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Abstract 
Background: Most chemicals in commerce have not been evaluated for their 
carcinogenic potential. The current de-facto gold-standard approach to 
carcinogen testing adopts the two-year rodent bioassay, a time consuming and 
costly procedure. Alternative approaches, such as high-throughput in-vitro 
assays, show promise in addressing the limitations in carcinogen screening.  

Objectives: We developed a screening process for predicting chemical 
carcinogenicity and genotoxicity and characterizing modes of actions (MoAs) 
using in-vitro gene expression assays.  

Methods: We generated a large toxicogenomics resource comprising ~6,000 
expression profiles corresponding to 330 chemicals profiled in HepG2 cells at 
multiple doses and in replicates. Predictive models of carcinogenicity were built 
using a Random Forest classifier. Differential pathway enrichment analysis was 
performed to identify pathways associated with carcinogen exposure. Signatures 
of carcinogenicity and genotoxicity were compared with external data sources 
including Drugmatrix and the Connectivity Map.  

Results: Among profiles with sufficient bioactivity, our classifiers achieved 72.2% 
AUC for predicting carcinogenicity and 82.3% AUC for predicting genotoxicity. 
Our analysis showed that chemical bioactivity, as measured by the strength and 
reproducibility of the transcriptional response, is not significantly associated with 
long-term carcinogenicity, as evidenced by the many carcinogenic chemicals that 
did not elicit substantial changes in gene expression at doses up to 40 µM. 
However, sufficiently high transcriptional bioactivity is necessary for a chemical to 
be used for prediction of carcinogenicity. Pathway enrichment analysis revealed 
several pathways consistent with literature review of pathways that drive cancer, 
including DNA damage and DNA repair. These data are available for download 
via https://clue.io/CRCGN_ABC, and a web portal for interactive query and 
visualization of the data and results is accessible at https://carcinogenome.org. 

Conclusions:  We demonstrated a short-term in-vitro screening approach using 
gene expression profiling to predict long-term carcinogenicity and infer MoAs of 
chemical perturbations.  
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Introduction 
Despite significant investments into cancer research over the last decades, 
approximately 1.7 million new cancer cases and 600k cancers deaths were 
estimated in the U.S. in 2017 alone (American Cancer Society 2017). Of these, 
90-95% are not attributable to known heritable genetic factors, thus making 
environmental exposures a major suspect in driving cancer risk (Anand et al. 
2008), notwithstanding recent studies pointing to the rate of cell replications as 
an important determinant of cancer risk variation among different tissue types 
(Tomasetti and Vogelstein 2015; Tomasetti et al. 2017). Most research aimed at 
assessing cancer risk from exposure has primarily relied on epidemiological 
studies of past human exposures to suspected carcinogens in cancer clusters, 
and on carcinogen screening based on the 2-year rodent-based bioassay. 
Epidemiological studies rely on observational data, and as such it is often difficult 
to rule out the possibility of spurious associations due to confounding effects. 
They also require that exposure to a suspected carcinogen is documentable. 
Even when the nature of the chemical exposure and the exposure dose is 
known, epidemiological studies require long follow-up periods, hence are not 
appropriate for the evaluation of new chemicals on the market. Similarly, the 2-
year rodent bioassay, the gold standard for carcinogen testing, is time-
consuming and requires up to $4 million and more than 800 animals per 
compound. As a result, less than 2% of the ~85,000 chemicals registered in the 
TSCA Chemical Substance Inventory have been tested by this approach (Bucher 
and Portier 2004; Gold et al. 2005; Huff et al. 2008).  

 High-throughput transcriptional profiles from short-term chemical 
exposures have proven useful for predicting long-term carcinogenicity and for 
capturing multiple biological MoAs of long-term carcinogenicity. Many studies 
have explored the use of high-throughput transcriptional profiling in rodent 
models (Eichner et al. 2013; Ellinger-Ziegelbauer et al. 2008; Gusenleitner et al. 
2014; Kossler et al. 2015; Uehara et al. 2011). However, questions remain about 
the relevance of rodent models for characterizing human carcinogenicity, and 
most importantly, they are still excessively time-consuming and expensive for 
large-scale testing. In-vitro-based screens would help address the time and cost 
constraints of carcinogen testing through automated high-throughput plating, 
exposure treatment, and assaying, and would address the human relevance 
concern by relying on human cell lines that match the biological contexts of 
human populations at risk.  EPA’s Toxcast (Judson et al. 2010; Richard et al. 
2016) and Tox21 initiatives (Schmidt 2009; Tice et al. 2013) have used various 
reporter assays to characterize adverse effects across thousands of in-vitro 
chemical exposures. However, while these efforts use high-throughput 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323964doi: bioRxiv preprint 

https://doi.org/10.1101/323964


 4 

techniques with carefully selected gene, pathway and adverse-response-centric 
endpoints, the number of assays and the diversity of endpoints are limited. For 
instance, ToxCast uses 624 in-vitro endpoints mapped to 315 genes in Phase I 
(Judson et al. 2010) and an additional ~200 new endpoints in Phase II (Richard 
et al. 2016). Studies utilizing this data for the assessment of chemical 
carcinogenicity have emphasized the need to expand the assay set to better 
characterize diverse MoAs of certain carcinogens (Kleinstreuer et al. 2013). 
mRNA profiling, by assaying the entire transcriptome, or a large portion of it, 
represents a promising solution to this need by providing an agnostic view of 
which genes and pathways are relevant to chemical-induced carcinogenesis.  

 Given the technological advances in gene expression profiling and the 
development of cost-effective sequencing platforms, opportunities arise for their 
use in large-scale toxicological screenings. One such solution is the Luminex-
1000 (L1000) platform (Peck et al. 2008), a low-cost, high-throughput bead-
based platform that measures the expression of ~1000 landmark genes and 
infers the remaining genes in the transcriptome by imputation. This platform was 
used in the creation of the Connectivity Map (CMap) (Subramanian et al. 2017), 
which now includes 1.3 million perturbation profiles of drugs and small molecules 
and has been instrumental in the discovery of small molecule MoAs. Due to its 
cost-effectiveness and appropriateness for large-scale perturbation screening, 
we adopted it for the profiling of chemical carcinogens. 

 We applied the L1000 platform to study the effects of chemical 
perturbations of previously validated rat liver carcinogens and non-carcinogens in 
HEPG2 cell lines. Our approach used machine-learning techniques to build 
predictive models of the long-term carcinogenicity of chemicals based on L1000-
derived gene expression profiles of human cell lines exposed to the studied 
chemicals. Furthermore, we annotated the In-vitro-derived gene signatures by 
performing pathway enrichment of carcinogens vs. non-carcinogens, to identify 
MoAs associated with chemical induced carcinogenesis. Signatures derived from 
this study were also compared to external gene signatures and chemical 
annotations from knowledge bases such as Drugmatrix, CMap, and Tox21, to 
verify the consistency of results and expand the interpretation of findings. An 
overview of our experimental design and analysis aims is presented in Figure S1. 

