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Abstract 14 

Synthetic microbial communities are attractive for applied biotechnology and healthcare 15 

applications through their ability to efficiently partition complex metabolic functions. By pairing 16 

auxotrophic mutants in co-culture, nascent E. coli communities can be established where strain 17 

pairs are metabolically coupled. Intuitive synthetic communities have been demonstrated, but 18 

the full space of cross-feeding metabolites has yet to be explored.  A novel algorithm, OptAux, 19 

was constructed to design 66 multi-knockout E. coli auxotrophic strains that require significant 20 

metabolite cross-feeding when paired in co-culture. Three OptAux predicted auxotrophic strains 21 
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were co-cultured with an L-histidine auxotroph and validated via adaptive laboratory evolution 22 

(ALE). Time-course sequencing revealed the genetic changes employed by each strain to 23 

achieve higher community fitness and provided insights on mechanisms for sharing and 24 

adapting to the syntrophic niche. A community model of metabolism and gene expression was 25 

utilized to predict the relative community composition and fundamental characteristics of the 26 

evolved communities. This work presents a novel computational method to elucidate metabolic 27 

changes that empower community formation and thus guide the optimization of co-cultures for a 28 

desired application. 29 

 30 

Author Summary 31 

Understanding the fundamental characteristics of microbial communities has far reaching 32 

implications for human health and applied biotechnology. Currently, many basic characteristics 33 

underlying the establishment of cooperative growth in bacterial communities have not been 34 

studied in detail. The presented work sought to elucidate the properties of nascent community 35 

formation by first employing a novel computational method to generate a comprehensive 36 

catalog of E. coli mutants that require a high amount of metabolic cooperation to grow in 37 

community. Three mutants from this catalog were co-cultured with a proven auxotrophic partner 38 

in vivo and evolved via adaptive laboratory evolution. In order to successfully grow, each strain 39 

in co-culture had to evolve under a pressure to secrete a metabolite required by the partner 40 

strain, as well as evolve to effectively utilize the required metabolite produced by its partner. The 41 

genomes of the successfully growing communities were sequenced, thus providing new insights 42 

into the genetic changes accompanying the formation and optimization of the new communities. 43 

A computational model was further developed to predict how fundamental protein constraints on 44 
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cell metabolism could impact the structure of the community, such as the relative abundances of 45 

each community member.  46 

 47 

Introduction 48 

Microbial communities are capable of accomplishing many intricate biological feats, due to their 49 

ability to partition metabolic functions among community members. For this reason, studying 50 

their characteristics has far reaching implications. For example, these microbial consortia have 51 

the attractive potential to efficiently accomplish complex tasks that a single engineered microbial 52 

strain likely could not. Past applications include applying communities to aid in waste 53 

decomposition, fuel cell development, and the creation of biosensors [1]. In the field of 54 

metabolic engineering, microbial communities have now been engineered that are capable of 55 

enhancing product yield or improving process stability by partitioning catalytic functions among 56 

community members [2–8]. Beyond biotechnology applications, studying microbial communities 57 

also has important health implications. This includes providing a better understanding of the gut 58 

microbiome and how it is affected by diet and other factors [9,10]. For example, metabolic 59 

cross-feeding in communities has been shown to have a role in modulating the efficacy of 60 

antibiotics treatments [11]. Developing new computational and experimental methods to 61 

understand the dynamics of microbial community formation and the inherent characteristics of 62 

established communities could therefore have far reaching implications. 63 

 64 

Previous efforts have been made to construct synthetic communities and study their interactions 65 

and new metabolic capabilities. One such study encouraged synthetic symbiosis between E. 66 

coli strains by co-culturing an L-isoleucine auxotroph with a L-leucine auxotroph [12,13]. In 67 

doing so, it was found that the community was able to grow in glucose minimal media without 68 
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amino acid supplementation due to amino acid cross-feeding between the mutant pairs. Mee et 69 

al. expanded upon this work by studying all possible binary pairs of 14 amino acid auxotrophs 70 

and developing methods to predict the results of combining the auxotrophic strains into 3-71 

member, 13-member, and 14-member communities [14]. On a larger scale, Wintermute et al. 72 

co-cultured 46 conditionally lethal Keio collection E. coli single knockouts [15]. This effectively 73 

demonstrated that synthetic mutualism was possible in strains beyond amino acid auxotrophs 74 

[16]. These studies effectively demonstrate that new communities can be established in a 75 

relatively short time (<4 days) by pairing auxotrophic strains.  76 

 77 

In addition to demonstrating that synthetic communities can be established, nascent auxotrophic 78 

communities can be optimized by adaptive laboratory evolution (ALE)  [17]. Expanding upon the 79 

experimental work done in Mee et al. [14], Zhang et al. performed ALE on one of the co-culture 80 

pairs: a L-lysine auxotroph paired with a L-leucine auxotroph [17].  Separate co-cultures evolved 81 

to growth rates 3-fold greater than the parent, which was accomplished by forming different 82 

auxotroph strain abundances within the community. These results may have implications on 83 

both the set of metabolites being cross-fed as well as the magnitude of metabolite 84 

secretion/uptake. The increase in the evolved community growth rate is encouraging from a 85 

metabolic engineering point of view because it suggests that these binary systems can be 86 

optimized via ALE. Presumably, as an effect of an evolution, the rate of secretion/uptake of the 87 

cross-fed metabolite must increase as well to achieve higher community growth. Co-culture 88 

pairs composed of different microbial species have also been evolved with similar results [18]. 89 

