

most characters that can be seen in a word in any language, including numbers)

and separates all other characters. For example, it breaks 2-amino-1-methyl-

6-phenylimidazo[4,5-b]pyridine into nineteen fragments: 2, -, amino, -, 1, -,

methyl, -, 6, -, phenylimidazo, [, 4, ,, 5, -, b, ], pyridine. As expected, the

result is heavily over-fragmented. On the bright side, our analyses of the tokenised

CHEMDNER corpus showed a near-complete absence of tokens overlapping several

entities, making it possible to accurately reconstruct large entity tokens by stitching

several fragments together. To detect stitch points we have designed a lightweight

stateful sequence-to-sequence CNN-RNN model processing raw untokenised text.

The model consists of a linear character encoding layer, two consecutive 1D CNN

layers, each with 256 (3-characters wide) filters, followed by two half-stateful bidi-

rectional GRU layers (32 cells each) and a time-distributed sigmoid classifier that

outputs a binary tag for each character in the sequence. Positive tags mark stitch

points. We have used the same training and validation splits to train this tokeniser

alongside the NER model.
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The NER model

All the models we trained had two input nodes: one for pretrained word-level embed-

dings and another one for encoded token strings. The strings were encoded as integer

vectors containing character identifiers. We trained 300-dimensional Glove embed-

dings with default configurations [23] on a corpus of 5 · 105 random PubMed ab-

stracts from the same categories as the CHEMDNER abstracts: BIOCHEMISTRY

& MOLECULAR BIOLOGY, APPLIED CHEMISTRY, MEDICINAL CHEM-

ISTRY, MULTIDISCIPLINARY CHEMISTRY, ORGANIC CHEMISTRY, PHYS-

ICAL CHEMISTRY, ENDOCRINOLOGY & METABOLISM, CHEMICAL EN-

GINEERING, POLYMER SCIENCE, PHARMACOLOGY & PHARMACY and

TOXICOLOGY [1]. Character-level embeddings were optimised during training us-

ing the same approach described in [18]. This block consisted of a trainable linear

character-embedding layer transforming vectors of character codes into matrices of

32-dimensional character embeddings. These word matrices are then processed by a

standard biGRU (16 cells) layer producing a 32-dimensional vector per token [24].

Instead of concatenating word- and character-level embeddings before feeding

them into a single CNN or RNN block, we used separate two-layers deep 1D CNNs

for each embedding type to increase the number of degrees of freedom without using

too many convolutional filters. Features extracted by these independent blocks were

subsequently concatenated and fed into a two-layers deep HS-biGRU. The network

then bifurcates again:

1 The first branch continues with an additional HS-biRNN followed by a time-

distributed sigmoid layer. The layer outputs the probability that a given time-

step is a part of a named entity.

2 The second one starts with an arithmetic node multiplying the probabilities

produced by the other branch and the output from the preceding HS-biGRU

block at each time-step. The result is then fed into a single HS-biRNN layer

followed by a time-distributed sigmoid layer, yielding the probability that a

given time-step is the beginning of an entity.

First of all, it’s important to show that this labelling method remotely re-

sembles the widely used IOB scheme with three mutually exclusive labels: In-

side/Outside/Beginning (of an entity) [25]. At the same time, in contrast to this

scheme (or any other scheme with mutually-exclusive tags), our labels are not mutu-

ally exclusive and are codependent at the same time due to the multiplication node.

Since we try to minimise both predictors their error is back-propagated through the

graph, creating a reinforcing loop with two effects: (1) it theoretically encourages

the part-detected to better pay more attention to single-token entities and (2) it

helps the beginning-detector attend to entity parts.

Here we have described all design elements of the final (fully-featured) NER model.

We also examined the impact of several large-scale changes on its performance. In

particular, we have compared GRU and LSTM architectures and tried replacing

the CNNs with additional recurrent layers. More importantly, we have compared

stateful and conventional biRNNs trained unsegmented full-sized texts and stacked

sentences respectively. We used the GeniaSS [26] sentence segmentation model to

carry out this comparison. Having limited computational resources and time con-

straints we have not tried to fine-tune any hyper-parameters: all convolutional layers
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comprised 256 (3 time-steps wide) filers, and all HS-biRNN layers contained 32 re-

current cells.