Methods 
Chemical selection and annotation 

In the chemical selection process, we prioritized chemicals with long-term rodent 
liver carcinogenicity annotation for inclusion in this experiment. Long-term 
carcinogenicity annotations were derived from the Carcinogenic Potency 
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Database (CPDB) (Fitzpatrick 2008). Additional chemicals without 
carcinogenicity annotation were included on the basis of interest to the 
Superfund Research Program (environmental toxicants), presence in 
controversial commercial products (included for predictive purposes), and 
evidence of binding to the aryl hydrocarbon receptor (AhR), as the AhR is an 
important mediator of xenobiotics, including carcinogens. A complete list of 
chemicals and their annotations is provided in Table S1. For CPDB annotations, 
the final carcinogenicity labels denote "+" if carcinogenic in rat liver (female or 
male) or "-" if non-carcinogenic in both rat and mouse (in female and male) 
across all tested organs in the CPDB. Genotoxicity labels denote "+" if mutagenic 
or weakly mutagenic in the Salmonella assay, and "-" otherwise.  

Chemical procurement and data generation 

Chemicals were procured from the Tox21 library of the National Toxicology 
Program (NTP) when available, or from Sigma-Aldrich otherwise. Compound 
purity and identity were confirmed by UPLC-MS (Waters, Milford, MA). Purity was 
measured by UV absorbance at 210 nm or by Evaporative Light Scattering 
(ELSD). Identity was determined on a SQ mass spectrometer by positive and/or 
negative electrospray ionization. HepG2 cells (liver cancer cell line) were 
exposed to each chemical for 24 hours in 384-well plates in 6 doses in triplicate 
wells per dose and chemical combination, starting from 40µM maximum dose 
(40mM stock diluted 1:1000) for NTP chemicals (or 20µM for chemicals procured 
from Sigma-Aldrich) in series of two-fold dilutions. The sole exception to the 
standard dosage is 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), which had a 
starting dose of 50nM due to its extreme potency. Following 24 hours of chemical 
exposure, the gene expression of the HEPG2 cells was profiled using the L1000 
platform, a high-throughput assay that measures the expression of ~1000 
landmark genes and computationally infers the expression of non-measured 
transcripts (Subramanian et al. 2017). 

 For each perturbation and landmark gene, we computed the change in 
gene expression following the perturbation using a moderated z-score procedure 
as described in the CMap-L1000 workflow.  Differential expression values were 
calculated as moderated z-scores for each landmark gene and each unique 
perturbation (chemical and dose combination) perturbation, collapsed to a single 
value across replicates.  

Assessing the transcriptional strength of a perturbation 

We used the transcriptional activity score (TAS) as a summary measure of the 
impact of a chemical perturbation on landmark gene expression. TAS integrates 
signature strength, defined as the number of genes up-regulated or down-
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regulated by a particular perturbation above a given moderated z-score 
threshold, and replicate correlation, a measurement of similarity among triplicate 
profiles corresponding to the same perturbation (unique combination of chemical, 
dose, cell line, time). Formally, TAS is quantified as the geometric mean of the 
signature strength (SSngene) and the replicate correlation (CCq75). SSngene is 
defined as the number of landmark genes (cardinality) with ModZ greater than 2, 
wherein ModZ is defined as the 978-element vector of replicate collapsed z-
scores of landmark genes, and CCq75 is the 75th quantile of the spearman 
correlations between replicates in landmark space.  

!"# =  
!!!"#!# ∗max !!!!",!

978  

 

!!!"#!# =  !"#$ !"#!!"# >= 2  

 

!"#!!"# =  !"#$ ∗  !"#$ 

 

TAS is calculated for each aggregated profile (one unique score per chemical 
and dose combination). This metric takes value in the [0,1] range, with higher 
values of TAS taken to represent a higher level of chemical bioactivity.  

Statistical tests for comparison of TAS across profiles 

We tested for the difference in TAS values among adjacent dose groups using a 
one-tailed Wilcoxon Signed-Rank Test (paired difference test), with the pairing 
determined by the unique chemical IDs to determine the statistical significance of 
strictly increased TAS levels between adjacent and increasing dose groups.  

 We next tested for difference in TAS between chemicals. In particular, for 
each dose rank, two-group comparisons of TAS scores between carcinogens 
and non-carcinogens, and between genotoxicants and non-genotoxicants, were 
conducted using one-tailed unpaired two-samples Wilcoxon test, to determine 
the presence and significance of increased TAS for the carcinogenic compared 
to non-carcinogenic group, or for the genotoxic compared to non-genotoxic 
group.  

Equivalent In-vitro dose (Cmax) estimation and association with TAS 

We assessed the relationship between in-vitro transcriptional bioactivity (TAS) 
and corresponding in-vivo dose used in the rodent bioassay from which 
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carcinogenicity labels were derived. To this end, using a toxicokinetic model 
(Pierce et al. 2017), we estimated the equivalent in-vitro dose (Cmax) 
corresponding to the in-vivo dose tested in the rat bioassay. 

 Cmax values were estimated using the R package HTTK v1.8 (Pierce et 
al. 2017). For carcinogenic compounds, these values were derived from the 
CPDB-reported median toxic dose (TD50) administered in rats. For non-
carcinogenicity compounds, Cmax values were derived from the CPDB-reported 
maximum dose administered in rats. Chemicals with missing TD50 (if 
carcinogenic) or maximum dose (if non-carcinogenic) were omitted from this 
analysis. It is assumed that dosing was once per day for 365 days.  

 To determine the association between TAS, carcinogenicity, and Cmax, 
we used the following linear regression model: 

log!"(Cmax) ~ α +  β!"#×TAS +  β!"#!×CARC +  β!:!×TAS:CARC, 

where TAS denotes the mean TAS for each chemical (across 6 doses), and 
CARC denotes the carcinogenicity status of the chemical in the rodent bioassay. 
We tested for significance of the coefficients β!"#, β!"#!, β!:!  under the null 
hypotheses of zero-valued coefficients (no effect).  

Supervised learning for prediction of carcinogenicity and genotoxicity 

To build classifiers for the prediction of carcinogenicity and genotoxicity, we used 
the moderated z-scores of landmark genes as predictive features. The Random 
Forest classifier was used, as implemented in the R package caret (Kuhn 2012). 
The performance of the classifier was evaluated using a resampling scheme 
consisting of 25 random repeats of training on 70% of the samples and testing on 
the remaining 30%. The training and test set split was performed at the chemical 
level, so that all replicates of each chemical were only included either in the train 
or the test set, to avoid “information leakage” (over-fitting). To assess the effect 
of chemicals’ bioactivity on the performance of the classifier, the evaluation was 
repeated on different subsets of profiles corresponding to different TAS 
thresholds (all profiles, TAS>0.2, >0.3, >0.4).  Area under the ROC curve (AUC) 
was used for the assessment of a classifier performance, as it is a well-
established metric that captures the trade-off between sensitivity and specificity 
across multiple thresholds.  