Community optimization by ALE, however, has not been performed on co-cultures designed to 90 

require higher fluxes of metabolic cross-feeding than the direct biomass requirement of a 91 

particular amino acid, and the genetic mechanisms that lead to improved community fitness 92 

have not been assessed. 93 

 94 
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Established computational methods to study microbial communities often make use of genome-95 

scale metabolic models (M-models) [19,20]. Computational models have been created and 96 

simulated using multicompartmental flux balance analysis (FBA) [21–23], dynamic flux balance 97 

analysis (dFBA) [17,24], dFBA integrated with spatial diffusion of extracellular metabolites 98 

(COMETS) [25], and FBA with game theory [26]. Novel algorithms have also been developed to 99 

describe community dynamics, such as OptCom [27], which employs a bilevel linear 100 

programming problem by maximizing community biomass as well as maximizing the inner 101 

biomass objectives of each individual species [28]. Additional ecological models have been 102 

formulated to describe community dynamics [29–31]. Despite the advances made by these 103 

approaches, the role of efficient proteome allocations in driving community dynamics has not 104 

been studied in detail.  105 

 106 

Here, we demonstrate that nascent E. coli communities can be constructed from co-cultures of 107 

auxotroph mutants requiring high fluxes of metabolic cross-feeding. We first introduce the 108 

OptAux algorithm for designing auxotrophic strains that require high amounts of supplemented 109 

metabolites in order to grow (Figure 1A). The OptAux solutions provided a catalog of starting 110 

strains from which four auxotrophic mutants were selected to co-culture and optimized via 111 

adaptive laboratory evolution (Figure 1B). In optimizing the growth of the nascent co-culture 112 

communities, significant metabolic rewiring had to occur to allow the strains to cross-feed the 113 

high levels of the necessary metabolites. The genetic changes accompanying this rewiring was 114 

assessed by analyzing the genetic changes (mutations and observed genome region 115 

duplications). This analysis thus enabled predictions of primary metabolite cross-feeding and 116 

community composition. 117 

 118 

 119 
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To study the characteristics of designed and optimized communities, a community model of 120 

metabolism and expression (ME-model) was constructed [32–34] (Figure 1C). Such a modeling 121 

approach was necessary since previous methods of genome-scale community modeling have 122 

focused on studying the metabolic flux throughout community members (using M-models) 123 

without consideration of the enzymatic cost of proteins and pathways that drive these metabolic 124 

processes. As proteome optimization via niche partitioning and cell specialization is a driving 125 

factor of community formation in ecological systems [35–38], it is essential to consider 126 

proteomic constraints when studying bacterial communities. To this end, community ME-models 127 

were successfully utilized to interpret the nascent communities and were used to suggest 128 

approaches to optimize the evolved co-cultures and potentially modulate metabolic cross-129 

feeding.   130 

 131 

 132 

Figure 1. Study Overview A: An algorithm was developed to de novo predict reaction deletions that will produce E. 133 

coli strains auxotrophic for a metabolite of interest. B: From the set of auxotrophic strain designs, pairs were selected 134 

to determine whether they were capable of forming a nascent syntrophic cross-feeding community. C: The chosen 135 
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co-cultures were both evolved via adaptive laboratory evolution and modeled using a genome-scale model of E. coli 136 

metabolism and expression (ME-model) [19,20]. The model predictions of optimal strain abundances and metabolite 137 

cross-feeding were verified using resequencing data from the co-culture wet-lab experiments. 138 

 139 

Results 140 

OptAux Development and Simulation 141 

The OptAux algorithm identifies strain designs that are predicted to be auxotrophic for a 142 

metabolite of interest. The algorithm was built by modifying an existing concept introduced for 143 

the design of metabolite producing strains [39] which was later additionally implemented in a 144 

mixed-integer linear programming (MILP) algorithm (RobustKnock [40]). Three key 145 

modifications were made to derive OptAux from RobustKnock. First, the inner growth rate 146 

optimization was replaced so that OptAux can be run at a predetermined minimum growth rate 147 

bound (set_biomass constraint Figure 2B). This ensures that OptAux designs are auxotrophic 148 

at all growth rates (Figure 2A). Second, the objective coefficient was reversed in order to allow 149 

the algorithm to optimize for metabolite uptake as opposed to secretion. Third, a constraint was 150 

added to allow the model to uptake any additional metabolite that can be consumed by the 151 

model (trace_metabolite_threshold constraint Figure 2B). For simulations in which this 152 

threshold value was set above zero, all possible exchange metabolites included in the model 153 

had their lower bound set to the trace_metabolite_threshold value to compete with a target 154 

metabolite uptake, allowing the “specificity” of the knockout solution to be adjusted. Specificity, 155 

in this case, refers to whether the mutant strain will be auxotrophic for a given metabolite in the 156 

presence of other metabolites. High specificity solutions are auxotrophic for only one metabolite, 157 

regardless of whether other metabolites are present. With this implementation, OptAux identified 158 
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strain designs that require the targeted metabolite at all growth rates with varying metabolite 159 

specificity and uptake requirements.  160 

 161 

 162 

Figure 2.  OptAux Design A: OptAux was developed to maximize the minimum uptake of a target metabolite. Unlike 163 

algorithms such as OptKnock with tilting [21] and RobustKnock [22], this optimization occurs at a predetermined 164 

growth rate as opposed to using an inner optimization of growth rate (depicted with the red circles). This is to ensure 165 

that all OptAux designs will be auxotrophic for the target metabolite at all growth rates, particularly low growth rates. 166 

