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Abstract1

Decentralised social interactions can generate swarm intelligence, but may concurrently2

increase the risk of maladaptive herding. Here we present an individual-based model anal-3

ysis suggesting that the conflict between the ‘wisdom’ and ‘madness’ of interactive crowds4

is regulated by selectively choosing which social learning strategy to use. We used an in-5

teractive online experiment with 699 participants to measure the patterns of human social-6

information use, varying both task uncertainty and group size. Hierarchical Bayesian anal-7

yses identified the individual learning strategies, revealing that conformity bias increased8

with the task’s uncertainty, whereas reliance on social learning increased with group size.9

Mapping individual strategies onto collective behaviour, we show that maladaptive herding10

occurred more frequently when larger groups were engaged in more uncertain tasks. Our11

computational modelling approach provides novel evidence that the likelihood of swarm12

intelligence versus herding can be predicted using knowledge of social learning strategies.13

(currently 144 words)14

Keywords: swarm intelligence, herding, social learning, computational modelling, web-15

based experiment, hierarchical Bayesian approach16
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1 Introduction17

Understanding the mechanisms that account for accurate collective decision-making amongst18

groups of animals has been a central focus of animal behaviour research (Bonabeau et al., 1999;19

Camazine et al., 2001; Sumpter, 2010). There are a large number of biological examples showing20

that collectives of poorly informed individuals can achieve a high performance in solving cog-21

nitive problems under uncertainty (Krause et al., 2010). Examples of such ‘swarm intelligence’22

– the emergent wisdom of interactive crowds – have been found in a broad range of biological23

systems (Table 1). Although these findings suggest fundamental cognitive benefits of grouping24

(Krause and Ruxton, 2002), there is also a long-standing recognition, especially for humans, that25

interacting individuals may sometimes be overwhelmed by the ‘extraordinary popular delusions26

and madness of crowds’ (Mackay, 1841). Herd behaviour (i.e. an alignment of thoughts or be-27

haviours of individuals in a group) occurs because individuals imitate each others (Kameda and28

Hastie, 2015; Le Bon, 1896; Raafat et al., 2009), and it is thought to be a cause of financial29

bubbles (Chari and Kehoe, 2004; Mackay, 1841), ‘groupthink’ (Janis, 1972) and volatility in30

cultural markets (Muchnik et al., 2013; Salganik et al., 2006). More generally, herding is known31

to undermine the wisdom of crowds effect (Lorenz et al., 2011), whilst maladaptive aspects of32

information transfer are well-recognised in the biological literature (e.g. Giraldeau et al., 2002).33

It seems that information transmission among individuals, and making decisions collectively, is34

a double-edged sword: combining decisions may provide the benefits of swarm intelligence, but35

at the same time, increase the risk of maladaptive herding. Collectively, an understanding of36

whether and, if so, how it is possible to prevent or reduce the risk of maladaptive herd behaviour,37
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while concurrently keeping or enhancing swarm intelligence, is largely lacking.38

Table 1

Examples of swarm intelligence in diverse biological systems

Taxonomic families Examples and references

Slime moulds Finding conditions favorable to spore survival and dispersal (Reid and Latty, 2016)
Social insects Collective foraging (Seeley et al., 1991; Shaffer et al., 2013) and nest-site selection

(Franks et al., 2003; Sasaki and Pratt, 2012; Sasaki et al., 2013; Seeley and Visscher,
2004)

Fish Collective sensing (Berdahl et al., 2013; Sumpter et al., 2008), predator avoidance
(Ward et al., 2011) and foraging decisions (Webster et al., 2017)

Birds Collective foraging (Liker and Bokony, 2009; Morand-Ferron and Quinn, 2011) and
homing decisions (Sasaki and Biro, 2017)

Non-human primates Group coordination in where and when to move (King and Sueur, 2011)
Humans Decision-making in an estimation task (Krause et al., 2011; Rosenberg and Pescetelli,

2017) and in a multi-armed bandit task (Toyokawa et al., 2014)

A balance between using individual and social information may play a key role in determining39

the trade-off between collective wisdom and maladaptive herding (List et al., 2009). If individu-40

als are too reliant on copying others’ behaviour, any ideas, even a maladaptive one, can propagate41

in the social group (i.e. the ‘informational cascade’; Bikhchandani et al., 1992; Giraldeau et al.,42

2002; Richerson and Boyd, 2005). On the other hand, however, if individuals completely ignore43
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social information so as to be independent, they will fail to exploit the benefits of aggregating44

information through social interactions. The extent to which individuals should use social in-45

formation should fall between these two extremes. Theoretical models predict that the balance46

between independence and interdependence in collective decision-making may be changeable,47

contingent upon the individual-level flexibility and inter-individual variability associated with48

the social learning strategies deployed in diverse environmental states (e.g. Arbilly et al., 2011;49

Boyd and Richerson, 1985; Feldman et al., 1996; Laland, 2004).50

Animals (including humans) are reported to increase their use of social information as re-51

turns from asocial learning become more unreliable (e.g. Kameda and Nakanishi, 2002; Kendal52

et al., 2004; Morgan et al., 2012; Toyokawa et al., 2017; Webster and Laland, 2008, 2011). In53

addition, individuals are predicted to be more likely to rely on social learning larger the number54

of individuals that share information (Boyd and Richerson, 1989; Bond, 2005; Kline and Boyd,55

2010; Morgan et al., 2012; Muthukrishna et al., 2014; Street et al., 2017). This selectivity in the56

predicted use of social information may have a substantial impact on collective decision-making57

because only a slight difference in the parameter values of social information use is known to58

be able to alter qualitatively the collective behavioural dynamics (e.g. Bonabeau et al., 1999;59

Camazine et al., 2001; Nicolis and Deneubourg, 1999; Pratt and Sumpter, 2006). Therefore, re-60

searchers should expect populations to exhibit a higher risk of being trapped with maladaptive61

behaviour with increasing group size and decreasing reliability of asocial learning (and concomi-62

tant increased reliance on social learning).63

From the viewpoint of the classic wisdom of crowds theory, increasing group size may in-64

crease collective accuracy (List, 2004; King and Cowlishaw, 2007; Wolf et al., 2013; Becker65
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et al., 2017; Laan et al., 2017). The relative advantage of the collective over solitary individuals66

may also be highlighted by increased task difficulty, because there would be more room in the67

performance to be improved compared to easier tasks in which high accuracy can already be68

achieved by asocial learning only (Cronin, 2016). To understand the potential conflict between69

swarm intelligence and the risk of maladaptive herding requires fine-grained quantitative studies70

of social learning strategies and their relations to collective dynamics, linked to sophisticated71

computational analysis.72

The aims of this study were twofold. First, we set out to examine whether altering both the73

reliability of asocial learning and group size would induce heavier use of social information in74

humans, and thereby alter the balance between swarm intelligence and the risk of maladaptive75

herding. To do this, we focused on human groups exposed to a simple gambling task, where76

both asocial and social sources of information were available. Second, we sought to conduct a77

detailed analysis of the complex relationship between individual-level decision, learning strate-78

gies and population-level behavioural outcomes. Our use of an abstract decision-making task79

allowed us to implement a computational modelling approach, which has been increasingly de-80

ployed in quantitative studies of animal social learning strategies (Ahn et al., 2014; Aplin et al.,81

2017; Barrett et al., 2017; McElreath et al., 2005, 2008; Toyokawa et al., 2017). In particular,82

computational modelling allowed us to conduct a parametric description of different information-83

gathering processes and to estimate these parameter values at an individual-level resolution.84

Below, we firstly described our experimental task and summarise the computational model.85

Then, we deploy agent-based simulation to illustrate how the model parameters relating to social86

learning can in principle affect the collective-level behavioural dynamics. The simulation pro-87
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vides us with precise, quantitative predictions on the complex relationship between individual88

behaviour and group dynamics. Finally, we present the findings of a multi-player web-based ex-89

periment with human participants that utilises the gambling task framework. Applying a hierar-90

chical Bayesian statistical method, we estimated the model’s parameters for each of 699 different91

individuals, allowing us to (i) examine whether and, if so, how social information use is affected92

by different group size and task uncertainty, and (ii) whether and how social-information use93

affects the balance between swarm intelligence and maladaptive herding.94

1.1 Task overview95

To study the relationship between social information use and collective behavioural dynamics, we96

focused on a well-established learning-and-decision problem called a ‘multi-armed bandit’ task,97

represented here as repeated choices between three slot machines (Figure S1, Video 1, for detail98

see Materials and methods). Individuals play the task for 70 rounds. The slots paid off money99

noisily, varying around two different means during the first 40 rounds such that there was one100

‘good’ slot and two other options giving poorer average returns. From the round 41st, however,101

one of the ‘poor’ slots abruptly increased its mean payoff to become ‘excellent’ (i.e. superior102

to ‘good’). The purpose of this environmental change was to observe the effects of maladaptive103

herding by potentially trapping groups in the out-of-date suboptimal (good) slot, as individuals104

did not know whether or how an environmental change would occur. Through making choices105

and earning a reward from each choice, individuals could gradually learn which slot generated106

the highest rewards.107

In addition to this asocial learning, we provided social information for each member of the108
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group specifying the frequency with which group members chose each slot. All group mem-109

bers played the same task with the same conditions simultaneously, and all individuals had been110

instructed that this was the case, and hence understood that the social information would be in-111

formative.112

Task uncertainty was experimentally manipulated by changing the difference between the113

mean payoffs for the slot machines. In the task with the least uncertainty, the distribution of114

payoffs barely overlapped, whilst in the task with the greatest uncertainty the distribution of115

payoffs overlapped considerably (Figure S3).116

1.2 Overview of the computational learning-and-decision-making model117

We modelled individual behavioural processes by assuming that individual ! makes a choice for118

option " at round #, in accordance with the choice-probability $!,#(") that is a weighted average119

of social and asocial influences:120

$!,#(") = %!,# × Social influence!,",# + (1 − %!,#) × Asocial influence!,",#, (1)

where %!,# is the social learning weight (0 ≤ %!,# ≤ 1).121

For the social influence, we assumed a frequency-dependent copying strategy by which an122

individual copies others’ behaviour in accordance with the distribution of social frequency infor-123

mation (McElreath et al., 2005, 2008; Aplin et al., 2017; Barrett et al., 2017):124

Social influence!,",# =

(
frequency",#−1

)&!

