
i
i

i
i

i
i

i
i

Posted online 29 December 2017 bioRxiv, 2017, 1–9

De novo profile generation based on sequence context
specificity with the long short-term memory network
Kazunori D Yamada1,2 and Kengo Kinoshita1,3,4∗

1Graduate School of Information Sciences, Tohoku University, Sendai, Japan, 2Artificial Intelligence Research Center,
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan, 3Tohoku Medical Megabank
Organization, Tohoku University, Sendai, Japan, 4Institute of Development, Aging, and Cancer, Tohoku University, Sendai,
Japan

ABSTRACT

Long short-term memory (LSTM) is one of the most
attractive deep learning methods to learn time series
or contexts of input data. Increasing studies, including
biological sequence analyses in bioinformatics, utilize
this architecture. Amino acid sequence profiles are
widely used for bioinformatics studies, such as sequence
similarity searches, multiple alignments, and evolutionary
analyses. Currently, many biological sequences are becoming
available, and the rapidly increasing amount of sequence
data emphasizes the importance of scalable generators of
amino acid sequence profiles. We employed the LSTM
network and developed a novel profile generator to construct
profiles without any assumptions, except for input sequence
context. Our method could generate better profiles than
existing de novo profile generators, including CSBuild and
RPS-BLAST, on the basis of profile-sequence similarity
search performance with linear calculation costs against
input sequence size. In addition, we analyzed the effects of
the memory power of LSTM and found that LSTM had high
potential power to detect long-range interactions between
amino acids, as in the case of beta-strand formation, which
has been a difficult problem in protein bioinformatics using
sequence information. We demonstrated the importance
of sequence context and the feasibility of LSTM on
biological sequence analyses. Our results demonstrated
the effectiveness of memories in LSTM and showed that
our de novo profile generator, SPBuild, achieved higher
performance than that of existing methods for profile
prediction of beta-strands, where long-range interactions of
amino acids are important and are known to be difficult for
the existing window-based prediction methods. Our findings
will be useful for the development of other prediction
methods related to biological sequences by machine learning
methods.

INTRODUCTION

Amino acid sequence profiles or position-specific scoring
matrices (PSSMs) are matrices in which each row contains
evolutionary information regarding each site of a sequence.
PSSMs have been widely used for bioinformatics studies,

∗To whom correspondence should be addressed. Tel: +81 22 795 7179; Email: kengo@ecei.tohoku.ac.jp

including sequence similarity searches, multiple sequence
alignments, and evolutionary analyses. In addition, modern
sequence-based prediction methods of protein properties by
machine learning algorithms often use PSSMs derived from
input sequences as input vectors of the prediction. A PSSM
is typically constructed from multiple sequence alignment
obtained by a similarity search of a query sequence against
a huge sequence database such as nr or UniProt [1]. ,
and subsequently, the PSSM is refined by iterative database
searches. The iteration is a type of machine learning process
that improves the quality of profiles gradually. In recent
years, HHBlits has been considered the most successful profile
generation method [2]. HHBlits generates profiles by iterative
searches of huge sequence databases, as in the case of PSI-
BLAST [3]; however, HHBlits uses the hidden Markov model
(HMM) profile, whereas PSI-BLAST adopts PSSM. To the
best of our knowledge, these methods can produce good
profiles on the basis of the performance of similarity searches,
but they require an iterative search of a query sequence;
therefore, the profile construction time depends on the size
of the database. The recent increase in available biological
sequences has made it more difficult to construct profiles.

In this context, de novo profile generators such as CSBuild
[4, 5] and RPS-BLAST (DELTA-BLAST) [6] have been
developed to reduce the cost of profile generation, although
RPS-BLAST is not exactly a de novo profile generator
because it explicitly uses an external profile database. CSBuild
internally possesses a 13-mer amino acid profile library, which
is a set of sequence profiles obtained by iterative searches of
divergent 13-mer sequences. CSBuild searches short profiles
against the short profile library for every part of a sequence
and subsequently constructs a final profile for the sequence
by merging the short profiles. CSBuild can reduce the profile
construction time using precalculated short profiles; however,
there is no theoretical evidence demonstrating that a PSSM
can be constructed by integrating patchworks at the short (13-
mer) sequence window. In other words, the previous study
assumed that the protein sequences had a short context-
specific tendency for the residues. This is also the case with
RPS-BLAST, in which a batch of profiles obtained by searches
of a query sequence against a precalculated profile library is
assembled to construct a final profile.

c⃝ 2017 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

2 bioRxiv, 2017

Recently, neural networks have attracted increasing
attention from various research areas, including
bioinformatics. Neural networks are computing systems
that mimic biological nervous systems of animal brains.
Theoretically, if a proper activation function is set to each
unit in the middle layer(s) of a network, it can approximate
any function [7]. In recent years, neural networks have been
vigorously applied to bioinformatics studies. In particular,
deep learning algorithms are typically applied to neural
networks. For example, several studies have applied deep
learning algorithms to predict proteinprotein interactions
[8, 9], protein structures [10, 11], residue contact maps [12],
and backbone angles and solvent accessibilities [13]. The
successes of deep learning algorithms have been realized
by complex factors, such as recent increases in available
data, improvements in the performance of semiconductors,
development of optimal activation functions [14], and
optimization of gradient descent methods [15]. These various
factors have enabled calculations that were thought to be
infeasible, and modern deep learning algorithms now not
only stack the layers of multilayer perceptrons but also
generate various types of inference methods, including
stacked autoencoders, recurrent neural networks (RNNs), and
convolutional neural networks [14].