 Final predictions of carcinogenicity and genotoxicity were made using 
leave-one-(chemical)-out (LOCO) cross-validation (CV); that is, at each CV 
iteration, a single chemical’s profiles across multiple doses are left out and a 
classifier is trained based on all remaining chemicals, then applied to the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323964doi: bioRxiv preprint 

https://doi.org/10.1101/323964


 8 

prediction of the left-out chemical’s profiles.  This procedure is repeated with 
each of the TAS subsets.  

Deriving pathway signatures of carcinogenicity 

We derived pathway activity scores using the R Bioconductor package GSVA 
(Hänzelmann et al. 2013; Hänzelmann et al. 2014). This tool takes as input a 
gene-by-sample expression matrix and generates a geneset-by-sample 
enrichment score matrix, with its entries representing the pathway enrichment of 
each sample with respect to each of a user specified list of gene-sets. Pathway 
enrichment scores were calculated for pathways in the MsigDB C2 Reactome 
pathway compendium (Fabregat et al. 2017; Liberzon et al. 2011; Milacic et al. 
2012). The geneset-projected matrix was then used as input for differential 
analysis with respect to sample phenotype labels (carcinogenicity or genotoxicity) 
using the R Bioconductor package limma (Ritchie et al. 2015; Smyth 2005) to 
identify pathways with differences in activity levels between chemical groups. 
This differential analysis was repeated from data inputs with various TAS 
thresholding (TAS > 0, 0.2, 0.3, 0.4). One-sided p-values consistent with the 
direction of change in pathway activity scores were estimated. The p-values 
across analyses from multiple TAS subsets were combined using the Fisher's 
method, and adjusted for multiple hypothesis testing using False Discovery Rate 
(FDR) procedure (Benjamini and Hochberg 1995).  

Comparison to Drugmatrix signatures 

Using gene set enrichment analysis (GSEA) (Subramanian et al. 2005), we 
compared how well our profiles recapitulated external signatures of 
carcinogenicity and genotoxicity extracted from the NTP Drugmatrix database 
(Ganter et al. 2005). The Drugmatrix is a compendium of microarray profiles of 
short-term chemical exposures in intact rat organs (liver samples used only) and 
in cell cultures (primary rat hepatocytes). The Drugmatrix-derived signatures 
were defined as the lists of genes in the Drugmatrix significantly associated with 
long-term carcinogenicity and genotoxicity. Data processing of the Drugmatrix 
data is consistent with methods described in Gusenleitner et al. (2014). Gene 
features were mapped from rat Ensembl gene identifiers to human gene symbols 
using Biomart (Durinck et al. 2005). Differential expression analysis was 
conducted using limma (Ritchie et al. 2015; Smyth 2005) to identify markers of 
carcinogenicity and genotoxicity after correcting for the effect of dose and 
duration of exposure.  For each comparison, a list of significant genes was 
derived using a FDR cutoff of 0.01 and absolute value of log fold change of 0.2, 
up to a maximum of 300 genes as ranked by FDR. Signatures of carcinogenicity 
and genotoxicity (direction sensitive: upregulated/downregulated) were derived 
for three Drugmatrix subsets: liver profiles, cell culture profiles, and low-dose cell 
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culture profiles (< 50µM), the latter consistent with the range of doses used in our 
experiment.  (For detailed gene lists included in the Drugmatrix signatures, see 
Table S8).  These gene signatures were tested for enrichment against our L1000 
profiles in various subsets (TAS > 0, 0.2, 0.3, 0.4), using the binary phenotypes 
of carcinogenicity and genotoxicity and the GSEA method, with empirical p-
values estimated based on 10,000 gene-set permutations. 

Comparison with CMap signatures 

We performed a systematic comparison of our signatures to those in the CMap 
database. To this end, we computed the connectivity score, a measure of 
similarity, between pairs of signatures, in this case, between each of our 
signatures and each of the perturbation signatures in the CMap, which comprises 
~1.3 million profiles corresponding to 19,811 drugs and small molecules, and 
5,075 molecular (gene-specific knockdown and over-expression) perturbations 
across 3 to 77 cell lines (Subramanian et al. 2017). The connectivity scores are 
expressed as percentile values in the [-100, 100] range, wherein a score of 100 
represents maximum signature overlap, -100 represents maximum signature 
reversal and 0 represents lack of concordance between signatures in either 
direction. Connectivity scores were computed with respect both to individual 
CMap perturbagens, and to Perturbagen Classes (PCLs), defined as sets of 
perturbagens with similar MoAs or gene target annotations. Next, we performed 
differential connectivity analysis with respect to our chemical groups 
(carcinogens vs. non-carcinogens, genotoxicants vs. non-genotoxicants) using a 
one-tailed Wilcoxon rank-sum test to test for presence of increased connectivity 
in the positive class (carcinogenic or genotoxic). These tests were repeated for 
each TAS-based subset of our data, and false discovery rate (FDR) values were 
calculated. A minimum mean connectivity score of 60 for the positive class was 
used to filter out differential connectivity hits with low base connectivity scores. 

Investigation of AhR activation in L1000 profiles 

To examine the behavior of AhR-related chemicals included in the study, we 
tested whether these chemicals exhibit enriched activity of AhR-related gene-
sets compiled from independent sources. Lists of chemicals with known AhR 
activity were identified using multiple AhR-related Tox 21 reporter assays 
extracted from the tool Tox21 Enricher, or using custom chemical annotation with 
expert knowledge (referenced as "Sherr_AHR_agonist" in Figure 7A). Lists of 
AhR target genes were compiled from literature, as annotated in Table S15.  

 A one-directional weighted Kolmogorov-Smirnov (KS) test was performed 
to test for the enrichment of "AhR-positive" samples (profiles corresponding to 
AhR-related chemicals) among the top-ranked profiles sorted by descending AhR 
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geneset activity scores. The activity scores represent the median scores across 
four individual AhR geneset scores calculated using GSVA.   

 Profiles corresponding to AhR-related chemicals in the list 
"Sherr_AHR_agonist" were clustered using the similarity matrix derived from the 
connectivity scores of the selected profiles (see previous section for the 
calculation of connectivity scores).  

Results 
TAS analysis and chemical “bioactivity” 

We used the transcriptional activity score (TAS) as a proxy for chemical 
bioactivity. Subsequent analyses are based on subsets of profiles at different 
TAS thresholds (TAS > 0, 0.2, 0.3, 0.4). TAS > 0.2 is the standard cutoff for 
sufficient bioactivity adopted by the CMap-L1000 workflow (Subramanian et al. 
2017), while TAS > 0.3 and TAS > 0.4 represent more stringent thresholds we 
use to assess the effect of increasing bioactivity on downstream analysis such as 
classification and gene-set enrichment. While the majority of our profiles have 
low transcriptional bioactivity, a substantial percent of profiles achieved sufficient 
TAS. Among 330 chemicals represented across 1972 replicate collapsed 
profiles, 133 chemicals (40.3%) achieved TAS > 0.2 in at least one dose, 89 
chemicals (26.97%) achieved TAS > 0.3 and 63 chemicals (19.09%) achieved 
TAS > 0.4.   