∑
'∈()#!(*+

(
frequency',#−1

)&!
, (2)

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


where frequency",#−1 is a number of choices made by other individuals for the option " in the125

preceding round # − 1 (# ≥ 2). The exponent &! is individual !’s conformity exponent (−∞ ≤126

&! ≤ +∞). When this exponent is larger than zero (&! > 0), higher social influence is afforded to127

an option chosen by more individuals (i.e. positive frequency bias), with conformity bias arising128

when &! > 1, such that disproportionally more social influence is given to the most common129

option (Boyd and Richerson, 1985). When &! < 0, on the other hand, higher social influence is130

afforded to the option that fewest individuals chose in the preceding round # − 1 (i.e. negative131

frequency bias). Note, there is no social influence when &! = 0 because in this case the ‘social132

influence’ favours an uniformly random choice, i.e., Social influence!,",# = , 0
"∕(,

0
1 +, 0

2 +, 0
3 ) =133

1∕3, independent of the social frequency distribution.134

For the asocial influence, we used a standard ‘softmax’ choice rule well-established in the135

reinforcement-learning literature (Sutton and Barto, 1998) and widely applied in human social136

learning studies (e.g. McElreath et al., 2005, 2008; Toyokawa et al., 2017).137

In summary, the model has two key social learning parameters, the social learning weight %!,#138

and the conformity exponent &!, with %!,# a time-dependent variable (i.e. individuals could modify139

their reliance on social learning as the task proceeded). Varying these parameters systematically,140

we conducted an individual-based simulation so as to establish quantitative predictions concern-141

ing the relationship between social information use and collective behaviour. We then fitted this142

model to our experimental data using a hierarchical Bayesian approach. This method allows143

us to specify with precision how each individual subject learns (i.e. which learning strategy or144

strategies they deploy), and thereby to describe the range and distribution of learning strategies145

deployed across the sample, and to investigate their population-level consequences.146
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2 Results147

2.1 The relationship between social information use and the collective behaviour148

Figure 1 shows the relationship between the average decision accuracy and individual-level social149

information use obtained from our individual-based model simulations. Figure 1a and 1c show150

that individuals in larger groups perform better both before and after the environmental change151

when the mean conformity exponent &̄ is small (i.e. &̄ = (∑! &!)∕individuals = 1). In the152

absence of conformity, even when the average social learning weight is very high (i.e. %̄ =153

(∑!
∑

# %!,#)∕(individuals × rounds) = 0.9), larger groups are still able to recover the decision154

accuracy after the location of the optimal option has been switched.155

On the other hand, when the mean conformity exponent is large (i.e. &̄ = 3; strong confor-156

mity bias), the group dynamics become less flexible, and become vulnerable to getting stuck on157

a suboptimal option after environmental change. Here, the recovery of performance after envi-158

ronmental change takes more time in larger compared to smaller groups (Figure 1b). When both159

the conformity exponent &̄ and the social learning weight %̄ are large (Figure 1d), performance160

is no longer monotonically improving with increasing group size, and it is under these circum-161

stances that the strong herding effect becomes prominent. Figure 2c and 2d indicate that when162

both &̄ and %̄ are large the collective choices converged either on the good option or on one of the163

poor options almost randomly, regardless of the option’s quality, and that once individuals start164

converging on an option the population gets stuck. As a result, the distribution of the groups’165

average performance over the replications becomes a bimodal ‘U-shape’. Interestingly, however,166

the maladaptive herding effect remains relatively weak in smaller groups (see Figure 2c; the black167
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histograms). This is because the majority of individuals in smaller groups (i.e. two individuals168

out of three) are more likely to break the cultural inertia by simultaneously exploring for another169

option than the majority in larger groups (e.g. six out of ten). As expected, herding does not170

occur in the absence of conformity (Figure 2a, 2b).171

In summary, the model simulation suggests an interaction between social learning weight %̄172

and conformity exponent &̄ on decision accuracy and the risk of maladaptive herding: When the173

conformity exponent is not too large, swarm intelligence is prominent across a broad range of174

the mean social learning weights (i.e. increasing group size can increase decision accuracy while175

concurrently retaining decision flexibility). When the conformity bias becomes large, however,176

the risk of maladaptive herding arises, and, when both social learning parameters are large, swarm177

intelligence is rare and maladaptive herding dominates.178
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(a) (b)

(c) (d)

Figure 1: Findings of the individual-based model showing the effects of social information use on the average
decision accuracy over replications. The x-axis gives the round and y-axis gives the proportion of individuals
expected to choose the optimal slot (i.e. decision accuracy) averaged over all replications. The vertical dashed line
indicates the timing of environmental (i.e. payoff) change (at # = 41). Different group sizes are shown by different
styles (black (dotted): * = 3, orange (dashed): * = 10, red (solid): * = 30). We set the average slopes for the social

learning weight to be equal to zero for the sake of simplicity; namely, ./ = 0. Other free parameter values (i.e. .0 ,
.1∗0

, .2 ,30 , 31∗0 , 32 , 3% , 3/ and 3&) are best approximates to the experimental fitted values (see Table 2 and Table S1).
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(a) (b) (c) (d)

Figure 2: Results from the individual-based model simulations showing the distribution of each group’s mean
accuracy before environmental change. The x-axis gives the mean decision accuracy over the first 40 rounds (i.e. the
environment 1) for each replication. Different group sizes are shown by different styles (black (dotted): * = 3,
orange (dashed): * = 10, red (solid): * = 30). Again, ./ = 0, and other free parameter values (i.e. .0 , .1∗0

, .2 ,30 ,
31∗0 , 32 , 3% , 3/ and 3&), we approximated using experimental data (see Table 2 and Table S1).
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2.2 Estimation of human social information use179

Table 2 reveals how the social learning weight %!,# and conformity exponent &! were influenced180

by task uncertainty in our behavioral experiment. It gives posterior estimation values for each of181

the global means of the learning model parameters, obtained by the hierarchical Bayesian model182

fitting method applied to the experimental data (see the Materials and methods). The fitted global183

variance parameters (i.e. 3) are shown in the Supporting Table S1.184

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ta
ble

2

Th
em

ean
and

the
95%

Ba
yes

ian
cre

dib
lei

nte
rva

lso
fth

ep
ost

eri
or

glo
bal

me
ans

for
the

par
am

ete
rv

alu
es.

Th
en

um
ber

of
par

tici
pan

ts(
4

)fo
re

ach
exp

eri
me

nta
l

con
dit

ion
are

als
os

how
n.

Gr
oup

con
dit

ion
So

lita
ry

con
dit

ion

Un
cer

tain
ty

Un
cer

tain
ty

Par
am

ete
rs

Lo
w

Mo
der

ate
Hig

h
Lo

w
Mo

der
ate

Hig
h

. 0
∗

(le
arn

ing
rat

e)
0.9

9
0.9

0
0.6

1
0.8

5
-0.

17
0.4

6
[0.

34,
1.7

3]
[0.

43,
1.4

4]
[0.

21,
1.0

3]
[-0

.07
,1.

95]
[-1

.27
,0.

89]
[-0

.39
,1.

36]
. 1

∗ 0
(in

v.t
em

p.)
1.8

4
1.6

8
1.3

8
1.1

0
1.4

4
0.8

5
[1.

15,
2.7

0]
[1.

25,
2.1

8]
[1.

16,
1.6

2]
[0.

69,
1.5

4]
[0.

80,
2.0

7]
[0.

46,
1.2

2]
. 2

(in
v.t

em
p.)

3.7
0

3.0
1

2.9
7

2.3
9

2.8
1

2.2
7

[1.
98,

5.7
1]

[1.
88,

4.2
7]

[2.
37,

3.6
0]

[1.
46,

3.5
3]

[1.
64,

4.0
7]

[1.
40,

3.3
1]

. %
∗ 0

(so
c.

wig
ht)

-1.
55

-2.
37

-2.
16

–
–

–
[-2

.71
,-0

.71
]

[-4
.12

,-1
.01

]
[-2

.81
,-1

.63
]

–
–

–
. /

(so
c.

wig
ht)

-1.
39

-1.
55

-1.
87

–
–

–
[-2

.66
,-0

.03
]

[-4
.29

,0.
91]

[-3
.04

,-0
.81

]
–

–
–

. &
(co

nfo
rm

ity
coe

ff.)
1.6

5
3.0

0
2.6

7
–

–
–

[0.
83,

2.8
2]

[1.
57,

4.8
5]

[1.
80,

3.7
3]

–
–

–
4

77
98

398
36

34
56

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


We were able to categorize the participants as deploying three different learning strategies185

based on their fitted conformity exponent values; namely, the ‘positive frequency-dependent186

copying’ strategy (&! ≫ 0), the ‘negative-frequency dependent copying’ strategy (&! ≪ 0) and187

the ‘random choice’ strategy (&! ≈ 0). Note that we could not reliably detect the ‘weak positive’188

frequency-dependent strategy (0 < &! ≤ 1) due to the limitation of statistical power (Figure S10189

and S17). Some individuals whose ‘true’ conformity exponent fell between zero and one would190

have been categorised as exhibiting a random choice strategy (Figure S10). Individuals identi-191

fied as exhibiting a positive frequency-dependent copiers were mainly those whose conformity192

exponent was larger than one (&! > 1).193

Figure 3a-c show the estimated frequencies of different learning strategies. Generally speak-194

ing, participants were more likely to utilize a positive frequency-dependent copying strategy195

than the other two strategies (the 95% Bayesian CI of the intercept of the GLMM predicting the196

probability to use the positive frequency-dependent copying strategy is above zero, [1.05, 2.50];197