The RNN is one of the most promising deep learning
methods. More specifically, long short-term memory (LSTM)
[16], an RNN, can be a judicious method for learning the time
series or context of input vectors. Namely, with LSTM, it may
be possible to learn an amino acid sequence context to predict
the internal properties of amino acid sequences. The memory
of LSTM is experimentally confirmed to be able to continue
for more than 1,000 time steps, although theoretically, it
can continue forever [16]. This memory power may be
sufficient to learn features from protein sequences, for which
lengths are generally less than 500 amino acids. In addition,
compared with window-based prediction methods, we do
not need to assume that some protein internal properties,
such as secondary structure, steric structure, or evolutionary
information, are formed in some lengths of amino acid
sequences, as in the case of CSBuild, which assumes 13-
mers. LSTM can even learn such optimal lengths of context
automatically throughout learning. This characteristic of
LSTM is thought to be more suitable for protein internal
property predictions. Indeed, several machine learningbased
prediction methods utilizing the LSTM network for protein
property prediction have been successful applied [13, 17, 18].

In this study, we attempted to develop a de novo profile
generator that mimicked the ability of the existing highest
performance profile generation method, HHBlits, using an
LSTM network, expecting our generator to be able to include
the ability to input whole protein sequences. In addition, we
analyzed the importance of sequence context in the prediction
and performance of LSTM to solve specific biological
problems through our computational experiments.

METHODS

Learning dataset
We conducted iterative searches using HHBlits version 2.0.15
with the default iteration library provided by the HHBlits

developer and generated profiles of the sequences in Pfam
[19], where the sequences were clustered by kClust version
1.0 [20] and the maximum percent identity for all pairs
of sequences was less than 40% (Pfam40). Because we
used the SCOP20 test dataset as a benchmark dataset
for the performance of profile generators (see below), we
excluded highly similar sequences with any sequences in the
SCOP20 test dataset from the Pfam40 dataset using gapped
BLAST (blastpgp) searches prior to the iterative search,
where we considered retrieved sequences with an e-value
of less than 10−10 as the highly similar sequences. The
number of HHBlits iterations was set to three. Although
HHBlits produces HMM profiles, we converted these profiles
to PSSMs by extracting amino acid emission frequencies of
match states. Finally, we set the generated profiles as target
vectors and its corresponding sequences as input vectors in
learning steps. Namely, in our learning scheme, each instance
included an N dimension vector (sequence) as an input vector
and a 20 × N dimension vector (profile) as a target vector,
where N represents sequence length and 20 is the number of
types of amino acid residues.

Learning network
We designed a network with an LSTM layer, as shown
in Figure 1a. In the learning steps, each amino residue in
the input sequence was converted to a 400-dimension float
vector by a word embedding method [21]. After the word
embedding process, the input vectors were processed by an
LSTM layer followed by a fully connected layer. The output
of the network was set to a solution of the softmax function
of the immediately anterior layer. We set the unit size of
each gate of the LSTM unit to 3,200. As a cost function,
we used the root mean square error between an output of the
network and a target vector. As an optimizer of the gradient
descent method, Adam was used [15]. As an LSTM unit,
we utilized an extended LSTM with a forget gate [22], as
shown in Figure 1b. In Figure 1b, the top, middle, and bottom
sigmoid gates represented the input, forget, and output gates,
respectively. For regularization, we used a dropout method
against weights between an input layer and an LSTM layer
with a drop ratio of 0.5. We observed learning and validation
curves to avoid overfitting and stopped learning steps at 5,000
epochs. Because we could not deploy whole sequence data
into the memory space in our computational environment,
we randomly selected 40,000 sequences (about 1/40th of all
sequences) and learned them as a one epoch. Therefore, an
epoch in this study was about 40 times the typical epoch.

As a framework to implement the learning network, we used
Chainer version 1.15.0.1 (Preferred Networks) with CUDA
and cuDNN version 6.5 (NVIDIA), and the calculations were
performed by a server with Tesla K20m (NVIDIA) at the
NIG supercomputer at ROIS National Institute of Genetics in
Japan.