The dotted lines show the required uptake for the metabolite with no genetic interventions. In this case, uptake of the 167 

target metabolite is not required at any growth rate. The solid black lines depict the maximum and minimum uptake 168 

required for a particular metabolite of an OptAux designed strain.  B: The OptAux optimization problem. For further 169 

description of the algorithm and underlying logic see Methods. 170 

 171 

 172 

OptAux was utilized on the iJO1366 M-model of E. coli K-12 MG1655 [41] to comprehensively 173 

examine auxotrophic strain designs. OptAux was run with 1, 2, and 3 reaction knockouts for 285 174 

metabolite uptake reactions using 4 different trace metabolite thresholds (S1 Data). Of the given 175 

solutions, 228 knockout sets were found to be capable of producing 66 unique strain 176 

auxotrophies. This set of strain designs presents an expansive look into the auxotrophies 177 
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possible in the E. coli K-12 MG1655 metabolic network, which could be used to understand the 178 

possible niches of E. coli could inhabit in natural or synthetic communities [42]. 179 

OptAux Solution Characteristics 180 

The OptAux strain designs were broken into two major categories based on the number of 181 

metabolites which, when supplemented, restore cell growth: 1) Essential Biomass 182 

Component Elimination Designs (EBC, Figure 3B) and 2) Major Subsystem Elimination 183 

Designs (MSE, Figure 3A). The EBC designs are characterized as auxotrophic strains with 184 

high metabolite specificity. They were broken into two subcategories: specific auxotrophs (only 185 

one metabolite can restore growth, Figure S2) which consists of 104 (23 unique) knockout sets, 186 

and nonspecific auxotrophs (defined as strains in which less than 5 metabolites can restore 187 

growth, Figure S2) which consists of 55 (20 unique) knockout sets. The specific and nonspecific 188 

EBC designs were preferred at high trace metabolite threshold values.  There is significant 189 

overlap between OptAux predicted EBC designs, and known E. coli auxotrophic mutants 190 

[14,43–54]. A summary of experimentally characterized OptAux designs are presented in Table 191 

S1. Of note, there are five designs that were not found to be previously characterized in the 192 

scientific literature, and these present novel E. coli auxotrophs. 193 

 194 

MSE designs were analyzed as novel auxotrophic strain designs. These were defined as strains 195 

in which five or more metabolites could restore growth and consisted of the remaining 69 (23 196 

unique) sets of knockouts. At low trace metabolite thresholds, MSE designs were the preferred 197 

OptAux solution. This knockout strategy was often accomplished through knockouts to block 198 

metabolic entry points into anabolic subsystems. One such example of an MSE design is given 199 

in Figure 3B. Here a three reaction knockout design of the FUM, PPC, and MALS reactions can 200 

be rescued by one of the four compounds in the figure (citrate, L-malate, 2-oxoglutarate, or L-201 

asparagine) at an average required uptake flux of 0.4 mmol gDW-1 hr-1 to grow at a rate of 0.1 202 
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hr-1.  These rates are higher than the fluxes needed to rescue the EBC design in Figure 3A, 203 

which requires uptake of 0.024 mmol gDW-1 hr-1 on average to grow at a rate of 0.1 hr-1. Another 204 

design was a glutamate synthase (GLUSy) and glutamate dehydrogenase (GLUDy) double 205 

knockout which effectively blocks the entry of nitrogen into amino acid biosynthesis by 206 

preventing its incorporation into 2-oxoglutarate to produce L-glutamate. This renders the cell 207 

unable to produce all amino acids, nucleotides, and several cofactors. In order to grow at a rate 208 

of 0.1 hr-1, this strain is computationally predicted to require one of 19 individual metabolites at 209 

an average uptake of 0.62 mmol/gDW/hr (Supplemental Data File 2).  210 

 211 

 212 

 213 

Figure 3.  OptAux Solutions  Depending on the parameters used when running OptAux, two major solution types 214 

are possible. A: Essential Biomass Component Elimination designs, like the ASNS1 and ASNS2 knockout shown, 215 

can grow only when one specific metabolite is supplemented. For the case shown, this metabolite is L-asparagine. B: 216 

Alternatively, Major Subsystem Elimination designs have a set of alternative metabolites that can restore growth in 217 

these strains. Examples of these designs are shown for citric acid cycle knockouts sets. One specific three reaction 218 

knockout design (FUM, PPC, MALS) is shown in red dashed lines where four metabolites in the figure can 219 
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individually rescue this auxotroph (marked with solid red circles). The metabolites that can restore growth for each of 220 

the knockout strain designs listed in the legend are indicated with the colored circle associated with the reaction 221 

knockouts. 222 

 223 

MSE designs are of particular interest as they are largely unique, nontrivial, and have often not 224 

been studied as E. coli auxotrophies. However, some of the MSE single knockouts have been 225 

used for large-scale studies of auxotrophic co-culture short term growth [16]. Since these 226 

predicted MSE knockouts disrupt significant biological processes, they produce auxotrophies 227 

that require much larger amounts of metabolite supplementation in order to grow, compared to 228 

EBC designs (e.g., Figure S3). This makes MSE E. coli mutants attractive from a microbial 229 

community perspective because they would require a pronounced rewiring of the metabolic flux 230 

of their partner stains in co-culture to secrete the high amount of the auxotrophic metabolite 231 

needed for community growth. 232 

Adaptive Laboratory Evolution of Auxotrophic E. coli Co-cultures  233 

To demonstrate how the OptAux algorithm can be leveraged to design strains and co-culture 234 

communities, E. coli auxotrophic mutants were validated in the wet lab and evolved in co-235 

culture. Three communities were tested, each consisting of pairwise combinations of four 236 