Table S2). We found that positive frequency-dependent copying decreased with increasing task198

uncertainty (the 95% Bayesian CI of task uncertainty effect is below zero, [-1.88, -0.25]; Table199

S2). We found no clear effects of either the group size, age or gender on adoption of the positive200

frequency-dependent copying strategy, except for the negative interaction effect between age and201

task uncertainty (the 95% Bayesian CI of the age × uncertainty interaction = [-1.46, -0.15]; Table202

S2).203

We also investigated the effects of group size and task uncertainty on the fitted individual204

parameter values. We found that the individual mean social learning weight parameter (i.e.205

%̄! = (∑# %!,#)∕70) increased with group size (the 95% Bayesian CI = [0.15, 0.93]; Figure 3d-f;206
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Table S3), and decreased with uncertainty (the 95% Bayesian CI = [-0.98, -0.22]), and age of207

subject (the 95% Bayesian CI = [-0.36, -0.02]). However, the negative effects of task uncertainty208

and age disappeared when we focused only on %̄! of the positive frequency-dependent copying209

individuals, and only the positive effect of the group size was confirmed (Table S4; Figure S16).210

It is worth noting that the meaning of the social learning weight is different between these three211

different strategies: The social learning weight regulates positive reactions to the majorities’ be-212

haviour for positive frequency-dependent copiers, whereas it regulates avoidance of the majority213

for negative-frequency dependent copiers, and determines the probability of random decision-214

making for the random choice strategists.215

The individual conformity exponent parameter &! increased with task uncertainty (the 95%216

Bayesian CI = [0.38, 1.41]), but we found no significant effects of group size, age, gender or217

interactions (Figure 3g-i; Table S5). These results were qualitatively unchanged when we focused218

only on the positive frequency-dependent copying individuals (Table S6; Figure S16).219

We observed extensive individual variation in social information use. The greater the task’s220

uncertainty, the larger were individual variances in both the mean social learning weight and the221

conformity exponent (the 95% Bayesian CI of the GLMM’s variation parameter for %̄! was [1.11,222

1.62] (Table S3) and for &! was [1.07, 1.54] (Table S5)). This was confirmed when focusing only223

on the positive frequency-dependent copying individuals: The Bayesian 95% CIs were [1.14,224

1.80] (Table S4) and [0.71, 1.10] (Table S6), respectively.225

The manner in which individual variation in social-information use of positive frequency-226

dependent copying individuals changes over time is visualised in Figure 4a-c. The social learn-227

ing weights generally decreased with experimental round. However, some individuals in the228
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Moderate- and the High-uncertain conditions accelerated rather than decreased their reliance on229

social learning over time. Interestingly, those accelerating individuals tended to have a larger230

conformity exponent (Figure S18). In addition, the time-dependent &!,# in our alternative model231

generally increased with experimental round in the Moderate- and the High-uncertainty condi-232

tions (see the appendix; Figure S26), although the fitting of &!,# in the alternative model was233

relatively unreliable (Figure S20). These findings suggest that conformists tended to use asocial234

learning at the outset but increasingly started to conform as the task proceeded.235

Extensive variation in the temporal dynamics of the social learning weight %!,# was also found236

for the negative-frequency dependent copying individuals but not found for the random choice237

individuals (Figure S14). Individuals deploying a random choice strategy exhibited a %!,# that ap-238

proached to zero, indicating that their decision-making increasingly relied exclusively on asocial239

reinforcement learning as the task proceeded.240

No significant fixed effects were found in other asocial learning parameters such as the learn-241

ing rate 0! and the mean inverse temperature 1̄! = (∑# 1!,#)∕70 (Table S7, Table S8 and Figure242

S15).243

In summary, our experiments on adult humans revealed asymmetric influences of increasing244

task uncertainty and increasing group size on the social learning parameters. The conformity245

exponent increased with task uncertainty on average but the proportion of positive frequency-246

dependent copying individuals showed a corresponding decrease, due to the extensive individual247

variation emerging in the High-uncertain condition. Conversely, group size had a positive effect248

on the mean social learning weight, but did not affect conformity (Figure 3, 4a-c).249
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Random choice

Positive freq. dep.

freq. dep.
Negative

Figure 3: Model fitting for the three different task’s uncertain conditions (the Low-, Moderate- and
High-uncertainty) and the different group size. Three different learning strategies are shown in different styles
(red-triangle: positive frequency-dependent learning, blue-circle: negative frequency-dependent learning;
grey-circle: nearly random choice strategy). (a-c) Frequencies of three different learning strategies. Note that a sum
of the frequencies of these three strategies in the same group size does not necessarily equal to 1, because there are a
small number of individuals eliminated from this analysis due to insufficient data. (d-f) Estimated social learning
weight, and (g-i) estimated conformity exponent, for each individual shown for each learning strategy. The 50%
Bayesian CIs of the fitted GLMMs are shown by dashed lines and shaded areas. The horizontal lines in (g-i) show a
region −1 < &! < 1.
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a-c) Change in fitted values (i.e. median of the Bayesian posterior distribution) of the social learning
weight %!,# with time for each individual, for each level of task uncertainty. Thick dashed lines are the median values
of %!,# across the subjects for each uncertainty condition. Individual conformity exponent values &! are shown in
different colours (higher &! is darker). (d-f) Change in average decision accuracy of the individual-based post-hoc
model simulations using the experimentally fit parameter values (main panels). The inner panels show the average
decision accuracies of the experimental participants. Each line indicates different group-size categories (red-solid:
large groups, orange-halfdashed: small groups, grey-dashed: lone individuals). All individual performances were
averaged within the same size category. The large or small groups were categorised using the median sizes for each
experimental condition, i.e. small groups were: * ≤ 9, * ≤ 6 and * ≤ 11 for the Low-, Moderate- and
High-uncertain conditions, respectively.
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2.3 A balance between the collective decision accuracy and the herding effect250

Figure 4d-f show the change over time in performance with different group sizes and different251

uncertainty conditions, generated by the post-hoc simulations of the parameter-fitted model. The252

mean decision accuracies of the experimental groups are shown in the inner windows. Because253

the post-hoc simulations were run for 5,000 replications for each group size, which should gen-254

erate more robust pattern than the raw experimental data basing only on a limited number of255

experimental replications, and given the correspondence between simulations and data, below256

we concentrate our interpretation on the simulated results.257

Prior to the environmental change (Round 1 to 40), larger groups performed better on average258

than did both smaller groups and lone individuals across all the uncertainty levels, suggesting259

swarm intelligence was operating. However, after the environmental change (i.e. from Round 41)260

performance differed between the conditions. In the Low-uncertain condition, where we found261

that the participants were most likely to have a relatively weak positive frequency-dependence262

(i.e. &̄ = 1.65), large groups again made more accurate decisions than small groups (Figure 4d,263

from Round 41). However, in the Moderate- and the High-uncertain condition, where we found264

that participants were most likely to have strong positive frequency dependence (&̄ = 3.00 and265

2.67, c.f. 1.65 in the Low-uncertainty condition), the large groups seemed to get stuck on the266

suboptimal option after the change (Figure 4e and 4f, from Round 41), although the decision267

accuracy did not substantially differ with group size in the High-uncertain condition.268

Lone individuals in the Low-uncertain condition recovered performance more quickly than269

did both the small and large groups even though the lone individuals performed worse in the first-270

half of the task (Figure 4d), suggesting that asocial learners are more capable of detecting the271
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environmental change than individuals in groups. This might be due to the higher exploration rate272

of lone individuals (both .1∗0 and .2 of solitary individuals were smaller than those of grouping273

individuals; Table 2).274

Overall, the pattern of results was broadly consistent with our predictions (Figure 1). We275

confirmed that in the Low-uncertainty condition, where individuals have weaker positive fre-276

quency bias, larger groups were more accurate than smaller groups while retaining flexibility277

in their decision-making (i.e. swarm intelligence dominates). However, in the Moderate- and278

the High-uncertain conditions, larger groups performed better prior to environmental change but279

were vulnerable to getting stuck with an out-dated maladaptive option due to the larger estimated280

conformity exponent, thereby generating the conflict between swarm intelligence and maladap-281

tive herding.282

3 Discussion283

We investigated whether and how human social learning strategies regulate the conflict between284

swarm intelligence and herding behaviour using a collective learning-and-decision-making task285

combined with simulation and model fitting. We examined whether manipulating the reliability286

of asocial learning and group size would affect the use of social information, and thereby alter the287

collective decision dynamics, as suggested by our computational model simulation. Although a288

theoretical study has suggested that reliance on social learning and conformity bias would play a289

role in collective dynamics (Kandler and Laland, 2013), thus far no empirical studies have quan-290

titatively investigated the population-level consequences of these two different social learning291

processes. Our high-resolution, model-based behavioural analysis using a hierarchical Bayesian292
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statistics enabled us to identify individual-level patterns and variation of different learning pa-293

rameters and to explore their population-level outcomes. The results provide strong support for294

our hypothesis that the conflict between the swarm intelligence effect and maladaptive herding295

can be predicted with knowledge of human social learning strategies.296

Consistent with previous empirical findings (e.g., Morgan et al., 2012; Muthukrishna et al.,297

2014), adult human participants were increasingly likely to make a conformity-biased choice as298

the uncertainty of the task went up (i.e. as it became more difficult to determine the best option.299

Figure 3g-i). The fitted global mean values of the conformity exponent parameters were 3.0 and300