Benchmark of the performance of similarity searches
Performances of profile generators were evaluated based
on the results of similarity searches with their generated
profiles. As representatives of existing methods of rapid
profile generators, we compared our method with CSBuild
version 2.2.3 and RPS-BLAST version 2.2.30+. As a test

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

bioRxiv, 2017 3

1 400 3200 20 20

xt-1 yt-1LSTMEmbed Softmax
Full

connect

xt ytLSTMEmbed Softmax
Full

connect

xt+1 yt+1LSTMEmbed Softmax
Full

connect

20

wa b

σ

τ

σ

s

h

τu

wb

σ

v

(a)

(b)

Figure 1. Network of learning. (a) Overview of the designed network in
this study. Here, x, y and t represent an input vector, an output vector and a
position of an amino acid sequence. In the squares, ”Embed”, ”Full connect”,
”Softmax” stand for a word embedding operation, a fully connected network,
and a softmax function layer, respectively. The solid and broken arrows
represent a matrix operation and an array operation, respectively. The numbers
at the bottom of panel (a) stand for a dimension of vectors of each layer. (b)
Description of LSTM layer. Here, u, v, h, s, ×, +, dot, τ , σ, wa, wb and b
stands for an input vector to LSTM unit, an output vector from LSTM unit, a
previous input vector, an unit for constant error, a multiplication of matrices, a
summation of matrices, a Hadamard product calculation, a hyperbolic tangent,
a sigmoid function, a weight matrix to be learned, another weight matrix and
a bias vector.

dataset, the SCOP20 test dataset was used, as in the original
paper for CSBuild [4], which consists of 5,819 sequences
with protein structural information; the maximum percent
identity of the sequences in the dataset was less than 20%.
In addition to the dataset, we constructed another test dataset
as a SCOP20 strict-test dataset. To construct the dataset, we
excluded homologous sequences with any sequence in the
Pfam40 learning dataset from the SCOP20 test dataset using
blastpgp searches with an e-value of less than 10−5 as the
threshold of homologous hits. As a result, the SCOP20 strict-
test dataset contained 1,104 sequences. As a profile library for
CSBuild, the data from the discriminative model of CSBuild
(K4000.crf) were used. For RPS-BLAST, we excluded all
highly similar sequences with any sequence in the SCOP20
test dataset from the conserved domain database for DELTA-
BLAST version 3.12 by the same method as that used to make
the Pfam40 learning dataset.

To eliminate any biases of alignment algorithms, all profiles
in this study were converted to the PSI-BLAST readable
format and used as input files in a PSI-BLAST search. As an

application of PSI-BLAST, we used blastpgp version 2.2.26
for CSBuild, since CSBuild outputs blastpgp-readable profile
files. For the other methods, psiblast version 2.2.30+ was
used. There were no significant differences in sensitivity
or similarity searchers between these two versions of PSI-
BLAST (data not shown). The results of the similarity
searches were sorted according to their statistical significance
in descending order. Each hit was labeled as a true positive,
false positive, or unknown based on the evaluation ruleset for
SCOP 1.75 benchmarks [23].. Further, the number of true
positives and false positives was normalized by weighting
them with the number of members in each SCOP superfamily
to negate bias derived from the size of each SCOP superfamily.
With this information, we described the receiver operating
characteristic (ROC) curves and evaluated the performance
[24]. As an evaluation criterion, we used partial area under the
ROC curve (pAUC), which is the AUC until one false positive
is detected for each query on average. In our case, the pAUC
was equivalent to AUC until 1,564 false positives in total
were detected, because we weighted detected false positives
by the size of each SCOP superfamily, and the number of
superfamilies in our test dataset is 1,564.

The profile generation time was benchmarked on an
Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz with 64 GB
RAM using a single thread.

RESULTS AND DISCUSSION

Training a predictor with LSTM
In this study, we assumed profiles generated by HHBlits as
ideal profiles and used these as target profiles in training
steps. We then attempted to generate profiles as similar to the
HHBlits profiles as possible with a predictor using LSTM.
The performances of similarity searches with the profiles
generated by HHBlits were better than those of the other
methods [2].

Initially, we selected amino acid sequences with lengths
of 50-1,000 in Pfam40. The sequences did not contain any
irregular amino acid characters such as B, Z, J, U, O, or X.
We also included 1,329 sequences derived from the SCOP20
learning dataset [4] to the final learning dataset for our
reference. As a result, we obtained 1,602,338 sequences and
calculated their profiles using HHBlits for each sequence.
With this learning dataset, we trained the predictor shown in
Figure 1a. For learning, we used 20,000 randomly extracted
instances as a validation dataset and checked whether the
predictor overfit the training dataset. The number of mini-
batches was set to 200, and each amino acid was converted to
a 400-dimension float vector by the word embedding method,
as described in the methods section. For each sequence, the
starting site of learning was not confined to the N-terminal but
was selected at random to avoid overfitting of the predictor to
the specific site. We observed learning and validation curves
to confirm the lack of overfitting and stopped learning at
5,000 epochs (Figure S1). Even using the GPU machine, the
completion of our calculations required almost two months.