OptAux predicted auxotrophs. This included one EBC design, ΔhisD, which was validated as an 237 

L-histidine auxotroph, paired with each of three MSE designs, ΔpyrC, ΔgltAΔprpC, and 238 

ΔgdhAΔgltB. These three MSE strains had disruptions in pyrimidine synthesis, TCA cycle 239 

activity, and nitrogen assimilation into amino acids, respectively (Table S2). The ΔpyrC mutant 240 

was computationally predicted to be able to grow when supplemented with one of 20 241 

metabolites in iJO1366, and the ΔgltAΔprpC and ΔgdhAΔgltB mutants were predicted to grow in 242 

the presence of 14 and 19 metabolites, respectively (S2 Data, Table S4). 243 

 244 
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Upon inoculation into the first flask of batch growth, each of the co-culture’s growth rates were 245 

low (<0.05 hr-1) suggesting the strains initially showed minimal cooperativity or metabolic cross-246 

feeding (Figure S4). Following approximately 40 days of ALE, all three co-culture combinations 247 

had evolved to establish a nascent community, indicated by an increase in the co-culture growth 248 

rate. There was diversity in the endpoint batch growth rates among the independently evolved 249 

triplicates for each of the ΔhisD & ΔpyrC and the ΔhisD & ΔgdhAΔgltB co-cultures with endpoint 250 

growth rates ranging from 0.09–0.15 hr-1 and 0.08–0.15 hr-1, respectively. The four successfully 251 

evolved independent replicates for the ΔhisD & ΔgltAΔprpC co-cultures also showed endpoint 252 

growth rate diversity ranging from 0.12–0.19 hr-1 (Table 1, Figure 4A). The relatively large 253 

range in endpoint growth rates for all co-cultures suggests that a subset of replicates evolved to 254 

a less optimal state and could be further improved if given more time to evolve. 255 

 256 

Table 1.  Final growth rates and fractional strain abundance of the ΔhisD strain, by characteristic mutation, for each 257 

ALE lineage. 258 

Combo ALE # Final growth rate (hr-1) Relative Abundance of ΔhisD (by 
Characteristic Mutation) 

ΔhisD 
& 

ΔpyrC 

2 0.09 ± 0.02 0.29 ± 0.06 

3 0.15 ± 0.01 0.21 ± 0.12 

4 0.10 ± 0.02 0.19 ± 0.11 

ΔhisD 
& 

ΔgdhAΔgltB 

5 0.15 ± 0.01 0.54 ± 0.09 

6 0.08 ± 0.01 0.59 ± 0.05 

8 0.10 ± 0.02 0.58 ± 0.08 

ΔhisD 
& 

ΔgltAΔprpC 

9 0.19 ± 0.01 0.60 ± 0.11 

10 0.12 ± 0.02 0.48 ± 0.05 

11 0.13 ± 0.01 0.56 ± 0.09 

12 0.19 ± 0.01 0.59 ± 0.05 

  259 
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To probe the metabolic strategies of the three co-culture pairs, the genomes of the populations 260 

were resequenced at several time points over the course of the 40 day evolution (Figure 4A). 261 

The resequencing data was used to identify gene region duplications and acquired mutations 262 

(Figure 4B) that provided insight into the specific mechanisms employed by the co-cultures to 263 

establish cooperation.  264 

 265 

The relative strain abundance of each mutant was also tracked to understand the dynamics of 266 

community composition in the synthetic co-culture. Each starting strain contained unique 267 

characteristic mutations (Table S3) which could act as a barcode to track the community 268 

composition (Figure 4B, Table 1). The breseq mutation identification software [55] was used to 269 

calculate the frequency of each of these characteristic mutations within a sequenced co-culture. 270 

The relative frequency of the characteristic mutations was used to approximate the fraction of 271 

each strain within the co-culture population. This analysis showed that 2 of the 3 co-culture 272 

combinations maintained similar relative fractions of the two member strains, whereas one co-273 

culture, ΔhisD & ΔpyrC, consistently maintained a relative ΔpyrC abundance of near three 274 

quarters of the total population (71-81%, Table 1). Alternatively, the relative abundance of each 275 

strain in the populations was predicted by comparing the read coverage of the deleted genes 276 

relative to the mean, which showed good agreement with the characteristic mutation-based 277 

predictions (Figures S4-5). 278 

 279 
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 280 

Figure 4.  Adaptive Laboratory Evolution  A: E. coli co-cultures were evolved over a 40 day period and the growth 281 

rate was periodically measured. Three of the co-cultures evolved were capable of establishing syntrophy and showed 282 

an improvement in growth rate. The arrows indicate the time points at which samples were taken during the ΔhisD & 283 

ΔgdhAΔgltB co-culture ALE. B: Each of the sampled co-cultures were sequenced. This information was used to 284 

predict the fractional strain abundances of each of the co-culture members. It was also used to identify duplications in 285 

genome regions of one of the community members and infer causal mutations that improved community fitness. 286 

 287 

Mutations Likely Affecting Metabolite Uptake/Secretion 288 

Several evolutionary strategies were observed in the mutations identified across the ten 289 

successfully evolved co-culture lineages (Tables S5-7). One ubiquitous strategy across all three 290 

co-culture pairs was to acquire mutations within or upstream of inner membrane transporter 291 

genes. For instance, numerous mutations were observed in every co-culture lineage in the hisJ 292 