2.7 in the Moderate- and the High-uncertain conditions, respectively (Table 2), and these values301

were sufficiently high to cause larger populations to get stuck on a suboptimal option following302

environmental change (Figure 1b; Figure 4e, 4f). Conversely, in the Low-uncertain condition303

individuals exhibited relatively weak conformity (i.e. &̄ ≈ 1.65), allowing larger groups to escape304

the suboptimal option, and retain their swarm intelligence (Figure 1a; Figure 4d). Although305

the social learning weight was also found to be contingent upon the environmental factors, the306

estimated mean value was %̄! = 0.3 (Figure 3d-f; Figure S14). This implies a weaker social307

than asocial influence on decision-making as reported in several other experimental studies (e.g.308

Efferson et al., 2008; McElreath et al., 2005; Mesoudi, 2011; Toyokawa et al., 2017). Thanks to309

this relatively weak reliance of social learning, the kind of herding that would have blindly led a310

group to any option regardless of its quality (like the ‘symmetry breaking’ known in social insect311

collective foraging systems. Figure 2c,d; Camazine et al., 2001; Sumpter, 2010), did not occur.312

Research that explores the factors that can induce higher social learning weights in humans,313

in order to understand under which circumstances herd behaviour would dominate, would be314
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valuable.315

Individual differences in exploration might also play a crucial role in shaping collective de-316

cision dynamics. Although a majority of participants adopted a positive frequency-dependent317

copying strategy, some individuals exhibited negative frequency dependent or random decision-318

making strategy (Figure 3a-c). It is worth noting that the random choice strategy was associated319

with more exploration than the other strategies, because it led to an almost random choice at a320

rate %!, irrespective of the options’ quality. In addition, negative-frequency dependent copying321

individuals could also be highly exploratory. These individuals tended to avoid choosing an op-322

tion upon which the other people had converged and would explore the other two ‘unpopular’323

options. Interestingly, in the High-uncertain condition the mean social learning weights of the324

negative-frequency dependent copying individuals (%̄! ≈ 0.5) were larger than that of the other325

two strategies (%̄! ≈ 0.1, Figure S14), indicating that these individuals engaged in such majority-326

avoiding exploration relatively frequently. Such high exploratory tendencies would prevent in-327

dividuals from converging on a better option, leading to a diminishing of swarm intelligence in328

high-uncertainty circumstances (Figure 4f).329

Individual differences have received increasing attention in both collective behaviour and330

animal social learning studies (e.g. Jolles et al., 2018; Michelena et al., 2010; Planas-sitja et al.,331

2015), and across the human behavioural sciences (e.g. Gray et al., 2017; Mesoudi et al., 2016).332

Our finding that the effects of individual variation depend on uncertainty implies that human333

subjects’ use of social learning strategies is deployed plastically, and is not a fixed propensity (i.e.334

personality trait), that differs rigidly between individuals (Dingemanse et al., 2010; Toyokawa335

et al., 2017). Our approach of combining with individual-based simulation and experimentation336

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


could potentially prove a powerful tool with which to explore decision-making in other animals.337

Another methodological advantage of using computational models to study social learn-338

ing strategies is its explicitness of assumptions about the temporal dynamics of behaviour. It339

has been argued that just observing the final frequencies of learned behaviour does not provide340

enough information to determine what asocial and/or social learning processes might have been341

used because multiple learning-and-decision mechanisms are equally likely to produce the same342

population-level patterns (Barrett, 2018; Hoppitt and Laland, 2013). For example, very exploita-343

tive asocial reinforcement learners (i.e. exploitation parameter 1!,# is large and the social learning344

weight %!,# is nearly zero) and conformity-biased social learners (conformity exponent &! is large345

and %!,# is positive) would eventually converge on the same option, resulting in the same final346

behavioural steady state. However, how they explored the environment, as well as how they re-347

acted to the other individuals in the same group, are significantly different and they could produce348

qualitatively different collective temporal dynamics. A time-depth perspective is crucially im-349

portant in order to model the relationship between individual behavioural mechanisms and group350

behavioural dynamics (Biro et al., 2016).351

The Internet-based experimentation allowed us to conduct a real-time interactive behavioural352

task with larger subject pools than a conventional laboratory-based experiment. This enabled us353

not only to quantify the individual-level learning-and-decision processes (e.g. Ahn et al., 2014;354

Daw et al., 2006) but also to map these individual-level processes on to the larger-scale collec-355

tive behaviour (Raafat et al., 2009; Salganik et al., 2006; Sumpter, 2010). Although there are356

always questions about the validity of participants’ behaviour when deploying the web-based357

method, we believe that the computational modelling approach coupled with higher statistical358
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power due to the large sample size, compensates for any drawbacks. The fact that our learning359

model could approximate the participants’ decision trajectories effectively suggest that most of360

the participants engaged seriously with solving the task. An increasing body of evidence sup-361

ports the argument that web-based behavioural experiments are as reliable as results from the362

laboratory (e.g. Dandurand et al., 2008; Hergueux and Jacquemet, 2015).363

The diverse effects of social influence on the collective wisdom of a group has been drawing364

substantial attention (e.g. Becker et al., 2017; Jayles et al., 2017; Lorenz et al., 2011; Lorge et al.,365

1958; Muchnik et al., 2013). The bulk of this literature, including many jury models and elec-366

tion models (Hastie and Kameda, 2005; List, 2004), has focused primarily on the static estimation367

problem, where the ‘truth’ is fixed from the outset. However, in reality, there are many situations368

under which the state of the true value is changing over time so that monitoring and tracking369

the pattern of change is a crucial determinant of decision performance (Payzan-Lenestour and370

Bossaerts, 2011). In such temporally dynamic environments, decision-making and learning are371

coordinated to affect future behavioural outcomes recursively (Sutton and Barto, 1998). Our372

experimental task provides a simple vehicle for exploring collective intelligence in a dynamic373

situation, which encompasses this learning-and-decision-making feedback loop. Potentially, in-374

tegrating the wisdom of crowds with social learning and collective dynamics research will facil-375

itate the more tractable use of swarm intelligence in a temporary changing world.376
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4 Material and methods377

4.1 Computational learning-and-decision model378

We modelled a learning and decision process based on standard reinforcement-learning theory379

(Sutton and Barto, 1998). Following previous empirical studies of social learning strategies in380

humans (e.g. McElreath et al., 2005, 2008; Toyokawa et al., 2017), our model consists of two381

steps. First, an individual ! updates the estimated average reward associated with an option " at382

round #, namely Q-value (7!,#(")), according to the Rescorla-Wagner rule (Trimmer et al., 2012)383

as follows:384

7!,#+1(") = 7!,#(") + 0! (","!,#)
(
8!,#(") −7!,#(")

)
, (3)

where 0! (0 ≤ 0! ≤ 1) is a learning rate parameter of individual ! determining the weight given to385

new experience and 8!,#(") is the amount of monetary reward obtained from choosing the option386

" in round #. (","!,#) is the binary action-indicator function of individual !, given by387

(","!,#) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if "!,# = " or # = 1,

0, otherwise.
(4)

Therefore, 7!,#(") is updated only when the option " was chosen; when the option " was not388

chosen, 7!,#(") is not updated (i.e. 7!,#+1(") = 7!,#(")). Note that, only in the first round # = 1,389

all Q-values are updated by using the chosen option’s reward 8!,1("), so that the individual can390

set a naive ‘intuition’ about the magnitude of reward values she/he would expect to earn from a391

choice in the task; namely, 7!,#=2(1) = 7!,#=2(2) = 7!,#=2(3) = 0!8!,#=1("). In practical terms,392
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this prevents the model from being overly sensitive to the first experience. Before the first choice,393

individuals had no prior preference for either option (i.e. 7!,1(1) = 7!,1(2) = 7!,1(3) = 0).394

Second, a choice is made for an option " by individual ! at the choice probability $!,#(") that395

is determined by a weighted average of social and asocial influences:396

$!,#(") = %!,#9!,#(") + (1 − %!,#):!,#("), (5)

where %!,# is the social learning weight (0 ≤ %!,# ≤ 1), and 9!,#(") and :!,#(") are social and397

asocial influences on the choice probability, respectively (0 ≤ 9!,#(") ≤ 1 and 0 ≤ :!,#(") ≤ 1).398

Note that the sum of choice probabilities, the sum of social influences and the sum of asocial399

influences are all equal to 1; namely, ∑'∈()#!(*+ $!,#(') = 1, ∑' 9!,#(') = 1 and ∑
' :!,#(') = 1.400

As for the asocial influence :!,#, we assumed the so-called softmax (or logit choice) function,401

which is widely used in the reinforcement-learning literature:402

:!,#(") =
exp

(
1!,#7!,#(")

)

∑
'∈()#!(*+ exp

(
1!,#7!,#(')

) , (6)

where 1!,#, called inverse temperature, manipulates individual !’s sensitivity to the Q-values (in403

other words, controlling the proneness to explore). As 1!,# goes to zero, asocial influence approx-404

imates to a random choice (i.e. highly explorative). Conversely, if 1!,# → +∞, the asocial influ-405

ence leads to a deterministic choice in favour of the option with the highest Q-value (i.e. highly406

exploitative). For intermediate values of 1!,#, individual ! exhibits a balance between exploration407

and exploitation (Daw et al., 2006; Toyokawa et al., 2017). We allowed for the possibility that408

the balance between exploration-exploitation could change as the task proceeds. To depict such409

time dependence in exploration, we used the equation: 1!,# = 1∗!,0 + 2!#∕70. If the slope 2! is410
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positive (negative), asocial influence :!,# becomes more and more exploitative (explorative) as411

round # increases. For a model fitting purpose, the time-dependent term 2!# is scaled by the total412

round number 70.413

We modelled the social influence (i.e. the frequency-dependent copying) on the probability414

that individual ! chooses option " at round # as follows (McElreath et al., 2005, 2008; Aplin et al.,415

2017; Barrett et al., 2017):416

9!,#(") =

(
;#−1(") + 0.1

)&!