Using the obtained parameters (weight matrices and bias
vectors through the learning), we constructed a novel de novo
profile predictor, which we called Synthetic Profile Builder

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

4 bioRxiv, 2017

Weighted FP

W
e
ig

h
te

d
 T

P

100

1200

800

400

0

101 102 103 104

(a)

(b)

Sequence length

101.2 101.6 102.0 102.4 103.2102.8

P
ro

fi
le

 g
e
n
e
ra

ti
o
n
 t
im

e
 (

s
e
c
)

10-2

10-1

100

101

102

1000

600

200

SPBuild

CSBuild

RPS-BLAST
(blastpgp)

SPBuild

CSBuild

RPS-BLAST

(c)

SPBuild CSBuild RPS-BLAST (blastpgp)

0

0.24

0.20

0.16

0.12

0.08

0.04

p
A

U
C

Figure 2. Performance comparisons of (a, b) similarity searches and (c)
calculation time. (a) ROC curves of SPBuild and other methods. Here, the
performance of blastpgp was added for a reference. (b) AUC 1000 values
of SPBuild, CSBuild, RPS-BLAST, and blastpgp. (c) The scatterplot of the
profile generation time for each method on the SCOP20 test dataset.

(SPBuild). Our profile generator can be downloaded from
http://yamada-kd.com/product/spbuild.html.

Performance comparisons
First, we compared the performance of the similarity searches
of the profile generators. The profiles for all sequences in the
SCOP20 test dataset were generated by each method, and all-
against-all comparisons of the test dataset by PSI-BLAST with
the obtained profiles were conducted. As profile generators,
we evaluated the de novo profile generators CSBuild and
RPS-BLAST, in addition to SPBuild. We also added the
performance of PSI-BLAST without iterations (= blastpgp) as
a representative sequencesequence-based alignment method
for reference. In addition, HHBlits was further compared as
another reference, and the results are shown in Figure S2.

As shown in Figure 2a, CSBuild and RPS-BLAST were
clearly superior to the sequencesequence-based alignment
method, blastpgp. Furthermore, SPBuild showed better
performance than those of these methods. When performance
was evaluated by the pAUC values (Figures 2b), the values
of our method, CSBuild, and RPS-BLAST were 0.217,
0.140, and 0.174, respectively. Notably, the performance of
our method (0.217) did not reach that of HHBlits (Figure
S2a, pAUC = 0.451), even though we trained our predictor
with outputs of HHBlits, indicating that SPBuild was not
completely able to mimic the ability of HHBlits. This
tendency was also true for another benchmark result, where
we evaluated the performance of SPBuild and HHBlits on
the SCOP20 learning dataset instead of the test dataset
(Figure S2b). Our findings were surprising because the
SCOP20 learning dataset was a part of the learning dataset
for the construction of the predictor with LSTM, and the
performance of our predictor should reach that of HHBlits.
One possible reason for the observation is that LSTM may not
have worked properly on our learning scheme. To examine
this possibility, we performed another learning method to
examine the performance of LSTM itself with our learning
scheme, where we trained a predictor with only the SCOP20
learning dataset and let the predictor overfit the dataset.
As a result, the performance of the predictor was almost
the same as that of HHBlits, as expected (Figure S2c).
This result indicated that LSTM could precisely learn input
sequence properties and output correct PSSMs, but that the
performance of the predictor was worse than that of SPBuild
with proper learning due to the overfitting of the predictor
to the learning dataset (Figure S2d). In short, these results
suggested that LSTM worked correctly, and that relationship
between performance and overfitting was a simple trade-
off. Therefore, we concluded that SPBuild could be trained
moderately and pertinently without conflict under our learning
dataset and hyperparameters.

Next, we evaluated the profile generation time of each
method. Table 1 shows the mean computation time of profile
generation using the SCOP20 test dataset. SPBuild was found
to be almost 20 times faster than HHBlits, although CSBuild
and RPS-BLAST were still faster than SPBuild. However,
we think the most important property of a sequence handling
method in the big data era is scalability to the data, namely,
time complexity of the method against the input sequence
length. Theoretically, the time complexity of our method
would be linear compared with the input sequence length,
similar to CSBuild and RPS-BLAST. To clarify this point,
we plotted profile generation times (seconds) versus input
sequence lengths (N), as shown in Figure 2c. When the
instances were fitted to a line, the determination coefficient
was 0.998, and the slope of the line was 1.00. This result
indicated that the time complexity of our method was O(N).
Notably, the slopes of CSBuild and RPS-BLAST appeared
to be less than 1.0 in the figure; however, errors in the
experiments or other factors in the implementation of these
programs may have caused this because the costs of these
calculations must be higher than that of O(N). Although
our method required much time to compute large matrix
calculations in the neural network layers and was therefore
slower than CSBuild and RPS-BLAST with the currently used
sequence database, our method had linear scalability against

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

bioRxiv, 2017 5

the number of input sites or sequence length and the number
of input sequences.