ORF or in the 5’UTR of the hisJ operon. This operon contains all four genes (hisJ, hisM, hisP, 293 
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hisQ) composing the histidine ABC uptake complex, the primary mechanism for histidine uptake 294 

in E. coli K-12 MG1655 [56]. Seven mutations were found in the region directly upstream of the 295 

transcription start site (Figure 5). Three of the five substitutions were observed in more than 296 

one co-culture pairing with a SNP in one position (A->G, A->C or A->T at 86 base pairs 297 

upstream of hisJ) appearing to be particularly beneficial as it was identified in every lineage 298 

except one (ALE #5). In three ALEs, a mutation was observed within the hisJ ORF that resulted 299 

in a substitution of aspartate residue at the 183 position by glycine. Based on the protein 300 

structure, this substitution could disrupt two hydrogen bond interactions with bound L-histidine 301 

ligand in the periplasm [57]. Further mutations were observed that could affect the binding of the 302 

ArgR repressor to the 5’ UTR of the hisJMPQ operon or affect the activity of the ArgR protein 303 

itself (Table S5). This included a 121 base pair deletion and a SNP in the binding site of the 304 

ArgR repressor in the 5` UTR of hisJ (Figure 5). The mutation in the argR ORF consisted of a 305 

frameshift insertion early in the coding sequence and persisted throughout ALE #8, appearing in 306 

the ΔhisD endpoint clone (Table S6). ArgR functions to repress L-arginine uptake and 307 

biosynthesis as well as the L-histidine ABC uptake complex [58] in response to elevated L-308 

arginine concentrations. All of these mutations could improve L-histidine uptake in the ΔhisD 309 

strains either by directly increasing the efficacy of the HisJMPQ ABC uptake system or by 310 

preventing ArgR mediated repression of this transporter. 311 

 312 
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 313 

 314 

Figure 5.  Mutations Affecting Inner Membrane Metabolite Transport  Mutations were observed affecting the 315 

activity of four inner membrane transporters. A schematic of the function or putative function of each transporter is 316 

shown. Depicted below the schematics are the relative locations of the observed mutations on the operon encoding 317 

each of the enzymatic complexes. For example, all ten evolved ΔhisD strain endpoints possessed at least one 318 

mutation in or upstream of hisJ. This operon includes genes coding for HisJMPQ, the four subunits of a histidine ABC 319 

uptake system. A depiction of the activity of this complex is shown, in which energy from ATP hydrolysis is used to 320 

transport histidine into the cytosol from the periplasm. Mutations are indicated on the operon schematics if mutations 321 

appear at >10% frequency in more than one flask, and ALE numbers are in bold if the mutation appears in the 322 

endpoint clone strain. The mutations indicated with a dashed arrow occurred in the ΔhisD strain and a solid arrow 323 

indicates they occurred in its partner MSE strain. 324 

 325 

 326 

Beyond improving the uptake of L-histidine in the ΔhisD strain, mutations were observed that 327 

could improve metabolite uptake in a partnering strain. For instance, in the ΔhisD & ΔgltAΔprpC 328 
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co-culture, two of the ΔgltAΔprpC strains acquired mutations in the kgtP ORF (a transporter of 329 

2-oxoglutarate [59]) that were present in the endpoint clones. These mutations include a 330 

substitution of a L-proline residue with a L-glutamine at the 124 position and a substitution of a  331 

glycine residue with an L-alanine at the 143 position. These two substitutions occurred in the 332 

fourth transmembrane helix in the protein and a cytoplasmic region [60], respectively, and could 333 

act to augment or complement the mutation in the 5’ UTR of the kgtP ORF seen in the starting 334 

clone of the ΔgltAΔprpC mutant (Table S5). Both the accumulation of mutations associated with 335 

this transporter and the fact that the citrate synthase knockout mutant is computationally 336 

predicted to grow in the presence of 2-oxoglutarate suggest that ΔgltAΔprpC could be cross-fed 337 

2-oxoglutarate when in co-culture.  338 

 339 

A recurrent mutation was observed in the ΔhisD & ΔpyrC co-culture that could function to better 340 

facilitate uptake of a metabolite being cross-fed from the ΔhisD strain to the ΔpyrC strain. The 341 

three independently evolved lineages each acquired at least one mutation in the 5’ UTR of dctA, 342 

which were confirmed to be in all ΔpyrC endpoint clones (Table S7). The gene product of dctA 343 

functions as a proton symporter that can uptake orotate, malate, citrate, and C4-dicarboxylic 344 

acids [61] (Figure 5). Further, simulations of a ΔpyrC strain predict that growth is possible with 345 

orotate supplementation, but not with any of the other metabolites known to be transported by 346 

the dctA gene product. Thus, it was proposed that these mutations could act to increase the 347 

activity of this transporter to allow the ΔpyrC strain to more efficiently uptake orotate cross-fed 348 

by the ΔhisD strain. 349 

 350 

Lastly, one lineage of the ΔhisD & ΔgdhAΔgltB co-culture acquired a SNP in the ygjI coding 351 

region; the SNP was present in the ΔhisD endpoint clone and resulted in a substitution of L-352 

arginine for glycine at position 83 of this protein. This position is within a periplasmic region and 353 

one residue prior to a transmembrane helix of the protein [62]. The function of this protein has 354 
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not been experimentally confirmed, but based on sequence similarity, it is predicted to be a 355 