Chemical dose has a significant effect on transcriptional bioactivity 

We performed statistical tests to compare TAS of adjacent dose groups and 
evaluate how bioactivity is affected by dose. Statistically significantly higher TAS 
were found when comparing dose rank 3 with rank 2 (p-value < 0.01), rank 4 with 
3, rank 5 with 4 and rank 6 with 5 (p-value< 0.001)(Figure 1A). The consistent 
significance of TAS differences between adjacent dose groups implies that 
increasing dose is effective at increasing the transcriptional bioactivity of profiles, 
with the maximum dose used in this experiment yielding the highest range of 
TAS scores. When binned by TAS range (Figure 1B), the monotonically 
increasing dose response of TAS is apparent across all bins and stronger for 
higher TAS ranges.  

Transcriptional bioactivity levels are not associated with carcinogenicity 

Next, we evaluated whether the level of a chemical bioactivity as captured by 
TAS had any association with that chemical’s long-term carcinogenicity or 
genotoxicity. Remarkably, carcinogenicity showed no effect on TAS in all dose 
groups (Figure 1C).  
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 On the other hand, genotoxicity showed a marginally significant effect on 
TAS among profiles with dose rank 1 (lowest dose group) and dose rank 6 
(highest dose group) where genotoxic chemicals had significantly higher TAS 
compared to non-genotoxic chemicals (p-value cutoff > 0.05)(Figure S2).  

In-vitro bioactivity is negatively associated with the rat bioassay dose 

The lack of association between TAS and carcinogenicity motivated us to further 
investigate the relationship between the L1000 doses and the in-vivo doses used 
in the rodent bioassay. To this end, we tested the association between in-vitro 
bioactivity (TAS) and the estimated equivalent in-vitro dose, Cmax (see 
Methods), where Cmax represents the estimated in-vitro dose corresponding to 
the in-vivo dose tested in the rat bioassay. Cmax estimates could be calculated 
for 183 of the 330 chemicals included in our screen.  

 Figure 1D shows the mean TAS of profiles for each chemical against the 
same chemical's Cmax/40µM (the ratio of estimated equivalent dose to the max 
in-vitro dose). First, we observe that a substantial number of chemicals have 
Cmax/40µM values greater than 1, indicating that among these chemicals, higher 
doses were tested in the rodent bioassay than in our in-vitro assay.  

 Secondly, we tested the significance of the effect of TAS, carcionogenicity 
(CARC), and interaction of TAS and CARC on Cmax using regression analysis 
(see Methods). We found significant effects of TAS (β!"#= -4.49, p-value = 0.01), 
and CARC ( β!"#!= -1.22, p-value = 0.001) and non-significant effect of the 
interaction of TAS and CARC (β!:! = 3.1, p-value = 0.16).  

 As expected, we observed that TAS negatively associates with Cmax for 
both carcinogens and non-carcinogens. In other words, chemicals that require a 
low equivalent dose to elicit a carcinogenic response in the rodent bioassay tend 
to be more transcriptionally active in the in-vitro assay. Interestingly, 
carcinogenicity also has an effect on Cmax prediction, with non-carcinogens 
having higher Cmax in general.  

Chemical profiles with aberrant TAS levels can be explained by dose or 
pharmacological factors 

We annotated L1000 chemicals that exhibit unexpected TAS levels, namely, the 
carcinogenic chemicals with low TAS and non-carcinogenic chemicals with high 
TAS, to provide potential explanations for the observed TAS behaviors.  

We annotated the carcinogenic chemicals with low TAS based on their structural 
group membership, in-vivo dose requirement for carcinogenicity labeling, and 
requirements for metabolic activation in HEPG2. Carcinogenic chemicals with 
low TAS tend to fall in one or more of the following categories: (1) small 
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nitrosamines and other alkylating agents that form DNA adducts but are not 
adequately recognized by the DNA repair machinery (enriched in yellow box in 
Figure 1D), (2) require bioactivation by CYP2E1 and other p450s that are not 
present at high levels in HEPG2 cell culture (also enriched in yellow box in Figure 
1D), or (3) require high equivalent In-vitro dose to be carcinogenic, thus likely 
under-dosed in our in-vitro assay (enriched in red box in Figure 1D).  

 Among non-carcinogenic chemicals with high TAS, we generally noted low 
dose used in the rodent bioassays due to toxicity or early deaths at higher doses, 
e.g., Cyclosporin A (immune suppression), Pyrimethamine and Rhodamine 6G 
(bone marrow suppression), hexachlorocyclopentadiene (neurotoxicity), 
Rotenone (mitochondrial effects). Thus, if higher doses were tolerated in rodent 
bioassays, it is possible that some of these chemicals may elicit a carcinogenic 
response. 

L1000 profiles with sufficient transcriptional bioactivity accurately predict 
carcinogenicity and genotoxicity 

While a chemical bioactivity level is not predictive of long-term carcinogenicity, 
the most relevant question is whether a chemical’s bioactivity affects the ability of 
its expression profile to be predictive of carcinogenicity (and genotoxicity). To 
answer this question, we built multiple classifiers based on profiles with TAS 
values within various ranges, and used a random resampling scheme to assess 
their prediction performance. Datasets corresponding to different TAS ranges 
were randomly split into train (70%) and test (30%) sets multiple times (n=25), 
classifiers were built on the train sets, and predictions made on the test sets. The 
average Area Under the Curve (AUC), sensitivity, and specificity were then 
estimated over the 25 random resamples. As shown in Figure 2, the prediction 
AUC improves with higher stringencies of TAS. We achieved the highest 
predictive accuracy within the most stringent TAS subset (TAS > 0.4), with 
72.2±2.7% (mean±se) AUC for�prediction of carcinogenicity (Figure 2A), and 
82.3±1.6% AUC for prediction of genotoxicity (Figure 2B). These results suggest 
that short in-vitro gene expression profiles of chemical perturbations, given 
sufficient transcriptional bioactivity, can accurately predict long-term chemical 
carcinogenicity and to a greater extent, genotoxicity. 

Gene markers for prediction of carcinogenicity and genotoxicity 

Final predictive models of carcinogenicity, genotoxicity, and genotoxicity within 
carcinogens were built using the entire set of profiles with TAS > 0.4. Landmark 
genes were ranked by variable importance as measured by the mean decrease 
in Gini coefficient (Table S2) and the top 20 genes for each model were reported 
in Figure 3. In the carcinogenicity prediction model, top genes include BLCAP, an 
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apoptosis inducing gene, and SESN1, a target of p53 in response to DNA 
damage and oxidative stress (Figure 3A). Among the top 20 landmark genes for 
prediction of genotoxicity are pro-apoptotic regulators such as BLCAP and BAX 
(Figure 3B). Of note, BAX is regulated by p53 and has been shown to be 
involved in p53-mediated apoptosis, a hallmark of DNA damage response to 
genotoxic chemical exposure.  