Memory power of LSTM in our problem
We also examined the memory power of LSTM in our problem
in order to determine the feasibility of the LSTM approach for
sequence-based predictions. For this purpose, we considered
the reset time lengths of memory cells (h in Figure 1b)
at sequence lengths of 5, 10, 20, 30, 50, 100, 200, and
300 and for full-length sequences. We then benchmarked the
performances of similarity searches with the SCOP20 test
dataset. The memory reset time length was directly linked to
the memory power of the predictors, and a predictor with a
memory reset time length of 5, for example, generated profiles
based on information from the previous five sites, including
the current site. As a result, the performance of similarity
searches clearly changed as the memory power decreased
(Figure 3a). We also checked the performance of CSBuild
with the same plot (Figure 3a). As described above, CSBuild
constructs profiles by merging 13-mer short profiles; thus, we
imagined that its performance would be similar to that of the
LSTM profile predictors with low memory power. However,
we found that the performance of CSBuild was located in the
middle between memory powers of 30 and 50 for the LSTM
predictors. We are not sure why this happened, but it may
be because the sensitivities (corresponding to vertical axis of
Figure 3a) of LSTM predictors were worse than expected or
because of the excellence of CSBuild implementations.

To improve our understanding of the generated profiles
by SPBuild, we evaluated the mean prediction accuracy
(cosine similarity between output vector, y, and target vector)
of SPBuild for each position of a residue on whole input
sequences and observed that there was a clear transition in
the plot (Figure 3b). The prediction accuracy of the initial
portion (∼50) was worse than those of the other parts. This
lower performance could be caused by the nature of LSTM.
LSTM initializes the internal state of memory (h) by a null
vector, which does not reflect any features of the learning
dataset; thus, the prediction would be not stable until LSTM
memorizes and stores a certain level of context information
into memory. In our case, the level of context information
was 50–60 residues. In addition, the decrease in accuracy
in the last part (200) was derived from the nature of our
learning dataset; the mean length of SCOP20 was about 154,
and SPBuild may be able to be optimized for the average
length. This consideration was consistent with the observation
that improvement of the performance with memory power
of 200 and 300 decreased compared with smaller memory
power lengths (Figure 3a). On the basis of the observations

Table 1. Comparison of profile generation times.

Mean SD

SPBuild 5.99 3.83
CSBuild 0.390 0.161
RPS-BLAST 0.208 0.102
HHBlits 120 105

Means and standard deviations (SDs) of profile generation times (s) against 5,819
sequences in the SCOP20 test dataset.

Weighted FP

W
e
ig

h
te

d
 T

P

100

1200

800

600

0

101 102 103 104

1000

400

200

SPBuild
300
200
100

50

30
20
10
5

CSBuild

(a)

(b)

Residue position

C
o
s
in

e
 s

im
ila

ri
ty

0

0.82

0.78

0.76

0.70

100 150 200 300

0.80

0.74

0.72

50 250

5

10

20

30

50

100

200
300

Figure 3. Effects of memory power of LSTM on predictors. (a)
Comparison of profile generators with various reset lengths of memory on
LSTM. The benchmark dataset was the SCOP20 test dataset. The reset time
of SPBuild corresponded to the input sequence length. (b) Mean cosine
similarity between output vectors of SPBuild and target vectors as a function
of the position of residues in input sequences of the SCOP20 test dataset.

that the prediction confidence of the N-terminal region was
not good, we think that it might be possible to improve
the performance of SPBuild by combining prediction results
from both N-terminal and C-terminal directions. Although we
did not implement this feature because the learning process
took lots of time, this will be a future direction for further
improvements.

In conclusion, these results suggested that substantially long
length context, ideally speaking, the context of the sequence
length of at least more than 50, would be required to predict
precise profiles. Protein primary and secondary structures,
including solvent accessibility and contact number, must be
restricted by protein steric structures, which are formed by
complex remote interactions of amino acid residues. Our
findings reflect the influence of remote relationships stemming
from the steric structure on sequence context. In other words,
LSTM will be a powerful predictor for divergent features of
proteins, if appropriate memory power length is used. Indeed,
other sequence-based predictors using LSTM have achieved
successful outcomes and have shown the high feasibility of
LSTM [13, 17, 18].

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

6 bioRxiv, 2017

Long-range interactions and memory lengths
As shown in Figure 4a, we calculated the pAUC values of
SPBuild relative to those of CSBuild and RPS-BLAST for
each SCOP class. The values were calculated by dividing
the pAUC value of SPBuild by that of each method, which
indicated how the sensitivity of SPBuild was better than those
of the existing methods for each SCOP class. Actual pAUC
values are shown in Table S1. Notably, the performance of
SPBuild was 2.00- and 1.49-fold higher than those of CSBuild
and RPS-BLAST for SCOP class b, respectively. SCOP class
b consists of β proteins. Generally, β-strands are constructed
by remote interactions between residues when compared with
α-helices. Secondary structure predictors with a window-
based method developed by machine learning methods tend
to show poorer performance in β-regions than in α-regions.
The main reason for this weakness is related to the long-
range interactions in β structures, which may not be properly
handled by the limited lengths of sequence windows [25,
26]. This tendency may also be observed with the profile
predictors. CSBuild constructs final profiles by assembling
short window-based profiles, and RPS-BLAST also combines
many subjected profiles obtained by local similarity searches
against profile libraries. The actual mean length of the profiles
evaluated by RPS-BLAST with three iterations (default) on
the SCOP20 test dataset was 77, which was relatively longer
than that of CSBuild but still shorter than the typical length
of a protein. However, our method can theoretically memorize
whole-length amino acid sequences and can take the remote
relationship into consideration to generate profiles.