GABA:glutamate antiporter [63]. Given that this mutation was seen in the ΔhisD clone, it is 356 

possible that this mutation had the effect of increasing the strain’s secretion of 4-aminobutyrate 357 

(GABA) or L-glutamate. Such a mutation could improve community fitness by facilitating the 358 

cross-feeding of either these metabolites to the ΔgdhAΔgltB strain since it is predicted to be 359 

auxotrophic for both metabolites (Table S4). 360 

Mutations Likely Affecting Nitrogen Regulation 361 

Removing reactions in major biosynthetic pathways likely results in a disruption of the 362 

homeostatic concentrations of key sensor metabolites or an activation of nutrient limitation 363 

stress responses. Mutations were observed in the evolved co-cultured sets which point to 364 

mechanisms to adapt to these pathway disruptions. Examples of this adaptation included three 365 

frameshift mutations early in the glnK ORF found in three ΔgltAΔprpC clones from the ΔhisD & 366 

ΔgltAΔprpC co-cultures (Figure 6A) and one premature stop codon in the ΔhisD clone of the 367 

same co-culture. The frameshift mutations would possibly affect the AmtB nitrogen uptake 368 

system as well, as it is located on the operon downstream of GlnK. GlnK is one of two nitrogen 369 

regulators with overlapping functions that are uridylated depending on the relative 370 

concentrations of 2-oxoglutarate and L-glutamate. In conditions of high relative 2-oxoglutarate 371 

concentration relative to L-glutamate, GlnK is uridylated and the E. coli nitrogen limitation 372 

response is triggered [64]. Unlike the alternative nitrogen regulator, GlnB, however, when not 373 

uridylated GlnK binds to the AmtB nitrogen uptake complex, reducing its activity [65]. The citrate 374 

synthase knockout (ΔgltAΔprpC) in particular could see a disruption in the homeostatic 375 

concentrations of metabolites immediately downstream of the reaction, including 2-oxoglutarate 376 

and L-glutamate. This could impair the ability of the cell to respond to sensors of nitrogen 377 

excess or limitation and respond with the proper global regulatory changes. Removing the 378 

activity of this GlnK mediated response system would prevent any detrimental cellular 379 
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responses given that the strains are both grown in excess ammonium. No mutations, however, 380 

were observed in the alternative nitrogen regulator, GlnB, throughout any of the evolutions. 381 

 382 

 383 

 384 

Figure 6. Mutations Affecting Stress Responses and Metabolite Homeostasis. Functions or putative functions of 385 

mutated genes are summarized with schematics with the location of all mutations on the operon below the schematic. 386 

Mutations are indicated on the operons schematic if mutations appear at >10% frequency in more than one flask and, 387 

ALE numbers are in bold if the mutation appears in the endpoint clone strain. The mutations indicated with a dashed 388 

arrow occurred in the ΔhisD strain and solid arrow if they occurred in its partner MSE strain. A: Mutations observed 389 

related to nitrogen starvation and metabolite homeostasis. Mutations were acquired within the open reading frame of 390 

both genes comprising the nitrogen sensing two-component regulatory system. Shown in the schematic is the 391 

regulatory cascade in which nitrogen is sensed by GlnL, which stimulates its autophosphorylation and subsequent 392 
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donation of the phosphorus group to GlnG. Phosphorylated GlnG upregulates general functions associated with 393 

nitrogen starvation. Further, mutations were observed in the ORF of GlnK, one of two nitrogen regulators, sharing 394 

most functions with GlnB. Both genes become uridylylated in response to high concentrations of 2-oxoglutarate and 395 

low concentrations of glutamine, which is an indication of low nitrogen concentration. GlnK-UMP can activate GLNS 396 

deadenylation, thus increasing its activity. Unlike GlnB, GlnK when in a deuridylylated state (high concentrations of 397 

glutamine) can be sequestered by the AmtB ammonium transporter causing it to have a reduction in activity [26] 398 

Dashed lines in the schematic indicate primary GlnB functions and solid lines indicate primary GlnK function. B: 399 

Mutations observed associated with the E. coli stress response. Numerous mutations were observed in the ORF of 400 

Hfq which is an RNA-binding protein with numerous global functions. These include interactions with small regulatory 401 

RNAs which are often required to enable the small RNA’s regulatory function. Hfq is also required for the wild-type 402 

expression of the S sigma factor. Both MicF and sigma S are involved in regulating the expression of outer 403 

membrane porin ompF, a gene which acquired mutations in multiple ALE lineages. Mutations were also observed in 404 

the envZ ORF which is the sensory protein in the osmotic stress two-component regulatory system. Upon sensing 405 

osmotic stress, it autophosphorylates and transfers a phosphate to OmpR, thus upregulating osmotic stress genes. 406 

These genes consist of many outer membrane porins, including ompF. 407 

 408 

Mutations found in the ΔgdhAΔgltB strains imply a change in the activity of the two-component 409 

nitrogen regulatory system. This strain in all ΔhisD & ΔgdhAΔgltB lineages acquired mutations 410 

in the open reading frame of at least one gene in the two-component nitrogen regulator system, 411 

glnG (ntrC) and glnL (ntrB)  (Figure 6A) [64]. Amino acid substitutions were observed in 412 

position 18, 86, and 105 of glnG corresponding to the response receiver domain of GlnG, likely 413 

augmenting its ability interact with GlnL (based on protein families [66]). The endpoint clone of 414 