Training and testing

The project was implemented in Python 3.5 using deep-learning frameworks Keras 2

[27] and TensorFlow 1.3 [28]. All computations have been carried out on an Ubuntu

Linux server with two Intel Xeon E5 CPUs (10 cores and 20 threads each), 512GB

of RAM and four Nvidia Titan X GPUs. We used the Adam optimiser [29] with

default parameters recommended by the authors. The networks were trained for 40

epochs with a callback saving weights upon improvements in performance on the

validation dataset.

During testing, we specifically targeted the CHEMDNER chemical entity mention

(CEM) subtask. Since deep-learning models are inherently non-deterministic due to

random weight initialisation and stochastic optimisation, we have evaluated each

design variation by averaging estimated probabilities from 10 independently trained

networks (as in [16]). To add some perspective, we report all models that have

achieved a CEM F-score of 80% and above in the CHEMDNER challenge 1, though

their current accessibility is worth mentioning. The models introduced by teams 184,

185, 192 either have not been published at all or the links have become inactive.

LeadMine (179) [8] is exclusively commercial. While there is a GitHub repository for

the model devised by Lu et al. (team 231) [9, 30], it literally contains nothing but a

link to an archive (which supposedly contains the model), uploaded to a file-hosting

service that requires a proprietary application to download the archive. Since both

the file-hosting and the application are only available in Chinese, we have been

unable to download the archive and thus consider it inaccessible. Becas (team 197)

[31] and tmChem (team 173) [2] both provide different web-based APIs, making it

possible to submit texts to annotation servers or, in case of tmChem, even download

precomputed annotations for PubMed abstracts. With tmChem there is also an

option to build the tool from sources, though the source archive does not seem

to come with a trained model, because our stand-alone installation has produced

random annotations. Both Chemspot (team 198) [32] and BANNER-CHEMDNER

(team 233) [33] are available for stand-alone installation from sources.

Apart from the models submitted for the CHEMDNER challenge we have also

considered ChemDataExtractor [22], a recently introduced general purpose pack-

age for chemical text analyses, because its NER model is very much akin to [9],

which is unavailable. Both utilise unsupervised word-clustering and CRFs, though

ChemDataExtractor uses a hierarchical detection system with a built-in database

updated in an online fashion to help it extract abbreviations and identifiers. Chem-

DataExtractor comes with a highly user-friendly Python API making it extremely

easy to install and utilise. More importantly its overall combined CEM F-score of

87.8% puts it on top of all models submitted for the CHEMDNER challenge.

Results and discussion
Tokenisation, overlapping annotations and sequence lengths

We have processed the entire CHEMNDER testing dataset and searched for entities

with overlapping annotations. Out of 25347 annotated entities in the testing dataset
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less than 0.19% spanned the same token, which is truly negligible. At the same time

the tokeniser had a recall of 91.75% and precision of 93.32%. Therefore, it is able

to accurately recover most of the annotated entities.

Performance

First of all, in terms of time required to complete one training epoch the reference

network (fig. 2) incorporating stateful biRNNs trained over two times faster than

its sentence-based sibling with conventional biRNNs and had a lighter memory

footprint. We observed no significant impact on the F-score, though. There was

no observable advantage in using LSTM cells over GRUs, either. On the contrary,

GRUs trained and converged faster and showed slightly better performance on the

testing dataset. Convolutional layers were crucial for good performance. On average,

replacing the CNN-layers with one or two hs-biGRU layers reduced the F-score by

∼ 1.5− 2.3% and hampered the training process.

On the CHEMDNER CEM subtask our fully-featured network has gained the

F-score of 88.7%. Therefore, it outperforms all models submitted for the CHEMD-

NER task by a significant margin, though the edge over ChemDataExtractor is less

impressive (see table 1 for more details). Considering the inter-annotator agreement

score of 91%, the model demonstrates near-human performance. Since the model

does not discriminate between entity types, there is no way to calculate per-class

precision values and, by extension, F-scores. Nevertheless, following Krallinger et

al.[30] we report per-class precision in table 2. It’s important to note that following

the CHEMDNER CEM evaluation rules we have only considered perfect matches.

It is immediately clear that the model struggles greatly with rare entity types, i.e.