To confirm the relationship between memory power length
and structural categories, we calculated relative sensitivities
for different reset time lengths (Figure 4b and 4c). As a result,
the performance improvements in the b category were much
better than those of other categories, indicating that memory
power was the most important factor for encoding long-range
interactions, such as β structures.

Limitation of SPBuild
As described, our method could generate profiles faster than
HHBlits and showed higher performance than CSBuild and
comparable to or slightly higher performance than RPS-
BLAST, particularly for β region prediction, possibly due to
the memory effects of LSTM. However, there are still some
limitations to this method.

One of the limitations of SPBuild is the profile generation
time, although the time complexity is linear against input
sequence length. SPBuild used huge parameters, particularly
for the LSTM layer, to calculate the final profile prediction.
Although we set the size of the parameters to the current scale
in order to maximize the final performance of SPBuild, we
may be able to reduce the size and improve the calculation
time if we are able to find more efficient network structures
to learn amino acid context. In other words, to resolve the
problem, exhaustive optimization of the hyperparameters of
LSTM and/or development of novel network structures will
be required.

For the construction of the Pfam40 learning dataset, we
excluded highly similar sequences with any sequence in
the SCOP20 test dataset from the original Pfam40 dataset
by blastpgp search having e-value < 10−10. It should

SCOP class

R
e

la
ti
v
e
 s

e
n
s
it
iv

it
y
 o

f
S

P
B

u
ild

All

1.8

1.4

1.2

a b c d

1.6

1.0

Compared to CSBuild

Compared to RPS-BLAST2.0

2.2

5 10 20 30 50 100 200 300

5 10 20 30 50 100 200 300

Memory power of LSTM

Others

Memory power of LSTM

(a)

(b)

(c)

R
e

la
ti
v
e
 s

e
n
s
it
iv

it
y

(C
o

m
p

a
re

d
 t
o

 C
S

B
u

ild
)

R
e
la

ti
v
e
 s

e
n
s
it
iv

it
y

(C
o
m

p
a
re

d
 t
o
 R

P
S

-B
L

A
S

T
)

0.2

0.6

1.0

1.4

1.8
2.2

0.2

0.6

1.0

1.4

1.8

All a b

c d Others

Figure 4. Relative sensitivity of SPBuild against existing methods on the
test dataset. (a) The relative sensitivity of SPBuild against existing methods
was calculated by dividing the AUC1000 of SPBuild by that of each method.
Here, the label ”others” includes SCOP classes e, f, and g. (b) The relative
sensitivity of the profile generator with various memory powers of LSTM
against CSBuild. (c) The relative sensitivity of the profile generator with
various memory powers of LSTM against RPS-BLAST.

be noted that the threshold is rather strict to eliminate
homologous sequences. In the context of machine learning,
the independence of the test and learning dataset is quite
important to avoid overtraining, and thus, the same data
among the datasets should be eliminated, but similar data are
usually retained for better learning. Generally, a test dataset
must follow the same probability distribution as that of the
learning dataset [27, 28]. In other words, the existence of
similar data among a learning and test set is an essential point
for supervised learning, and prediction based on supervised
learning will fail if no similar data are available among the
learning and test dataset. This similar information will be a
question of degree, and in our case, better learning would

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

bioRxiv, 2017 7

Weighted FP

W
e
ig

h
te

d
 T

P

100

120

80

40

0

101 102 103 104

100

60

20

SPBuild

CSBuild

RPS-BLAST

(blastpgp)
(HHBlits)

140

160

Figure 5. Performance comparisons of similarity searches on SCOP20
strict-test dataset. ROC curves of SPBuild and other methods. The
performances of HHBlits (three iterations) and blastpgp were added for a
reference.

require a homologous relationship in both the learning and test
dataset.

Meanwhile, however, in the context of biological
sequence analysis, homologous or similar sequences will
be conceptual problems. From the viewpoint of machine
learning, homologous sequences should not be removed, but
conventional approaches of biological sequence analyses
usually remove the homologous sequences [29, 30, 31]. For
further considerations, we set a moderate e-value threshold of
10-5 aiming to exclude homologous sequences in the Pfam40
learning dataset from the SCOP20 test dataset, and we made
another test dataset, a SCOP20 strict-test dataset. According
to benchmark results with the dataset (Figure 5), the search
sensitivities of de novo profile generators including SPBuild
were much lower than that of HHBlits, and our method was
worse than blastpgp, which is a sequencesequence-based
method. These results will be quite interesting to understand
profile generation with machine learning approaches and
indicate that machine learning approaches would not be
effective at all if homologous sequences are excluded,
as conventional sequence analyses methods are doing.
In addition, the worse performance of SPBuild might be
improved to at least the same level as that of blastpgp by
introducing a bailout method, which is a popular approach
in machine learning, where profiles are generated from the
background frequency of amino acid substitution matrices
like BLOSUM [32] or MIQS [33] when the confidences of
profile generation are not enough. That kind of bailout is
internally implemented by BLAST series, but we did not use
it in the current implementations, and thus, it can be a future
direction for further improvements.