Final predictions of carcinogenicity and genotoxicity in bioactive profiles 

Final predictions of carcinogenicity and genotoxicity were made using a leave-
one-chemical-out cross-validation scheme, in which predictive models were 
trained based on all but one chemical and predictions were made on the profiles 
of the left-out chemical (see methods). This procedure was repeated for all 
unique chemicals in profiles with TAS > 0.4 to derive probability measurements 
of the profile being "Positive" for either carcinogenicity or genotoxicity (see 
methods) using a probability threshold of 0.5. Prediction probabilities for 
carcinogenicity and genotoxicity were reported along with the true class labels as 
the dot colors (Figure 4). From this representation, we observe that predictions 
tend to be consistent across profiles of varying doses of the same chemical. 
Several exceptions exist in chemicals whose prediction probabilities were close 
to 0.5. For example, profiles of Hexachlorocyclopentadiene exposure yield two 
true negative predictions but one false positive prediction at the highest dose. In 
addition, prediction probabilities monotonically increasing as a function of dose 
are observed for some compounds. For example, 3'-Methyl-4-
dimethylaminoazobenzene shows increased probability of genotoxicity prediction 
with increasing dose. However, this pattern is not generalizable to all chemicals. 
Detailed predictions on TAS>0.4 chemicals are summarized in Table S3. 

Predictions of unlabeled chemicals 

Using the final predictive models trained on all profiles with TAS > 0.4, 
predictions of carcinogenicity and genotoxicity were made for the chemicals 
without known CPDB annotation (Figure S3, with detailed summary in Table S4 
and Table S5). The majority of unlabeled profiles were predicted "Positive" for 
both carcinogenicity and genotoxicity using a probability threshold of 0.5. This is 
likely due to bias in chemical selection. Sources of unknown chemicals include 
chemicals of interest to the Superfund Research Program (likely environmental 
toxicants), chemicals that were tested for either carcinogenicity or genotoxicity in 
the CPDB but whose labels cannot be determined, and controversial chemicals 
in commercial use (triclosan, Glycel). Many profiles have predicted probabilities 
between 0.5-0.65, indicating low confidence in prediction, potentially attributable 
to low bioactivity of profiles. When restricting predictions to unlabeled profiles 
with TAS > 0.4 to be consistent with the subset used for model training, the 
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separation of ranges of prediction probabilities becomes clearer (Figure S3 B, D). 
The top two ranked predicted carcinogens, benzo(a)pyrene and 7,12-
Dimethylbenz(a)anthracene, are two polyaromatic hydrocarbons (PAHs) that 
have been shown to manifest carcinogenic and genotoxic properties.  

 The top ranked predicted genotoxicant, indoxyl sulfate, is an endogenous 
tryptophan metabolite, which has been shown to activate p53 expression through 
reactive oxygen species (ROS) production and is a source of endogenous 
oxidative DNA damage (Shimizu et al. 2013). While indoxyl sulfate may not 
necessarily be considered a genotoxicant as it is a uremic solvent found in low 
concentrations (1-5µM) in the human serum normally, it activates the AhR, 
inducing cytochrome P450 enzymes which metabolize other substrates, including 
mutagenic intermediates. Thus, prediction of indoxyl sulfate as a genotoxicant 
may be due to transcriptional activation of shared pathways involved in 
metabolism of genotoxic chemicals. Upon closer inspection of the clustering of 
AhR ligands in the space of L1000 profiles (Figure 7B), the profiles of indoxyl 
sulfate perturbations cluster within the group of strong AhR agonists that are 
mostly known carcinogens or genotoxicants, e.g. benzo(a)pyrene, 7,12-
Dimethylbenz(a)anthracene, and TCDD, and distal to the cluster of non-
carcinogenic and mainly endogenous AhR ligands.  

Pathway enrichment analysis reveals relevant MoAs of carcinogenicity and 
genotoxicity 

To identify pathway level differences between carcinogens and non-carcinogens, 
and similarly, between genotoxicants and non-genotoxicants, we performed 
differential pathway enrichment analysis and ranked pathways according to the 
significance of their differential enrichment between chemical groups. In 
accordance with the breakdown of TAS subsets used in classification analysis, 
and based on the observation that increasing thresholds of TAS yield better 
classification performance, the differential pathway enrichment analysis was 
repeated for each of the TAS subsets previously considered (Table S6 and S7). 
With no TAS threshold (e.g. inclusion of all profiles), only a few pathways are 
differentially scored between carcinogens and non-carcinogens and between 
genotoxicants and non-genotoxicants. With increasing thresholds of TAS, the 
number of significantly expressed pathways increases. At TAS 0.2 and above, 
the identity of significant pathways becomes more stable, particularly for 
genotoxicity-related pathways, with many significant pathways shared across 
TAS > 0.2, 0.3, and 0.4. We derived an aggregated ranking score of differential 
pathway enrichment by combining p-values across all the TAS subsets (see 
methods) and included lists of differentially enriched pathways (combined FDR < 
0.05) with respect to carcinogenicity in Table S6 and genotoxicity in Table S7. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323964doi: bioRxiv preprint 

https://doi.org/10.1101/323964


 15 

When comparing carcinogens to non-carcinogens, we observed up-regulation of 
immune-related pathways (interferon-α/β), cell death (apoptosis induced DNA 
fragmentation), DNA repair (nucleotide excision repair), transcriptional regulation 
(RNA polymerase I, II, and III related activity), and cell cycle checkpoints (p53-
dependent G1 DNA damage checkpoint), and down-regulation of various 
metabolism related pathways (phase II conjugation, phase I functionalization, 
peptide hormone biosynthesis), cell-cell organization and communication (cell-
cell junction organization, integrin cell surface interactions, tight junction 
interactions), and G-protein signaling. Among genotoxicants compared to non-
genotoxicants, upregulated pathways include DNA repair (nucleotide excision 
repair, formation of incision complex in GG-NER), AKT signaling, programmed 
cell death, G1/S DNA damage checkpoints, innate immune response (interferon 
signaling, toll-like receptor signaling). Down-regulated pathways include 
xenobiotic metabolism (phase I and phase II metabolism), peptide hormone 
biosynthesis, cell-cell organization and cell-cell communication, innate immune 
response (complement cascade), and various hemostasis and metabolism 
related pathways. 

 From the differentially scored pathways of carcinogenicity (Table S6) and 
genotoxicity (Table S7), we identified a reduced set consisting of the top 40 up-
regulated and top 40 down-regulated pathways with Reactome categories as 
ordered by the aggregated rankings, and visualized their enrichment scores 
across profiles with TAS > 0.2 in Figure 5A (top pathways differentially enriched 
with respect to carcinogenicity) and Figure 5B (genotoxicity). Hierarchical 
clustering of samples reveals loose stratification by carcinogenicity status 
(carcinogens in orange) and stronger stratification by genotoxicity status 
(genotoxicants in purple). 