NO CLASS and MULTIPLE, and excels at systematic and trivial names. Consid-

ering how rare the MULTIPLE type entities are (195 entities) and that they span

several standard English words intertwined with different chemical entity types, this

subpar performance is not surprising and is actually consistent with that of other

tools reported in [30] (Additional file 3).

Accessibility and the user interface

While analysing the NER systems submitted for the CHEMDNER task, we have

found that neither the source code, nor the trained models are available for some

of the best-performing tools, limiting the ability to use and validate them. We

thus made it our priority to publish all the source code needed to train and use

our models. All materials are openly available on GitHub [34] in a separate frozen

branch (chemdner-pub) of a natural language processing package SciLK. While

the package itself, being in the early stages of development, is bound to change,

the separate branch will retain the version required for these models to work. In

addition to the core library, the branch contains Jupyter notebooks with code and

commentaries sufficient to reproduce our work, i.e. train a tokeniser and a named

entity detector, a notebook with usage demonstration and an archive with trained

models. A standard dual-core laptop with 8GB of RAM should be sufficient to

use the models for inference. While the software should theoretically work under

Microsoft Windows, we have only tested it on machines running Mac OS X and

GNU-Linux. Should a user want to train a similar model, we recommend doing it

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2018. ; https://doi.org/10.1101/321224doi: bioRxiv preprint 

https://doi.org/10.1101/321224
http://creativecommons.org/licenses/by-nd/4.0/


Korvigo et al. Page 10 of 13

on a machine with at least 32GB of RAM and a graphics processing unit (GPU)

with at least 8GB of VRAM. Although a GPU is not strictly required for training,

it takes roughly twice as much time to train a fully-featured model on a 20-core

CPU-only system.

Conclusions
Here we have presented our deep-learning model for chemical named entities recog-

nition in biomedical texts, trained and evaluated on the CHEMDNER corpus. Given

its high performance, the model proves that chemical named entity recognition can

be done efficiently with no manually created rules or curated databases whatso-

ever. We also showcase several novel or rarely used approaches and design choices

that, to the best of our knowledge, have never been used in biomedical or chemical

NER. Most notably, we advocate the use of specialised trainable tokenisers and

stateful recurrent neural networks. Nevertheless, we clearly see several directions

for further improvement. For one, due to time constraints we have not investigated

many hyper-parameter and topology options. Secondly, while avoiding complicated

preprocessing has been one of the top-priorities, we still believe that additional in-

formation that cannot be extracted from the CHEMDNER corpus itself can further

increase performance. In particular, we think that part of speech tags or other ex-

ternal annotations can greatly benefit the system. We also think that much more

research should be done on targeted tokenisers, considering that our tokeniser had

a rather primitive design.
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Figures

Figure 1 Text tokenisation. The break and stich targeted tokenisation strategy employed by our
trainable tokeniser.
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Figure 2 Model architecture. The figure illustrates the topology and of the best-performing
full-featured model. 1CNN – convolutional neural network 2HS – biGRU - half-stateful bidirectional
gated recurrent unit 3FCN – fully-connected network

Table 1 Performance scores for the CHEMDNER chemical entity mention (CEM) subtask.
CHEMDNER challenge team IDs are given in parenthesis in the Model column (where available;
performance scores for these models have been taken from Table 4 in [30]). We provide
ChemDataExtractor performance scores reported by the authors.

Model Precision % Recall % F1-score %
Our model 88.6 88.8 88.7
ChemDataExtractor [22] 89.1 86.6 87.8
tmChem (173) [2] 89.2 85.8 87.4
(231) [9] 89.1 85.2 87.1
LeadMine (179) [8] 88.7 85.1 86.9
(184) 92.7 81.2 86.6
Chemspot (198) [32] 91.2 82.3 86.7
Becas (197) [31] 86.5 85.7 86.1
(192) 89.4 81.1 85.1
BANNER-CHEMDNER (233) [33] 88.7 81.2 84.8
(185) 84.5 80.1 82.2

Table 2 Recall values estimated for individual entity types. Only perfect matches were considered
correct.

Recall, % The number of entities
NO CLASS 63.41 41
MULTIPLE 63.59 195
IDENTIFIER 81.68 513
FORMULA 84.11 3443
FAMILY 86.28 3622
ABBREVIATION 86.15 4059
SYSTEMATIC 91.40 5666
TRIVIAL 92.78 7808
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