∑
'∈()#!(*+

(
;#−1(') + 0.1

)&!
, (7)

where ;#−1(") is a number of choices made by other individuals (excluding her/his own choice)417

for the option " in the preceding round # − 1 (# ≥ 2). &! is individual !’s conformity exponent,418

−∞ ≤ &! ≤ +∞. When this exponent is larger than zero, higher social influence is given to419

an option which was chosen by more individuals (i.e. positive frequency bias). When &! < 0,420

on the other hand, higher social influence is given to an option that fewer individuals chose in421

the preceding round # − 1 (i.e. negative frequency bias). To implement the negative frequency422

dependence, we added a small number 0.1 to ; so that an option chosen by no one (i.e. ;#−1 = 0)423

could provide the highest social influence when &! < 0. Note, there is no social influence when424

&! = 0 because in this case the ‘social influence’ favours an uniformly random choice, 9!,#(") =425

1∕(1 + 1 + 1) = 1∕3, independent of the social frequency distribution. Note also that, in the426

first round # = 1, we assumed that the choice is only determined by the asocial softmax function427

because there is no social information available.428

We considered that the social learning weight %!,# could change over time as assumed in the429

inverse temperature 1!,#. To let %!,# satisfy the constraint 0 ≤ %!,# ≤ 1, we used the following430
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sigmoidal function:431

%!,# =
1

1 + exp(−(%∗
!,0 + /!#∕70))

. (8)

If the slope /! is positive (negative), the social influence increases (decreases) over time. We432

set the social learning weight equal to zero when group size is one (i.e. when an individual433

participated in the task alone and/or when ∑
'∈()#!(*+ ;#−1(') = 0).434

We modelled both the inverse temperature 1!,# and the social learning weight %!,# as a time435

function since otherwise it would be challenging to distinguish different patterns of learning in436

this social learning task (Barrett, 2018). The parameter recovery test confirmed that we were437

able to differentiate such processes under these assumptions (Figure S8-S12). While we also438

considered the possibility of the conformity exponent being time-dependent (i.e. &!,# = &∗!,0 +439

<!#∕70), the parameter recovery test suggested that the individual slope parameter <! was not440

reliably recovered (Figure S20 and S21), and hence we concentrated our analysis on the time-441

independent &! model. We confirmed that instead using the alternative model where both social442

learning parameters were time-dependent (i.e. %!,# and &!,#) did not qualitatively change our results443

(Figure S25 and S26).444

In summary, the model has six free parameters that were estimated for each individual human445

participant; namely, 0!, 1∗!,0, 2!, %∗
!,0, /!, and &!. To fit the model, we used a hierarchical Bayesian446

method (HBM), estimating the global means (.0, .1∗0 , .2, .%∗0 , ./, and .&) and the global vari-447

ations (30, 31∗0 , 32, 3%∗0 , 3/, and 3&) for each of the three experimental conditions (i.e. the Low-,448

Moderate- and High-uncertain condition), which govern overall distributions of individual pa-449

rameter values. It has become recognised that the HBM can provide more robust and reliable450
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parameter estimation than conventional maximum likelihood point estimation in complex cogni-451

tive models (e.g. Ahn et al., 2014), a conclusion with which our parameter recovery test agreed452

(Figure S10-S12).453

4.2 Agent-based model simulation454

We ran a series of individual-based model simulations assuming that a group of individuals play455

our three-armed bandit task (under the Moderate-uncertainty condition) and that individuals be-456

have in accordance with the computational learning-and-decision model. We varied the group457

size (* ∈ {3, 10, 30}), the mean social learning weight (%̄ ∈ {0.01, 0.1, 0.2, 0.3, ..., 0.9}) and458

the mean conformity exponent (&̄ ∈ {0.5, 1, 3, 6}), running 10,000 replications for each of the459

possible parameter × group size combinations. As for the other parameter values (e.g. the aso-460

cial reinforcement learning parameters; 0, 1∗0 , 2), here we used the experimentally fitted global461

means (Table 2 and Table S1). Relaxation of this assumption (i.e. using a different set of aso-462

cial learning parameters) does not qualitatively change our story (e.g. Figure S4-S7). Note that463

each individual’s parameter values were randomly drawn from the distributions centred by the464

global mean parameter values fixed to each simulation run. Therefore, the actual composition465

of individual parameter values were different between individuals even within the same social466

group.467

4.3 Participants in the online experiment468

A total of 755 subjects (354 females, 377 males, 2 others and 22 unspecified; mean age (1 +.=.) =469

34.33 (10.9)) participated in our incetivised economic behavioural experiment (Figure S2). The470
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experimental sessions were conducted in December 2015 and in January 2016. We excluded471

subjects who disconnected to the online task before completing at least the first 30 rounds from472

our learning model fitting analysis, resulted in 699 subjects (573 subjects entered the group (i.e.473

* ≥ 2) condition and 126 entered the solitary (i.e. * = 1) condition). The task was advertised474

using Amazon’s Mechanical Turk (AMT; https://www.mturk.com; see Video S1; Video S2),475

so that the participants could enter anonymously through their own internet browser window.476

Upon connecting to the experimental game web page, the participants might be required to wait477

on other participants at the virtual ‘waiting room’ for up to 5 minutes or until the requisite number478

of participants arrived, whichever was sooner, before the task starts. The participants were payed479

25 cents for a show-up fee plus a waiting-bonus at a rate of 12 cents per minute (i.e. pro rata480

to 7.2 USD per hour) and a game bonus (">?* ± 1+.=. = 1.7 ± 0.79 USD) depending on their481

performance in the task. The total time, including net time spent in the waiting room, tended to482

be less than 10 minutes.483

4.4 The online three-armed bandit task484

The participants performed a three-armed bandit task for 70 rounds. Each round started with the485

choice stage at which three slot machines appeared on the screen (Figure S1; Video 1). Partic-486

ipants chose a slot by clicking the mouse pointer (or tapping it if they used a tablet computer).487

Participants had a maximum of 8 seconds to make their choices. If no choice was made during488

the choice stage, a ‘TIME OUT’ message appeared in the centre of the screen without a monetary489

reward (average number of missed rounds per participant was 0.18 out of 70 rounds). Partici-490

pants were able to know the rest of the choice time by seeing a ‘count-down bar’ shown at the491
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top of the experimental screen.492

Each option yielded monetary rewards randomly drawn from a normal probability distribu-493

tion unique to each slot, rounded up to the next integer, or truncated to zero if it would have been a494

negative value (Figure S3). The standard deviations of the probabilistic payoff distributions were495

identical for all slots and did not change during the task (the +.=. = 0.55; although it actually was496

slightly smaller than 0.55 due to the zero-truncation). The mean values of the probabilistic pay-497

off were different between the options. ‘Poor’, ‘good’ and ‘excellent’ slots generated the lowest,498

intermediate and the highest rewards on average, respectively. In the first 40 rounds, there were499

two poor and one good options. After the round 40th, one of the poor option abruptly changed to500

an excellent option (i.e. environmental change), and from the 41st round there were poor, good501

and excellent options.502

Once all the participants in the group made a choice (or had been time-outed), they proceeded503

to the feedback stage in which they could see their own payoff from the current choice for two504

seconds (‘0’ was shown if they had been time-outed), while they could not see others’ reward505

values. After this feedback stage, subjects proceeded to the next round’s choice stage. From the506

second round, a distribution of choices made by all participants in the group at the preceding507

round (i.e. the social frequency information) was shown below each slot.508

Before the task started, participants had read an illustrated instruction which told them that509

they would play 70 rounds of the task, that the payoff would be randomly generated per choice510

but associated with a probability distribution unique to each slot machine, i.e. the profitability511

of the slot might be different from each other, that the environment might change during the512

task so that the mean payoff from the slots might secretly change during the task, and that their513
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total payout were decided based on the sum of all earnings they achieved in the task. We also514

explicitly informed subjects that all participants in the same group played the identical task so515

that they could infer that the social information was informative. However, we did not specify516

either the true mean payoff values associated with each option, or when and how the mean payoff517

would actually change. After reading these instructions, participants proceeded to a ‘tutorial task’518

without any monetary reward and without the social frequency information, so as to become519

familiar with the task.520

After they completed the behavioural task or were excluded from the task due to a bad internet521

connection or due to opening another browser window during the task (see the ‘Reducing the risk522

of cheating’ section in the appendix), subjects proceeded to a brief questionnaire page asking523

about demographic information, which were skippable. Finally, the result screen was shown,524

informing the total monetary reward she/he earned as well as a confirmation code unique for each525

participant. Participants could get monetary reward through AMT by inputting the confirmation526

code into the form at the AMT’s task page.527

4.5 Manipulating the group size and uncertainty528

To manipulate the size of each group, we varied the capacity of the waiting room from 10 to 30.529

Because the task was being advertised on the Worker website at AMT for approximately 2 hours,530

some participants occasionally arrived after the earlier groups had already started. In that case531

the participant entered the newly opened waiting room which was open for the next 5 minutes.532

The number of participants arriving declined with time because newly posted alternative tasks533

were advertised on the top of the task list, which decreased our task’s visibility. This meant that534
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a later-starting session tended to begin before reaching maximum room capacity, resulting in the535

smaller group size. Therefore, the actual size differed between groups.536

To investigate the effect of the task uncertainty, we manipulated the closeness of each option’s537

mean payoff value, setting three different conditions in a between-group design. The three condi-538

tions were: Low-uncertainty condition (differences between mean payoffs were 1.264; 4 = 113),539

Moderate-uncertainty condition (differences between mean payoffs were 0.742; 4 = 132) and540

High-uncertainty condition (differences between mean payoffs were 0.3; 4 = 454). The mean541

payoff associated with the ‘excellent’ slot in all three conditions was fixed to 3.1 cents (Figure542