L1000 signatures of carcinogenicity and genotoxicity are consistent with 
signatures from low-dose cell culture in Drugmatrix 

We tested for enrichment of the Drugmatrix-derived signatures of carcinogenicity 
and genotoxicity against our L1000-based differential signatures of carcino-
genicity and genotoxicity (Table S9). Significant similarities were observed 
between signatures derived from Drugmatrix low dose rat primary hepatocyte cell 
cultures and our L1000 profiles. For example, the signature of up-regulated 
genes in response to low-dose carcinogens in cell cultures 
(UP_CARC_CELL_LOWDOSE) was enriched in the L1000-profiled carcinogen 
subsets at TAS > 0.4, 0.3, and 0.2 (FDR<0.05). Conversely, the signature of 
down-regulated genes in response to low-dose carcinogens in cell cultures 
(DN_CARC_CELL_LOWDOSE) was enriched in the L1000-profiled non-
carcinogen subsets at TAS > 0.2 and 0 (FDR<0.05). Similarly, signature of 
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genotoxicants in the Drugmatrix cell cultures ("UP_GTX_CELL_LOWDOSE") 
was enriched in the L1000-profiled genotoxicant subsets at TAS > 0.4, 0.3, and 
0. When repeating the analysis for signatures derived from all Drugmatrix cell 
culture profiles (including high doses), signatures of genotoxicity were mostly 
directionally consistent with L1000 profiles, but signatures of carcinogenicity were 
inconsistent, and in fact sometimes behaving in the opposite direction (e.g. 
Drugmatrix signature "UP_CARC_CELL" has enrichment among non-
carcinogens in L1000 TAS > 0.4 profiles). This inconsistency may be explained 
by the presence of extremely high doses used for some chemicals in generating 
the Drugmatrix cell culture profiles. For reference, the mean dose in Drugmatrix 
cell culture profiles is ~3,000uM and the max dose is 180mM. In contrast, the 
max dose among L1000 profiles is 40uM.  

 Next, we compared signatures derived from the Drugmatrix in-vivo rat liver 
profiles to the L1000 profiles. For carcinogenicity, the signature of down-
regulated genes in response to carcinogens ("DN_CARC_LIVER") is correctly 
enriched among non-carcinogens in L1000 TAS < 0.4, 0.3, 0.2 and 0 with FDR < 
0.05. Similarly, the signature of up-regulated genes in response to carcinogens 
("UP_CARC_LIVER") is marginally enriched among L1000 TAS < 0.4 (FDR = 
0.06), and TAS < 0.3 (FDR = 0.09) carcinogens. On the other hand, the 
signatures of genotoxicity are largely not enriched in the right direction (e.g., 
"DN_GTX_LIVER" shows enrichment among genotoxicants of TAS 0.4).  

 To rule out the possibility that the observed signatures’ inconsistency is 
due to platform differences – since the Drugmatrix data is microarray-based while 
our data is generated from the L1000 – we compared Drugmatrix cell culture to 
Drugmatrix liver signatures of genotoxicity (both microarray based). We found 
that the downregulated genotoxicant signature in liver is also behaving in the 
opposite direction than in cell culture (Table S10). This finding suggests that the 
signatures’ inconsistency between liver and cell line is likely due to differences 
between in-vitro and in-vivo responses to exposure rather than to differences in 
the profiling platform. Upon detailed inspection of the Drugmatrix liver signatures, 
we identified an enrichment of genes relating to metabolism in both the up and 
down regulated gene signatures (lipid metabolism, cholesterol biosynthesis, 
Phase I metabolism in "UP_GTX_LIVER", amino acid metabolism, fatty acid 
metabolism in "DN_GTX_LIVER"), supporting the conclusion that there may be 
substantial differences between metabolic activities in in-vitro and in-vivo 
exposures (Figure S4).  

 In summary, L1000 derived signatures of carcinogenicity and genotoxicity 
are concordant with Drugmatrix low dose cell culture signatures, but inconsistent 
with Drugmatrix liver signatures, with the differences largely driven by 
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discrepancies in the expression of certain metabolism-related genes between in-
vitro and in-vivo exposures. 

L1000 signatures of carcinogenicity and genotoxicity capture biologically 
relevant MoAs of several drug classes in the CMap 

The availability of the CMap offers the opportunity to compare our profiles to a 
much larger database of pharmacologically annotated signatures and allows us 
to predict MoAs or pharmacological properties based on signature similarity. To 
this end, we first computed the similarity of our signatures to each signature in 
the CMap. We then identified the CMap signatures that show significant 
difference in connectivity to carcinogens and non-carcinogens, and to 
genotoxicants and non-genotoxicants. The top CMap hits are summarized at the 
level of Perturbagen Classes (PCLs) in Table S11 (carcinogenicity) and Table 
S12 (genotoxicity) and visualized in Figure 6, and at the level of individual 
chemical perturbations in Table S13 (carcinogenicity) and Table S14 
(genotoxicity).  

 Focusing on the significantly differential PCLs across all TAS subsets 
(TAS > 0.2, 0.3, 0.4), we found that carcinogens, compared to non-carcinogens, 
are significantly more connected to drug classes consisting of topoisomerase 
inhibitors, DNA synthesis inhibitors, and ribonucleotide reductase. 
Genotoxicants, compared to non-genotoxicants, are significantly more connected 
to the three aforementioned drug classes, as well as to CDK inhibitors, aurora 
kinase inhibitors, and ubiquitin specific peptidases (Figure 6).   

 Topoisomerase inhibitors, a specific class of DNA synthesis inhibitors, are 
most recognized as chemotherapeutic drugs that preferentially inhibit the 
topoisomerase enzymes (commonly topoisomerase I or II) in cancer cells to slow 
their rate of replication. Topoisomerase I or II introduce single- or double-strand 
DNA breaks in cells undergoing replication, and form topoisomerase-DNA 
complexes. Most topoisomerase inhibitors function by trapping these complexes, 
leading to increased strand breaks but incomplete DNA replication, subsequently 
provoking DNA damage response and DNA repair (Pommier 2006; Pommier 
2013; Wang et al. 2002). Thus, DNA damage response induced by 
topoisomerase inhibitors is expected to mimic the response to genotoxic 
carcinogens. 

 Other relevant PCLs also exhibit shared MoAs with carcinogens and 
genotoxicants.  Aurora kinase inhibitors play a major role in cell cycle regulation 
through the induction of G1 arrest and apoptosis (Bavetsias and Linardopoulos 
2015). Ubiquitin specific peptidases, specifically USP24, have been shown to 
play a role in DNA damage response (Zhang and Gong 2016).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323964doi: bioRxiv preprint 

https://doi.org/10.1101/323964


 18 

L1000 gene expression profiles of AhR agonists capture independently 
defined AhR-mediated responses and identify sub-clusters based on 
receptor binding strength and toxicity 

Carcinogens and genotoxicants are often recognized by receptors such as the 
aryl hydrocarbon receptor (AhR). For example, TCDD, a potent toxicant, and 
more generally members of a class of halogenated planar hydrocarbons are 
mediated through AhR. In addition to its role in inducing the toxic effects of planar 
halogenated hydrocarbons and polycyclic aromatic hydrocarbons (PAH), AhR 
exhibits endogenous functions such as regulating expression of stem cell-
associated genes (Stanford et al. 2016; Wang et al. 2010), T cell differentiation 
(Apetoh et al. 2010; Gandhi et al. 2010), and amino acid tryptophan metabolism 
(Cheng et al. 2015; Hubbard et al. 2015).  