ALE #5 acquired an amino acid substitution of L-isoleucine to L-serine within a PAS domain of 415 

GlnL at position 12. This corresponds to the protein domain where regulatory ligands likely bind 416 

[67] so this mutation could act to augment its autophosphorylation activity in response to 417 

nitrogen. Given the location of these mutations, it can be hypothesized that they functioned to 418 

decrease the regulatory activity of the two-component system response to excess nitrogen. For 419 
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the ΔgdhAΔgltB strain, this could be beneficial to reduce the GlnGL mediated downregulation of 420 

nitrogen uptake and assimilation processes. 421 

 422 

Mutations were also observed affecting osmotic as well as nonspecific stress responses (Figure 423 

6B). These are summarized in the Supplemental Text. 424 

Genome Duplications Complement Sequence Changes 425 

A complementary adaptive strategy for improving co-culture community fitness was to acquire 426 

duplications in regions of the genome (Figures S7-9). In some cases, this evolutionary strategy 427 

appeared to function to amplify expression of transporters (also observed in [68]) to more 428 

efficiently uptake a metabolite that can rescue the strain’s auxotrophy. Alternatively, these 429 

duplications could function to increase the likelihood of acquiring mutations in the duplicated 430 

region [69,70]. Therefore, the genes contained within the duplicated regions in some cases 431 

provided clues to which metabolites were cross-fed within the co-culture. For example, one of 432 

the three ΔhisD & ΔgdhAΔgltB lineages displayed clear increases in coverage near positions 433 

674-683 kbp and 1,391-1,402 kbp with multiplicities exceeding 15. The former of these 434 

coverage peaks included 9 genes, including the 4 genes composing the GltIJKL L-glutamate/L-435 

aspartate ABC uptake system [71]. The latter peak included 10 genes including the 4 genes in 436 

the abgRABT operon, which facilitates the uptake and hydrolysis of p-aminobenzoyl-glutamate 437 

into glutamate and 4-aminobenzoate [72]. This suggests that both of these metabolites could be 438 

cross-fed to the ΔgdhAΔgltB strain, though the abgRABT duplication was depleted in favor of 439 

the gltIJKL duplication over the course of the evolution, suggesting L-glutamate or L-aspartate is 440 

the preferred cross-feeding metabolite over p-aminobenzoyl-glutamate (Figure 7).  441 

 442 
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 443 

Figure 7. Duplication Dynamics. The top panel depicts the dynamics of two high multiplicity duplications in two 444 

transport complexes in E. coli throughout the course of Ale #5 of a ΔhisD & ΔgdhAΔgltB pair. A small region 445 

containing the abgT symporter of p-aminobenzoyl glutamate is duplicated early in the evolution, but is later replaced 446 

by duplications in a region containing gltJ and the rest of the genes comprising the GltIKJL L-glutamate/aspartate 447 

ABC uptake system. The bottom panel depicts the course of Ale #11, a ΔhisD & ΔgltAΔprpC  co-culture, which 448 

initially showed a broad ~1Mbp duplication. By the end of the evolution either a nested duplication emerged or a 449 

significant subpopulation emerged that contained a duplication of a small genome region containing hisJ and the rest 450 

of the HisJMPQ L-histidine ABC uptake system. 451 

 452 

While the duplications mentioned above presented clear amplifications in targeted operons, 453 

some observed duplications consisted of 100,000s of basepairs and 100s of genes. Further, 454 

many of the duplications seen in the populations were not observed in the sequenced endpoint 455 

clones. Possible explanations for these observations can be found in the Supplemental Text.  456 

Modeling Community Features of Auxotroph Communities 457 

Community ME-models were created for each of the three evolved co-culture sets (Figure S10). 458 

The models were constructed based on the assumption that, in order to form a stable 459 
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community when growing exponentially, the strains in co-culture must be growing, on average, 460 

at an equal rate. Mass balance conversion terms could then be used to relate the metabolic flux 461 

that a strain contributes to the shared compartment and its fractional abundance (see 462 

Methods). This approach offered a means to understand which factors drive the structure of the 463 

newly established communities (i.e., the relative abundance of the community members) and, 464 

ultimately, how this relates to metabolite cross-feeding.  465 

 466 

The community ME-models have the capability of assessing how the community composition 467 

could vary depending on the identity of the metabolite that is cross-fed or the enzyme efficiency 468 

of the community members. The role of the cross-fed metabolites in defining the structure of the 469 

community was assessed using the community ME-models by: 1) allowing metabolic cross-470 

feeding to remain unrestricted and 2) restricting the cross-feeding to only one metabolite. When 471 

the metabolite cross-feeding was left unrestricted (i.e., any metabolite restoring growth in either 472 

strain was allowed to cross-feed in the simulation, Supplemental Text, Figure S11) computed 473 

cross-feeding profiles were complex and prediction of the identity of the cross-fed metabolite did 474 

not strongly point to one potential metabolite (Figure S12). However, when turning to the 475 

sequencing data, there was general agreement between predicted and experimentally inferred 476 

optimal community structure which provided confidence in using the proposed modeling 477 

approach (Figure S11). 478 

 479 

Alternatively, the second approach to assess the influence of metabolite cross-feeding on 480 

community composition involved restricting the simulation to cross-feed only one of the 481 

metabolites computationally predicted to restore growth in the MSE strain. In doing so, the 482 

identity of the metabolite being cross-fed could be related to the optimal community growth rate 483 

and structure. This approach additionally offered a way to narrow the set of optimal or near 484 

optimal cross-feeding metabolites that would be predicted to be cross-fed in vivo. The 485 
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computations predicted that the ΔhisD & ΔpyrC co-culture would have a community composition 486 

and growth rate robust to the metabolite being cross-fed with a slightly higher community growth 487 

rate if orotate, uracil, uridine monophosphate, or uridine were cross-fed. The optimal 488 

composition of the community was predicted to be skewed toward low percentages (~20%) of 489 

the ΔhisD strain for all metabolites in this co-culture. The ΔhisD & ΔgltAΔprpC and ΔhisD & 490 