S3). These conditions were randomly assigned for each experimental session. However, we re-543

cruited more participants in the High-uncertainty condition compared to the other two because544

we expected that larger group sizes would be needed to generate the collective wisdom in noisier545

environments.546

4.6 Statistical analysis547

We used a hierarchical Bayesian method (HBM) to estimate the free parameters of our statis-548

tical models, including the computational learning-and-decision-making model. The HBM al-549

lows us to estimate individual differences, while ensures these individual variations are bounded550

by the group-level global parameters. The HBM was performed under Stan 2.16.2 (http:551

//mc-stan.org) in R 3.4.1 (https://www.r-project.org) software. The models contained552

at least 4 parallel chains and we confirmed convergence of the MCMC using both the Gelman-553

Rubin statistics and the effective sample sizes. Full details of the model fitting procedure and554

prior assumptions are shown in the appendix.555
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4.6.1 Parameter recovery test556

To check the validity of our model-fitting method, we conducted a ‘parameter recovery test’557

so as to examine how well our model fitting procedure had been able to reveal true individual558

parameter values. To do this, we generated synthetic data by running a simulation with the559

empirically fitted global parameter values, and then re-fitted the model with this synthetic data560

using the same procedure. The parameter recovery test showed that the all true global parameter561

values were fallen into the 95% Bayesian credible interval (Figure S8), and at least 93% of the562

true individual parameter values were correctly recovered (i.e. 96% of 0!, 93% of 1∗!,0, 95% of563

2!, 97% of %∗
!,0, 96% of /! and 97% of &! values were fallen into the 95% Bayesian CI. Figure564

S9-S12).565

4.6.2 Categorisation of individual learning strategies566

Based on the 50% CI of the individual conformity exponent parameter values &!, we divided567

the participants into the following three different social learning strategies. If her/his 50% CI568

of &! fell above zero (&@(A>8 > 0), below zero (&B))>8 < 0) or including zero (&@(A>8 ≤ 0 ≤569

&B))>8), she/he was categorised as a ‘positive frequency-dependent copier’, a ‘negative frequency-570

dependent copier’, or a ‘random choice individual’, respectively. We used the 50% Bayesian CI571

to conduct this categorisation instead of using the more conservative 95% CI because the latter572

would cause much higher rates of ‘false negatives’, by which an individual who applied either a573

positive frequency-dependent copying or a negative-frequency dependent copying strategy was574

falsely labelled as an asocial random choice individual (Figure S10d). Four hundred agents out575

of 572 (≈ 70%) were falsely categorised as a random choice learner in the recovery test when we576
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used the 95% criterion (Figure S10d). On the other hand, the 50% CI criterion seemed to be much577

better in terms of the false negative rate which was only 18.5% (i.e. 106 agents), although it might578

be slightly worse in terms of ‘false positives’: Thirty-seven agents (6.5%) were falsely labelled579

as either a positive frequency-dependent copier or a negative-frequency dependent copier by the580

50% CI, whereas the false positive rate of the 95% CI was only 0.2% (Figure S10e). To balance581

the risk of false positives and false negatives, we decided to use the 50% CI which seemed to582

have more strategy detecting power.583

4.6.3 Generalised linear mixed models584

To examine whether increasing group size and increasing task uncertainty affected individual585

use of the positive frequency-dependent copying strategy, we used a hierarchical Bayesian logis-586

tic regression model with a random effect of groups. The dependent valuable was whether the587

participant used the positive frequency-dependent copying (1) or not (0). The model includes588

fixed effects of group size (standardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age589

(standardised), gender (0: male, 1: female, NA: others or unspecified), and possible two-way590

interactions between these fixed effects.591

We also investigated the effects of both group size and the task’s uncertainty on the fitted592

values of the learning parameters. We used a hierarchical Bayesian gaussian regression model593

predicting the individual fitted parameter values. The model includes effects of group size (stan-594

dardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age (standardised), gender (0:595

male, 1: female, NA: others or unspecified), and two-way interactions between these fixed ef-596

fects. We assumed that the variance of the individual parameter values might be contingent upon597
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task uncertainty because we had found in the computational model-fitting result that the fitted598

global variance parameters (i.e. 3%∗0 , 3/ and 3&) were larger in more uncertain conditions (Table599

S1).600

4.6.4 Post-hoc model simulation for Figure 4d-f601

So as to evaluate how accurately our model can generate observed decision pattern in our task602

setting, we ran a series of individual-based model simulation using the fitted individual param-603

eter values (i.e. means of the individual posterior distributions) for each group size for each604

uncertainty condition. At the first step of the simulation, we assigned a set of fitted parameters605

of a randomly-chosen experimental subject from the same group size and the same uncertain606

condition to an simulated agent, until the number of agents reaches the simulated group size. We607

allowed duplicate choice of experimental subject in this parameter assignment. At the second608

step, we let this synthetic group of agents play the bandit task. We repeated these steps 5,000609

times for each group size, task uncertainty.610

4.7 Code and data availability611

The browser based online task was built by Node.js (https://nodejs.org/en/) and socket.io612

(https://socket.io), and the code are available on a GitHub repository (https://github.613

com/WataruToyokawa/MultiPlayerThreeArmedBanditGame). Analyses were conducted in614

R (https://www.r-project.org) and simulations of individual based models were conducted615

in Mathematica (https://www.wolfram.com), both of which including data are available on616

an online repository (URL will appear after acceptance from a journal).617
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1 Appendix 1 Supplementary experimental procedure1

1.1 Amazon Mechanical Turk2

The online task was advertised as a ‘HIT (Human Intelligence Task)’ entitled ‘Lottery Choice3

Experiment (about 15 mins + fun + bonus!)’ in Amazon Mechanical Turk (AMT). The HIT was4

only available for individuals whose ‘HIT Approval Rate’ was greater than or equal to 90% and5

who live in the US.6

On the advertisement page, we stressed that there could be extra payoff to subjects depending7

on their performance in the task; that stability of their Internet connection was necessary; and8

that they could participate in the task only once (Video S1).9

At the bottom of the advertisement page, an URL link to our experimental server would10

appear. The link was not shown until the participants decided to join the task. There were11

also text forms into which the participants could input their own confirmation code, which they12

would get by finishing the experimental task, and where they could add comments on the task.13

By clicking the submit button below they could complete the task, allowing the monetary reward14

to be paid through Amazon system.15

1.2 A written consent form and an instruction for the task16

On clicking the URL link shown at the bottom of the HIT advertisement page, participants pro-17

ceeded to a consent form that emphasised data anonymity and asked them not to interact with18

anyone during the task (Video S1). Scrolling this consent form page, participants proceeded to19

sign the form. After answering all the YES/NO questions and inputting the CAPTCHA, partici-20

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


pants could proceed to instructions.21

On the first page of the instructions participants were informed that the study was split into22

two parts: an interactive economic decision-making game and a short survey. On the second23

page of the instructions the details of the decision task were explained with illustrations.24

Full details and code of the task are available in GitHub (https://github.com/WataruToyokawa/25

MultiPlayerThreeArmedBanditGame).26

1.3 Reducing the risk of cheating27

To minimise the risk of multiple accesses from the same person, we introduced the restriction28

that a single ‘worker ID’ associated with participants’ AMT accounts, could participate only once29

in the experiment. We rejected access from the same IP address: If a participant’s IP address had30

already been stored in our database, the participant directly proceeded from the instruction page31

to the questionnaire page. In that case, 25 cents show-up fee was still paid because it was possible32

that different persons might use the same IP address.33

To minimise the risk of opening other browser windows during the task (for example, brows-34

ing other websites), we used ‘Page Visibility API’ (https://developer.mozilla.org/en-US/35

docs/Web/API/Page_Visibility_API) to track whether the experimental browser window36

was always active and not hidden by other browser windows or tabs for more than 1 second. If it37

was detected that the experimental window was in a hidden state, the participant was automati-38

cally redirected to the questionnaire page. In that case, 25 cents show-up fee plus a waiting-bonus39

(if applicable) and a game-bonus earned so far were paid. In the instruction, participants were40

warned not to open any other browser windows/tabs during the task and were informed that they41
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Figure S1. The three-armed bandit task. (a) Illustration of the user interface of the task. Participants could choose
an option by clicking one of the slot machines. The frequency distribution of choices made by participants in the
same group in the preceding round (i.e. the social frequency information) is shown by red numbers below each
option. The lengths of the red bars are proportional to the social frequency distributions. Participants could also see
their current total earnings (0.96 cents in this example) as well as the current round number (Round 2 in this
example). (b) Example of mean payoffs for each option in the task. The payoff received for a particular choice is
drawn from a Gaussian distribution with noise around each mean (with a fixed standard deviation: 1!.". = 0.55).
Note that the most profitable slot (the ‘optimal option’) was switched (i.e. environmental change) after 40 rounds:
One ‘poor’ slot (slot-2 in this example) changed to an ‘excellent’ one at the beginning of the 41st round, while the
other machines’ expected returns were not changed. The association between each option’s number and its payoff
was randomly assigned across experimental sessions.
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would be eliminated from the session if they did so.42

2 Appendix 2 Supplementary computational modelling procedure43

2.1 Hierarchical Bayesian parameter estimation44

We used hierarchical Bayesian method (HBM) to estimate the free parameters of our learning45

model. HBM allows us to estimate individual differences, while this individual variation is46

bounded by the group-level (i.e. hyper) parameters. To perform HBM, we used Stan 2.16.247

in R 3.4.1.48

In our model, there are 6 individual parameters; namely, !", #∗",0, $", %∗
",0, &", and '". Because49

the learning rate !" is bounded between 0 and 1, we estimated !∗" rather than !" itself (−∞ ≤50

!∗" ≤ +∞), which is given by the following sigmoidal function:51

!" =
1

1 + exp(−!∗" )
. (1)

We assumed the Student’s t distributions for individual random effects of each parameter so52

as to allow a few ‘outliers’, because the Student’s t distribution has a longer tail compared to a53

normal distribution. To do so, we used the following reparameterization for each parameter(.) ∈54