 Given that the AhR is an important mediator of many toxicants with strong 
representation in our dataset, we sought to investigate the behavior of AhR- 
activated chemicals in terms of gene expression of known AhR gene targets, and 
the similarity of profiles among sub-groups of AhR agonists.  

 As shown in Figure 7A, we found that the L1000 profiles exhibit consistent 
enrichment of AhR-related gene-set activity among chemicals labeled as AhR-
active in several Tox21 reporter assays, namely, HTS_ACTIVE.agonism_AhR (p-
value: 2.9e-7), HTS_ACTIVE.cytotoxicity_AhR/agonism (pvalue: 1.5e-4) and 
TOXCAST.ATG_Ahr_CIS_up (p-value: 0.006). This finding validates the ability of 
unbiased gene expression profiling to accurately capture endpoints from more 
specific and targeted assays such as those in the Tox21 library.  

 Furthermore, we identified sub-clusters of AhR-related chemicals based 
on the similarity of their gene expression profiles as measured by the connectivity 
scores and found two functionally distinct classes (Figure 7B). Cluster 1 is 
enriched for profiles of strong exogenous AhR ligands, most with potent toxic 
effects (benzo(a) pyrene, 7, 12-Dimethylbenz(a) anthracene, TCDD). It is not 
surprising that many of these chemicals also have high in-vitro transcriptional 
bioactivity (high TAS). Cluster 2 contains endogenous AhR ligands (l-kynurenine, 
indole-3-carbonyl, kynurenic acid, xanthurenic acid, and cinnabarinic acid). Since 
l-tryptophan is not an AHR ligand, its presence in this latter group suggests that it 
is metabolized to one of the kynurenine pathway metabolites that are AhR 
ligands (l-kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid).
 These results show promise for our platform to be used not only as a 
general predictor of general phenotypes such as AhR receptor activation, but 
also to distinguish, with finer granularity, classes of AhR agonists.   

Carcinogenome Portal – a framework for data query and visualization 
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All data described in this manuscript are available for public access. Data 
processed under the standard CMap-L1000 pipeline are available under 
https://clue.io/data/CRCGN_ABC. To facilitate the interactive querying of the 
downstream analysis results produced by this study, we developed a web portal 
(https://carcinogenome.org/HEPG2). The query and visualization functionalities 
supported by the portal include differential expression, gene-set enrichment, and 
connectivity analysis against CMap signatures. This interface supports both 
marker-centered (genes, pathways, CMap signatures) and chemical-centered 
queries. For instance, one can ask "what gene markers and pathways are 
regulated by perturbation with Bisphenol A?", "what are the top chemicals that 
up-regulate a particular gene or pathway of interest?", or "which CMap chemicals 
or chemical groups are most similar to the profiles of perturbation with Bisphenol 
A in this project?". In addition, the portal supports bulk query and visualization of 
groups of perturbations in the form of heatmaps. 

Discussion 
Prediction of carcinogenicity and genotoxicity 

The results from the prediction of carcinogenicity and genotoxicity experiments 
provide strong evidence that transcriptional bioactivity as captured by TAS has a 
high impact on the classifier performance. That is, while absolute levels of 
bioactivity are not associated with carcinogenicity, a sufficiently high bioactivity is 
necessary to elicit enough transcriptional signal to use a chemical's expression 
profile for carcinogenicity prediction. Thus, when limiting to profiles with high 
TAS, the performance of our predictive models drastically improves. Among 
highly bioactive profiles (TAS>0.4), our classifiers yielded mean AUC of 72.2% 
for prediction of carcinogenicity (Figure 2A), and 82.3% for prediction of 
genotoxicity (Figure 2B). To boost the effective sample size used in classification, 
we outline the following dose selection strategy for improving bioactivity of in-vitro 
gene expression profiles.   

In-vitro dose recommendation  

The selection of doses in short-term acute exposures for prediction of long-term 
in-vivo phenotypes is a challenging task. In this experiment, we chose to adopt a 
standard 6-dose titration, starting from 40µM or 20µM depending on source of 
chemicals. The sole exception to the standard dosing was TCDD, whose starting 
concentration is 50nM due to its extreme potency. The choice of standard dosing 
was made for a couple of reasons: 1) lack of commercial availability of certain 
chemicals at higher stock concentrations; 2) scarcity of in-vitro dose 
recommendations from publicly available data, e.g., dose recommendations 
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derived from MTT assays; and 3) cost efficiency of standardized dosing using the 
L1000 platform.  

 One alternative dosing scheme is to determine unique doses for each 
chemical using the MTT assay. For instance, a previous study of genotoxicity 
prediction based on in-vitro experiments selected doses based on a MTT assay 
resulting in 80% viability at 72h incubation, or maximum dose of 2mM in the case 
of lack of cytotoxicity (Magkoufopoulou et al. 2012). Some chemicals used in that 
study were administered at doses that vastly exceeded the 40µM or 20µM dose 
limit adopted in our experimental setup. Furthermore, the lack of plateau effect in 
dose response as a function of TAS (proxy for bioactivity) suggests that doses 
exceeding the 40µM or 20µM threshold may indeed yield profiles with higher 
bioactivity and increase the power to detect gene and pathway markers for 
prediction of carcinogenicity and genotoxicity without experiencing saturation 
effects (response plateauing) or excessive cell death. Although standardizing 
dosage across chemicals was the logistically and cost-effective solution for this 
experiment, going forward, MTT assays are highly recommended for maximizing 
biological signal across transcriptional profiles.  

 Estimation of the appropriate in-vitro dose from toxicokinetic modeling of 
the in-vivo doses tested in animal bioassays, when available, is another viable 
alternative, as shown in Figure 1D and associated discussion.  

Acute vs. chronic response 

Through analysis of transcriptional activity scores between carcinogens and non-
carcinogens (Figure 1C), we observed that long-term carcinogenicity, as 
established from long-term in-vivo rodent studies, has no effect on transcriptional 
bioactivity in our short-term assay (Figure 2A). This observation indicates that 
bioactivity as defined by TAS at less than 40µM is not associated with 
carcinogenicity, and consequently, a short-term chemical perturbation with 
minimal transcriptional response cannot be assumed "safe". 