The performance of iteration search with profiles made by
de novo profile generators would be another interesting point
for users. To check the performance of iteration searches,
we calculated ROC curves for SPBuild, CSBuild, and RPS-
BLAST and found that differences in performance became
more unclear as the number of iterations increased (Figure
S3). The result suggested that the performance of the initial

search or qualities of profiles would be of meager importance
for the final results in iterative searches if a sufficient
number of iterations was used. The reason for this result is
unclear; however, we believe that homologous sequences in
the sequence space are limited and that almost all homologous
sequences can be detected by using modestly good profiles
if a large number of iterations are used. Considering the
sensitivity of profile sequencebased similarity searches, our
method may not be too attractive; however, there are many
other uses for profiles. For example, profileprofile similarity
searches, where profiles are generated by iterative searches
of whole datasets, will be candidates for the application of
our approach. The bottleneck of profileprofile searches may
be easily resolved with the rapid profile generator. In addition,
profiles are often used to encode amino acids into input vectors
in other machine learning methods. Machine learning methods
generally require large learning data, and currently, long-time
iterative searches should be avoided because the calculation
time increases depending on the learning data size. In such
cases, higher speeds and accurate profile generators will be
quite useful.

CONCLUSION
In this study, we developed a novel de novo generator
of PSSMs using a deep learning algorithm, the LSTM
network. Our method, SPBuild, improved the performance
of homology detection with a more rapid computation time
than that of existing de novo generators. However, our goal
was not to just provide an alternative method for profile
generators but also to elucidate the importance of sequence
context and the feasibility of LSTM for overcoming the
sequence-specific problem. Our analyses demonstrated the
effectiveness of memories in LSTM and showed that SPBuild
achieved higher performance, particularly for β-region profile
generation, which was difficult to predict by window-based
prediction methods. This performance could be explained by
the fact that our method utilized the LSTM network, which
could capture remote relationships in sequences. Moreover,
further analyses suggested that substantially long context was
required for correct profile generation. We also reconfirmed
several limitations of deep learning on our problems. For
example, the deep architecture to realize higher performance
required considerable computation time, and the intensive
elimination of homologous information between the learning
and test dataset might make the inference by deep learning
impossible. These findings may be useful for the development
of other prediction methods.

Profiles are the most fundamental data structures and are
used for various sequence analyses in bioinformatics studies.
Using SPBuild, the performance of sophisticated comparison
algorithms, such as profileprofile comparison methods and
multiple sequence alignment, can be further improved. In
addition, profiles generated by SPBuild can be useful as input
vectors for other machine-based meta-predictors of protein
properties.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

8 bioRxiv, 2017

ADDITIONAL INFORMATION

Acknowledgements
We are grateful to Kentaro Tomii and Toshiyuki Oda
for constructive discussion. Computations were partially
performed on the NIG supercomputer at ROIS National
Institute of Genetics and the supercomputer system Shirokane
at Human Genome Center, Institute of Medical Science,
University of Tokyo.

Funding
This work was supported in part by the Top Global University
Project from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan (MEXT), KAKENHI from
the Japan Society for the Promotion of Science (JSPS) under
Grant Number 18K18143 and Platform Project for Supporting
in Drug Discovery and Life Science Research (Basis for
Supporting Innovative Drug Discovery and Life Science
Research (BINDS)) from AMED under Grant Number
17am0101067.

Availability of data and material
The source code of SPBuild are available at http://yamada-
kd.com/product/spbuild.html.

Abbreviations
HMM: hidden Markov model; LSTM: long short-term
memory; pAUC: partial area under the ROC curve; PSSM:
position-specific scoring matrix; ROC: receiver operating
characteristic; RNN: recurrent neural network

Competing interests
The authors declare that they have no competing interests.

REFERENCES

1. Resource Coordinators NCBI. Database resources of the national center
for biotechnology information. Nucleic acids research, 45(D1):D12,
2017.

2. Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes
Söding. Hhblits: lightning-fast iterative protein sequence searching by
hmm-hmm alignment. Nature methods, 9(2):173–175, 2012.

3. Stephen F Altschul, Thomas L Madden, Alejandro A Schffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast
and psi-blast: a new generation of protein database search programs.
Nucleic acids research, 25:3389–3402, September 1997.

4. Christof Angermüller, Andreas Biegert, and Johannes Söding.
Discriminative modelling of context-specific amino acid substitution
probabilities. Bioinformatics, 28(24):3240–3247, 2012.

5. A Biegert and J Sding. Sequence context-specific profiles for homology
searching. Proceedings of the National Academy of Sciences of the United
States of America, 106:3770–3775, March 2009.

6. Grzegorz M Boratyn, Alejandro A Schffer, Richa Agarwala, Stephen F
Altschul, David J Lipman, and Thomas L Madden. Domain enhanced
lookup time accelerated blast. Biology direct, 7:12, April 2012.

7. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

8. Xiuquan Du, Shiwei Sun, Changlin Hu, Yu Yao, Yuanting Yan, and
Yanping Zhang. Deepppi: Boosting prediction of protein-protein
interactions with deep neural networks. Journal of chemical information
and modeling, 57:1499–1510, June 2017.

9. Tanlin Sun, Bo Zhou, Luhua Lai, and Jianfeng Pei. Sequence-based
prediction of protein protein interaction using a deep-learning algorithm.
BMC bioinformatics, 18(1):277, 2017.

10. Matt Spencer, Jesse Eickholt, and Jianlin Cheng. A deep learning network
approach to ab initio protein secondary structure prediction. IEEE/ACM
transactions on computational biology and bioinformatics, 12:103–112,
2015.

11. Sheng Wang, Jian Peng, Jianzhu Ma, and Jinbo Xu. Protein secondary
structure prediction using deep convolutional neural fields. Scientific
reports, 6:18962, January 2016.

12. Pietro Di Lena, Ken Nagata, and Pierre Baldi. Deep architectures
for protein contact map prediction. Bioinformatics (Oxford, England),
28:2449–2457, October 2012.

13. Rhys Heffernan, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou.
Capturing non-local interactions by long short term memory bidirectional
recurrent neural networks for improving prediction of protein secondary
structure, backbone angles, contact numbers, and solvent accessibility.
Bioinformatics (Oxford, England), April 2017.

14. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

15. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

16. Jürgen Schmidhuber and Sepp Hochreiter. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

17. Jack Hanson, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou. Improving
protein disorder prediction by deep bidirectional long short-term memory
recurrent neural networks. Bioinformatics, 33(5):685–692, 2016.

18. Louis Kim, Jacob Harer, Akshay Rangamani, James Moran, Philip D
Parks, Alik Widge, Emad Eskandar, Darin Dougherty, and Sang Peter
Chin. Predicting local field potentials with recurrent neural networks. In
Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th
Annual International Conference of the, pages 808–811. IEEE, 2016.

19. Robert D Finn, Penelope Coggill, Ruth Y Eberhardt, Sean R Eddy,
Jaina Mistry, Alex L Mitchell, Simon C Potter, Marco Punta, Matloob
Qureshi, Amaia Sangrador-Vegas, et al. The pfam protein families
database: towards a more sustainable future. Nucleic acids research,
44(D1):D279–D285, 2016.

20. Maria Hauser, Christian E Mayer, and Johannes Söding. kclust: fast
and sensitive clustering of large protein sequence databases. BMC
bioinformatics, 14(1):248, 2013.

21. Maryam Habibi, Leon Weber, Mariana Neves, David Luis Wiegandt, and
Ulf Leser. Deep learning with word embeddings improves biomedical
named entity recognition. Bioinformatics, 33(14):i37–i48, 2017.

22. Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with lstm. 1999.

23. Julian Gough, Kevin Karplus, Richard Hughey, and Cyrus Chothia.
Assignment of homology to genome sequences using a library of hidden
markov models that represent all proteins of known structure. Journal of
molecular biology, 313(4):903–919, 2001.

24. Michael Gribskov and Nina L Robinson. Use of receiver operating
characteristic (roc) analysis to evaluate sequence matching. Computers
& chemistry, 20(1):25–33, 1996.

25. Philip Bradley and David Baker. Improved beta-protein structure
prediction by multilevel optimization of nonlocal strand pairings and
local backbone conformation. Proteins: Structure, Function, and
Bioinformatics, 65(4):922–929, 2006.

26. Jianlin Cheng and Pierre Baldi. Three-stage prediction of protein β-sheets
by neural networks, alignments and graph algorithms. Bioinformatics,
21(suppl 1):i75–i84, 2005.

27. M Bishop Christopher. PATTERN RECOGNITION AND MACHINE
LEARNING. Springer-Verlag New York, 2016.

28. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning
(adaptive computation and machine learning series). Adaptive
Computation and Machine Learning series, page 800, 2016.

29. Johannes Söding and Michael Remmert. Protein sequence comparison
and fold recognition: progress and good-practice benchmarking. Current
opinion in structural biology, 21(3):404–411, 2011.

30. Kazunori D Yamada. Derivative-free neural network for optimizing the
scoring functions associated with dynamic programming of pairwise-
profile alignment. Algorithms for Molecular Biology, 13(1):5, 2018.

31. Kazunori D Yamada, Kentaro Tomii, and Kazutaka Katoh. Application
of the mafft sequence alignment program to large data―reexamination of
the usefulness of chained guide trees. Bioinformatics, 32(21):3246–3251,
2016.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

bioRxiv, 2017 9

32. S Henikoff and J G Henikoff. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences of the
United States of America, 89:10915–10919, November 1992.

33. Kazunori Yamada and Kentaro Tomii. Revisiting amino acid substitution
matrices for identifying distantly related proteins. Bioinformatics
(Oxford, England), 30:317–325, February 2014.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/240515doi: bioRxiv preprint

https://doi.org/10.1101/240515
http://creativecommons.org/licenses/by-nc-nd/4.0/