{!∗" , #∗",0, $", %
∗
",0, &", '"}:55

parameter(.)" = ((.),) + *(.),) ∗ parameter(.)_raw", (2)

where ((.),) is a global mean of the parameter(.) in the condition ) () ∈ {Low- , Moderate-,56

High-uncertainty condition}), and *(.),) is a global scale parameter of the individual variations in57
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condition !, which is multiplied by a standardised individual random variable parameter(.)_raw"58

drawn from59

parameter(.)_raw" ∼ Student_#(df = 4, location = 0, scale = 1
)
. (3)

As for the global parameters, we used a normal and a half-normal prior distributions for $(.),!60

and %(.),! , respectively:61

$(.),! ∼ Normal
(
&'() = 0, *+ = 5

)
, (4a)

%(.),! ∼ Normal+
(
&'() = 0, *+ = 3

)
. (4b)

In summary, there are 36 global free parameters (= 6 $s and 6 %s for 3 different conditions62

each). A total of 2000 iterations were performed after 1000 warm-up with thin = 5 for each of63

8 chains (= 2000 samples / 5 steps × 8 chains = a total of 3200 samples). We used the Gelman-64

Rubin statistics (as known as -̂) as well as the effective sample sizes (ESS) so as to check the65

convergence of the MCMC samples. All global parameter values had -̂ ≈ 1.00 ≤ 1.10 indicating66

that chains are converged to the target distributions. The ESS of model parameters were typically67

greater than 500 (out of 3200 total samples).The minimum ESS of global-parameters was 23368

(on %.,/01). Visual inspection of the parameters with smaller ESSs confirmed their convergence69

to target distributions. We confirmed that changing both df (i.e. broadness of the tail) of the70

Student’s t prior distributions and sd of the Normal prior distributions did not change our findings.71
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2.2 Parameter recovery test72

To assess the adequacy of the hierarchical Bayesian model-fitting method, we tested how well73

the HBM could recover ‘true’ parameter values that were used to simulate synthetic data. We74

simulated participants’ behaviour assuming that they behave according to the model with each75

parameter setting. We generated ‘true’ parameter values for each simulated agent based on the76

experimentally fit global parameters (Table 1 in the main text). We then simulated synthetic77

behavioural data and recovered their parameter values using the HBM described above.78

2.3 Time-dependent conformity exponent !",# model79

We also considered the possibility of the conformity exponent being time-dependent (i.e. !",# =80

!∗",0 + $"#∕70). If the slope $" is positive (negative), the frequency-dependent bias increases (de-81

creases) over time. In this model, there are 7 individual parameters; namely, %", &∗",0, '", (∗
",0, )",82

!∗",0 and $". We fitted this model to the experimental data using the HBM descried above.83
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2.4 Other figures related to the methods84
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Figure S2. Histograms of the participants’ age and gender. The mean age is indicated by a blue dashed line. Note
that these data were inputted by participants themselves on the questionnaire forms.

Figure S3. The distributions of payoffs generated by each of the slot machines for each condition. The poor, good
and excellent slot are indicated by grey, red and blue, respectively. The payoff was truncated to zero if it would have
been a negative value.
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3 Appendix 3 Supplementary results85

3.1 Individual-based simulation using other parameter sets86

Individual-based model simulations using a different set of asocial learning parameters suggest87

that our main findings from the simulation (Figure 1, 2 in the main text) are broadly robust in a88

range of parameter combinations (Figure S4, S5, S6, S7).89
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Figure S4. The same figure as Figure 1 in the main text, except for the asocial learning parameter settings (i.e.
!" = 0.7, !#∗0

= 2, !$ = 4, %" = 1, %#∗0 = 1, %$ = 1, %& = 1, and %' = 1).
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Figure S5. The same figure as Figure 2 in the main text, except for the asocial learning parameter settings.
Parameter values were the same in Figure S4.
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Figure S6. The same figure as Figure 1 in the main text, except for the asocial learning parameter settings (i.e.
!" = 0.8, !#∗0

= 0.5, !$ = 3, %" = 1, %#∗0 = 2, %$ = 2, %& = 2, and %' = 2).
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Figure S7. The same figure as Figure 2 in the main text, except for the asocial learning parameter settings.
Parameter values were the same in Figure S6.

3.2 Parameter recovery test90
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Figure S8. The parameter recovery performance on the global parameters. The black points are the true values and
the red triangles are the mean posterior values (i.e. recovered values). The 95% Bayesian credible intervals are
shown by the error bars.
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Figure S9. The parameter recovery performance on the individual parameters. The x-axis is the true value and the
y-axis is the fitted (i.e. the mean posterior) value. The differences between the true value and the fitted value are
shown in different colours. The correlation coefficients between the true value and the fitted value are shown.
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Figure S10. The parameter recovery performance on the individual parameters. (a,b,c,f,g) The red points are the
true individual parameter values, the blue points are the mean posterior fitted values and the black lines are the 95%
Bayesian CI. (d) The categorisation of three different strategies based on the 95% Bayesian CI and (e) on the 50%
Bayesian CI of individual !" values. The red coloured individuals are categorised as the positive
frequency-dependent copiers (positive frequency-biased choice), the blue coloured individuals are categorised as the
negative frequency-dependent copiers (negative frequency-biased choice) and the grey individual are categorised as
the asocial random copiers (nearly random decision-making). The black points are the true !" values. The horizontal
lines indicate the categorisation threshold where !" = 0.
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Figure S11. The temporal evolution of (a) the true individual inverse temperature !",# parameters and (b) the
recovered !",# value. The magnitude of individual slope parameter $" are shown in different colours.
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Figure S12. The temporal evolution of (a) the true individual social learning weight %",# parameters and (b) the
recovered %",# value. The magnitude of individual conformity exponent &" are shown in different colours.
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3.3 Model fitting to our experimental data91
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Figure S13. Individual inverse temperature !",# fit for each experimental participant.
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Figure S14. Individual social learning weights !",# fit for each experimental participant.
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Figure S15. (a) Estimated learning rate !" and (b) estimated mean inverse temperature $̄" = (∑% $",%)∕70 for each
individual shown for each different learning strategy (red-triangle: positive frequency-biased choice, blue-diamond:
negative frequency-biased choice; grey open circle: nearly random decision-making). Predictions from the fitted
generalised mixed models are shown by dashed lines (the shaded areas indicate 50% Bayesian credible intervals).
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Figure S16. (a) Estimated social learning weight and (b) estimated conformity exponent for each individual shown
for each different learning strategy (red-triangle: positive frequency-biased choice, blue-diamond: negative
frequency-biased choice; grey open circle: nearly random decision-making). The dashed lines show regressions of
the fitted generalised mixed models for only the positive frequency-biased choice individuals (the shaded areas
indicate 50% Bayesian credible intervals).
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Figure S17. Model fitting for the three different task’s uncertain conditions (the Low-, Moderate- and
High-uncertainty) and the different group size. Frequencies of four different learning strategies are shown in
different styles (red-triangle: strong positive frequency-dependent learning !" > 1, orange-triangle: weak positive
frequency-dependent learning 0 < !" ≤ 1, blue-circle: negative frequency-dependent learning; grey-circle: nearly
random choice strategy).
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indicate a threshold at which $",% does not change with time (i.e. #" = 0).
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3.4 Results of a time-dependent conformity model (!",#)92

3.4.1 Parameter recovery test93

The parameter recovery test showed that the all true global parameter values were fallen into the94

95% Bayesian credible interval (Figure S19). Correlations between individual true parameters95

and recovered parameters were all positive, while the correlation coefficients of both !∗",0 and $"96

were lower than other parameters (Figure S20). At least 89% of the true individual parameter97

values were correctly recovered (i.e. 97% of %", 96% of &∗",0, 97% of '", 96% of (∗
",0, 94% of )",98

96% of !∗",0 and 89% of $" were fallen into the 95% Bayesian CI; Figure S21).99

Figure S22, S23 and S24 show that overall patterns of temporal dynamics of these parameters100

were well recovered.101

3.4.2 Fitting to our experimental data102

In order to compared the findings from the time-independent !" model (see Results section in103

the main text), we again categorized the participants as deploying three different learning strate-104

gies based on their mean fitted conformity exponent values; namely, the ‘positive frequency-105

dependent copying’ strategy (!̄" ≫ 0), the ‘negative-frequency dependent copying’ strategy106

(!̄" ≪ 0) and the ‘random choice’ strategy (!̄" ≈ 0). Note, the conformity exponent here is107

averaged over time: !̄" = (∑# !",#)∕70. Figure S25 suggests that the patterns were consistent with108

Figure 3 in the main text, and hence our conclusion was not changed.109

Individual frequency dependence changed over time (Figure S26). The conformity exponents110

generally increased with experimental round, while some individuals in the High-uncertain con-111
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Figure S19. The parameter recovery performance on the global parameters. The black points are the true values and
the ref triangles are the mean posterior values (i.e. recovered values). The 95% Bayesian credible intervals are
shown by the error bars.
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Figure S20. The parameter recovery performance on the individual parameters. The x-axis is the true value and the
y-axis is the fitted (i.e. the mean posterior) value. The differences between the true value and the fitted value are
shown in different colour. The correlation coefficients between the true value and the fitted value are shown.
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Figure S21. The parameter recovery performance on the individual parameters. (a,b,c,e,g) The red points are the
trues individual parameter values, the blue points are the mean posterior fitted values and the black lines are the 95%
Bayesian CI. (d) The categorisation of three different strategies based on the 95% Bayesian CI and (e) on the 50%
Bayesian CI of individual !" values. The red coloured individuals are categorised as the positive
frequency-dependent copiers (positive frequency-biased choice), the blue coloured individuals are categorised as the
negative frequency-dependent copiers (negative frequency-biased choice) and the grey individual are categorised as
the asocial random copiers (nearly random decision-making). The black points are the true !" values. The horizontal
lines indicate the categorisation threshold where !" = 0.
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Figure S22. The temporal evolution of (a) the true individual inverse temperature !",# parameters and (b) the
recovered !",# value. The magnitude of individual slope parameter $" are shown in different colours.
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Figure S23. The temporal evolution of (a) the true individual social learning weight %",# parameters and (b) the
recovered %",# value. The magnitude of individual conformity exponent &" are shown in different colours.
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Figure S24. The temporal evolution of (a) the true and (b) the recovered individual conformity exponent !",# value.
The magnitude of individual social learning weights $",# are shown in different colours.