 While TAS alone is not predictive of carcinogenicity, it was instrumental to 
the selection of those compounds with sufficient bioactivity to allow us to build an 
accurate gene expression-based classifier of carcinogenicity (up to 72.2% AUC), 
and to capture certain MoAs of carcinogenicity.  Overall, we observe a stronger 
signal of genotoxicity compared to carcinogenicity, which is to be expected, as 
the latter is a more heterogeneous phenotype and thus harder to capture as a 
binary distinction; this is evidenced by the higher accuracy of the genotoxicity 
classifier (82.3%) as well as the by the higher TAS among genotoxicants 
compared to non-genotoxicants. 

Challenges and future developments  
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This experiment aims to accelerate short-term in-vitro testing approaches to 
predict long-term chemical carcinogenicity. We have shown that short-term in-
vitro gene expression profiling is not only capable of accurate prediction of 
carcinogenicity and genotoxicity, but also useful for characterizing certain 
mechanisms of carcinogenic response, particularly DNA damage and repair, and 
changes in cell cycle and cell-cell organization and communication. Other 
general biological processes that may be relevant for carcinogenic response, 
including inflammatory response, immune dysfunction, metabolic disruption and 
endocrine disruption, require further investigation in other in-vitro contexts.  

 The choice of HEPG2 as our primary cell line model was driven by the 
abundance of chemical annotations for liver carcinogenicity and the 
appropriateness of HEPG2 for the study of liver toxicity. However, there are 
limitations in its use.  

 Firstly, the expression of genes involved in phase I and phase II 
metabolism vary between passages and results relating to xenobiotic metabolism 
may be difficult to determine (Soldatow et al. 2013); this is also seen in the 
comparison of our genotoxicity-related signatures to Drugmatrix liver signatures. 
One potential contribution to this effect is the relevantly low bioactivation capacity 
in HEPG2 compared to in-vivo. It should be noted that, alternatively, the 
hepatoma cell line, HepaRG, which has a liver-like bioactivation, could be used 
as an in-vitro liver model for studying carcinogens and genotoxicants. One study 
has shown that while HEPG2 performs better in discriminating signatures 
between genotoxic and non-genotoxic carcinogens, HepaRG is a more suitable 
in-vitro liver model for biological interpretation of effects of chemical exposures 
(Jennen et al. 2010).   

 Secondly, since HEPG2 is a cancer cell line, the exposures of 
carcinogens in this line may show differences as compared to a non-transformed 
cell line. For the purpose of predictive modeling, these cell line-specific nuances 
may be overlooked as long as the performance of the classifier is adequate.   

 While liver carcinogenicity prediction was the adverse phenotype of choice 
for this study, this experiment provided us with many valuable insights to facilitate 
future experiments, including logistics of procurement of large chemical panels, 
chemical and dose selection for tissue specific carcinogenicity. It also sets the 
stage for in-vitro based exposure studies of additional adverse phenotypes. For 
instance, we initiated the in-vitro screening of mammary gland carcinogenicity 
through the use of a non-tumorigenic human mammary epithelial cell line, 
MCF10A and p53-deficient MCF10A. The experimental and computational 
pipeline we established, paired with the cost-effective technology we used for 
chemical exposure and gene expression profiling, paves the way for the 
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screening of large chemical panels for exposure-based experiments in other 
organ and disease or adverse outcome specific contexts.  

Conclusions 
Long term tests for chemical carcinogens based on epidemiology and rat studies 
are expensive and time consuming and are not feasible for scaling to a large 
number of chemicals. In this study, we detailed a high-throughput gene 
expression profiling of more than 300 liver carcinogens and non-carcinogens in a 
short term in-vitro exposure model. These gene expression profiles, given 
sufficient transcriptional bioactivity, are capable of accurate prediction of long-
term carcinogenicity and even more accurate prediction of genotoxicity. Pathway 
enrichment analysis revealed similarities between pathway level response 
captured by the short term in-vitro exposures and known MoAs of 
carcinogenesis, particularly genotoxic mechanisms such as DNA damage and 
repair.  
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Figure Legends 
Figure 1. Boxplot of TAS by sample subsets: (A) Boxplot of TAS distributions for 
each dose level (rank = 1 lowest dose, rank 6 = highest dose). P-values indicate 
the significance of paired one-sided two-group TAS comparison between 
adjacent dose groups (* = p< 0.05, ** = p< 0.01, *** = p< 0.001) (see methods).  
(B) Boxplot of TAS distribution for each dose level, binned by TAS subsets. P-
values indicate the significance of paired one-sided two-group TAS comparison 
between adjacent dose groups (* = p< 0.05, ** = p< 0.01, *** = p< 0.001) within 
each TAS bin (see methods).  (C) Distribution of TAS grouped by chemical 
carcinogenicity within each dose level. P-values indicate the significance of 
unpaired one-sided two-group TAS comparison between TAS of carcinogenic 
chemicals and TAS of non-carcinogenic chemicals within each dose group (* = 
p< 0.05, ** = p< 0.01, *** = p< 0.001) (see methods). (D) Scatter plot of TAS 
(mean TAS per chemical) and the ratio of Cmax over maximum in-vitro dose 
(40uM) (see methods for Cmax calculation).   

Figure 2. Performance of classifiers in predictive models of (A) carcinogenicity,  
and (B) genotoxicity, showing, from left to right: summary statistics tables, 
boxplots of AUC across resamples by TAS subsets, ROC curves of each 
resample (n = 25) for each TAS subset, and ROC curves aggregating predictions 
across resamples with points corresponding to thresholds of 0.4, 0.5, and 0.6 for 
calling binary predicted labels. 

 

Figure 3. Top features for prediction of carcinogenicity ranked by variable 
importance in predictive models of (A) carcinogenicity (B) genotoxicity in TAS 0.4 
model. 

Figure 4. Dot plot of probabilities of predicted classes for hold-out chemicals in 
the TAS 0.4 subset. Dot fill colors represent actual class labels. Dot outline colors 
represent dose ranks. X-axis positions of dots represent predicted probability of 
class "Positive" (carcinogenic in column one or genotoxic in column two).  

Figure 5. Heatmap of pathway enrichment scores (GSVA) for top 40 upregulated 
and downregulated differential pathways of carcinogenicity (A) and genotoxicity 
(B) for profiles with TAS > 0.2. Columns are clustered using the ward method 
with euclidean distances. Rows are ordered by the frequency of the pathway 
categories among the top 40 (direction sensitive). 

Figure 6. Connectivity scores of top CMap Perturbagen Classes to Carcinogens 
vs. Non-carcinogens, Genotoxicants vs. Non-genotoxicants.  
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Figure 7. Investigation of profiles of AhR related chemical perturbations: (A) 
Profiles with AhR activity ranked by median geneset scores of AhR target gene 
lists. (B) AhR-related profiles clustered by connectivity scores.  
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interferon (alpha, beta and omega) receptor 1
USP6 N−terminal like
ribonuclease P/MRP 38kDa subunit
DEAH (Asp−Glu−Ala−His) box polypeptide 29
glutamate−rich WD repeat containing 1
phospholipase C, beta 3 (phosphatidylinositol−specific)
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Figure	7	
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