ditions decreased rather than accelerated their frequency dependence over time. However, note112

that the fitting of slope parameter %" was relatively unreliable (i.e. only 89% of individual param-113

eters were recovered correctly). Extensive variation in both the social learning weigh $",# and114

the conformity exponent !",# found in high-uncertain circumstances are consistent with the main115

findings (Figure 3g-i, Figure 4a-c).116
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Figure S25. Model fitting for the three different task uncertainty conditions (the Low-, Moderate- and
High-uncertainty) and the different group size. Three different learning strategies are shown in different styles
(red-triangle: positive frequency-dependent learning, blue-circle: negative frequency-dependent learning;
grey-circle: nearly random choice strategy). Note, we averaged individual conformity exponent !",# over time to
categorise individual strategies. (Top row) Frequencies of three different learning strategies. (Middle row)
Estimated social learning weight, and (Bottom row) estimated mean conformity exponent, for each individual shown
for each learning strategy. The 50% Bayesian CIs of the fitted GLMMs are shown by dashed lines and shaded areas.
The horizontal lines in (g-i) show a region −1 < !̄" < 1.
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Figure S26. Change in fitted values (i.e. median of the Bayesian posterior distribution) of (Top row) the conformity
exponent !",# and (Middle row) the social learning weight $",# with time for each individual, for each level of task
uncertainty. Thick dashed lines are the median values across the subjects for each uncertainty condition. (Bottom
row) Change in average decision accuracy of the individual-based post-hoc model simulations using the
experimentally fit parameter values of the alternative model (main panels). The inner panels show the average
decision accuracies of the experimental participants. Each line indicates different group-size categories (red-solid:
large groups, orange-halfdashed: small groups, grey-dashed: lone individuals). All individual performances were
averaged within the same size category. The large or small groups were categorised using the median sizes for each
experimental condition, i.e. small groups were: % ≤ 9, % ≤ 6 and % ≤ 11 for the Low-, Moderate- and
High-uncertain conditions, respectively.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.5 Statistical analyses for the experimental data117

Table S2

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting the probability to
become a positive frequency-dependent copier. The sized effects whose CI are either below or above zero (i.e.
significant) are shown in bold face.

Effect 2.5% 50% 97.5% Effective sample size Rhat

!1 (intercept) 1.05 1.71 2.50 667 1.01
!2 (group size) -0.94 -0.05 0.87 2744 1.00

!3 (uncertainty) -1.88 -1.02 -0.25 1548 1.00
!4 (age) -0.12 0.43 1.10 925 1.01

!5 (gender) -1.06 -0.13 0.84 3154 1.00
!6 (size*uncrtn) -0.72 0.24 1.19 2880 1.00

!7 (size*age) -0.16 0.08 0.32 1869 1.01
!8 (size*gndr) -0.37 0.03 0.44 4875 1.00

!9 (uncrtn*age) -1.46 -0.73 -0.15 3167 1.00
!10 (uncrtn*gndr) -1.10 0.02 1.09 3661 1.00

!11 (age*gndr) -0.39 -0.02 0.37 2712 1.00
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Table S3

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting individual parameter
values of the social learning weight "̄#. The sized effects whose CI are either below or above zero (i.e. significant)
are shown in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

$1 (intercept) -2.32 -2.09 -1.84 4959 1.00
$2 (group size) 0.15 0.52 0.93 5230 1.00

$3 (uncertainty) -0.98 -0.59 -0.22 4784 1.00
$4 (age) -0.36 -0.18 -0.02 2126 1.00

$5 (gender) -0.45 -0.16 0.13 4513 1.00
$6 (size*uncrtn) -0.57 -0.10 0.34 5440 1.00

$7 (size*age) -0.19 -0.02 0.14 5359 1.00
$8 (size*gndr) -0.32 -0.01 0.30 4127 1.00

$9 (uncrtn*age) -0.17 0.07 0.32 4088 1.00
$10 (uncrtn*gndr) -0.37 0.12 0.62 4205 1.00

$11 (age*gndr) -0.09 0.12 0.35 4963 1.00
% (uncertainty effct on variance) 1.11 1.38 1.62 3067 1.00
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Table S4

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting the social learning
weight "̄# for the positive frequency-biased choice individuals only. The sized effects whose CI are either below or
above zero (i.e. significant) are shown in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

$1 (intercept) -2.42 -2.17 -1.91 5601 1.00
$2 (group size) 0.09 0.47 0.90 4509 1.00
$3 (uncertainty) -0.75 -0.28 0.17 6011 1.00

$4 (age) -0.33 -0.14 0.04 5796 1.00
$5 (gender) -0.36 -0.03 0.30 6075 1.00

$6 (size*uncrtn) -0.55 -0.01 0.49 5410 1.00
$7 (size*age) -0.27 -0.06 0.14 6022 1.00
$8 (size*gndr) -0.42 -0.05 0.33 6174 1.00

$9 (uncrtn*age) -0.36 -0.04 0.29 6483 1.00
$10 (uncrtn*gndr) -0.75 -0.13 0.49 4746 1.00

$11 (age*gndr) -0.16 0.10 0.36 5927 1.00
% (uncertainty effct on variance) 1.14 1.50 1.80 5729 1.00
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Table S5

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting individual parameter
values of the conformity exponent !". The sized effects whose CI are either below or above zero (i.e. significant) are
shown in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

#1 (intercept) 1.30 1.64 2.01 2571 1.00
#2 (group size) -0.69 -0.17 0.35 5443 1.00

#3 (uncertainty) 0.38 0.90 1.41 2602 1.00
#4 (age) -0.19 0.07 0.33 2967 1.00

#5 (gender) -0.34 0.10 0.54 3557 1.00
#6 (size*uncrtn) -0.40 0.19 0.79 5317 1.00

#7 (size*age) -0.27 -0.06 0.14 5172 1.00
#8 (size*gndr) -0.24 0.13 0.50 5167 1.00

#9 (uncrtn*age) -0.59 -0.26 0.07 3436 1.00
#10 (uncrtn*gndr) -0.86 -0.21 0.45 3509 1.00

#11 (age*gndr) -0.30 -0.02 0.27 4885 1.00
$ (uncertainty effct on variance) 1.07 1.31 1.54 4178 1.00
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Table S6

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting the conformity exponent
!" for the positive frequency-biased choice individuals only. The sized effects whose CI are either below or above
zero (i.e. significant) are shown in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

#1 (intercept) 1.74 2.00 2.29 4922 1.00
#2 (group size) -0.40 0.03 0.42 5695 1.00

#3 (uncertainty) 1.20 1.64 1.04 4381 1.00
#4 (age) -0.32 -0.13 0.05 6046 1.00

#5 (gender) -0.40 -0.07 0.26 5988 1.00
#6 (size*uncrtn) -0.47 0.00 0.50 4458 1.00

#7 (size*age) -0.24 -0.07 0.11 5716 1.00
#8 (size*gndr) -0.12 0.19 0.51 5349 1.00

#9 (uncrtn*age) -0.15 0.10 0.37 6424 1.00
#10 (uncrtn*gndr) -0.53 -0.01 0.51 5710 1.00

#11 (age*gndr) -0.14 0.09 0.33 6545 1.00
$ (uncertainty effct on variance) 0.71 0.91 1.10 6545 1.00
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Table S7

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting individual parameter
values of the learning rate !". The sized effects whose CI are either below or above zero (i.e. significant) are shown
in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

#1 (intercept) 0.12 0.67 1.23 4887 1.00
#2 (group size) -0.49 0.24 0.96 5413 1.00
#3 (uncertainty) -0.93 -0.27 0.38 4827 1.00

#4 (age) -0.48 -0.03 0.40 5794 1.00
#5 (gender) -0.40 0.38 1.17 4908 1.00

#6 (size*uncrtn) -1.24 -0.48 0.29 5423 1.00
#7 (size*age) -0.25 -0.04 0.17 6157 1.00
#8 (size*gndr) -0.25 0.15 0.54 6305 1.00

#9 (uncrtn*age) -0.09 0.38 0.85 6085 1.00
#10 (uncrtn*gndr) -1.21 -0.29 0.65 4699 1.00

#11 (age*gndr) -0.35 -0.01 0.34 5824 1.00
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Table S8

Mean and the 95% Bayesian credible intervals of the fixed effects in the GLMM predicting individual parameter
values of the average inverse temperature "̄#. The sized effects whose CI are either below or above zero (i.e.
significant) are shown in bold face.

Effect 2.5% 50% 97.5% nEff Rhat

"1 (intercept) 3.09 3.47 3.85 5906 1.00
"2 (group size) -0.48 0.03 0.54 5707 1.00
"3 (uncertainty) -0.87 -0.43 0.02 5863 1.00

"4 (age) -0.49 -0.21 0.08 4498 1.00
"5 (gender) -0.35 0.16 0.67 5845 1.00

"6 (size*uncrtn) -0.73 -0.17 0.37 5503 1.00
"7 (size*age) -0.20 -0.06 0.08 6454 1.00

"8 (size*gndr) 0.02 0.26 0.50 6492 1.00
"9 (uncrtn*age) 0.01 0.33 0.63 6167 1.00
"10 (uncrtn*gndr) -1.19 -0.58 0.02 5718 1.00

"11 (age*gndr) -0.33 -0.10 0.12 5558 1.00
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