ΔgdhAΔgltB co-cultures, on the other hand, were sensitive to the cross-feeding metabolite 491 

where the community structure depended on the identity of the cross-feeding metabolite (Figure 492 

8A). For these two co-cultures, the ΔhisD & ΔgltAΔprpC and ΔhisD & ΔgdhAΔgltB pairs were 493 

computationally predicted to achieve higher community growth rates when cross-feeding L-494 

glutamate, 2-oxoglutarate, citrate, or L-glutamine and 4-aminobutanoate, L-aspartate, L-495 

glutamine, L-glutamate, L-alanine, or L-asparagine, respectively.  496 

  497 
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 498 

Figure 8 Community Modeling. Community ME-model predicted growth rates for fractional strain abundances of 499 

ΔhisD ranging from 0 to 1. A) The effect of metabolite cross-feeding on community structure. Each curve was 500 

computed by allowing different metabolites to be cross-fed to the MSE strain.  Similar curves were grouped by color. 501 

B) Effect of varying the proteome efficiency of metabolite export on community structure (see Methods). The analysis 502 

was performed on models constrained to only cross-feed the metabolite that was inferred from the resequencing data 503 

(2-oxoglutarate, orotate, and L-glutamate, respectively) (Table 2). C) Box plots of experimentally measured 504 

abundances for each sample (bottom two rows, gray, and dark blue) and the computationally-predicted optimal strain 505 

abundances following variation in the cross-feeding metabolite (top row, blue) and in strain proteome efficiency 506 

(second and third row, red, and yellow).  507 

 508 

 509 
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Community ME-models further enable an examination of how each strain’s proteome 510 

“efficiency” may affect co-culture characteristics when growing in its community niche. Such an 511 

analysis was performed by altering a ME-model parameter for each strain corresponding to how 512 

efficiently it can export the metabolite that is cross-feeding its partner strain (see Methods). This 513 

parameter can be used as a proxy for cellular proteome investment in wasteful or inefficient 514 

processes when synthesizing and exporting a metabolite, which is likely to occur in substantial 515 

amounts until the strains further adapt to grow as a community. That is, the cells will not be able 516 

to optimally rearrange their proteome and metabolic fluxes to efficiently grow as a community 517 

over this short-term evolution. It is possible, however, that some strains in co-culture will be able 518 

to reorganize their proteome to secrete the necessary metabolite more or less efficiently than 519 

their partner strain (Table 2). The proteome efficiency analysis showed that the community 520 

compositions of all three co-cultures were moderately sensitive to this parameter (Figure 8B). 521 

Further, the pairs showed a bimodal behavior depending on whether the ΔhisD strain was more 522 

or less efficient than its partner (Figure 8B). The community models predicted that if the export 523 

processes of the ΔhisD strain require a greater protein investment relative to the default export 524 

efficiency parameter, the abundances of the ΔhisD strain will increase in the community. 525 

Conversely, if the partner strain requires greater protein investment, the community composition 526 

remains stable and unchanged. The optimal predicted community composition for the two 527 

analyses shown in Figure 8A and B are summarized in Figure 8C. The figure shows general 528 

agreement between the computed optimal community compositions and the experimentally 529 

inferred community composition, even after varying key features of the community simulation. 530 

This suggests that community ME-models have the potential to be useful tools for 531 

understanding the behavior of simple communities. 532 

 533 

Table 2.  Metabolite being cross-fed by the ΔhisD strain to its partner strain, as inferred from sequencing 534 

data 535 
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 536 

Pair with ΔhisD 
Inferred 

Metabolite Mutation Evidence Duplication Evidence 

ΔpyrC Orotate 
Mutations in 5' UTR of dctA 
in ΔpyrC strain in all ALEs 
(Figure 5) 

Broad duplication in portion of genome 
containing dctA coding region in all 
ALEs (Figure S9, S4 Data) 

ΔgdhAΔgltA L-Glutamate Ale #8 mutation in ygjI ORF 
in ΔhisD strain (Figure 5) 

ALE #5/6 targeted duplications in gltJ 
coding region (Figure 7, Figure S8) 
 
ALE #5 transient duplication in abgT 
coding region (Figure 7) 

ΔgltAΔprpC 2-Oxoglutarate 

Starting mutation in 5` UTR 
of kgtP in ΔgltAΔprpC strain 
(Table S5) 
 
ALE #9/10 Acquired 
mutations in kgtP ORF in 
ΔgltAΔprpC strain (Figure 5) 

- 

 537 

Discussion 538 

This study has demonstrated a novel workflow to design, optimize, and computationally interpret 539 

non-trivial syntrophic co-cultures to better understand the characteristics of simple microbial 540 

community formation. The simple communities consisted of two strains of E. coli K-12 MG1655 541 

which required, in order to grow themselves, the growth of their partner strain. To design the 542 

communities to possess characteristics more attractive from an engineering perspective, a 543 

novel algorithm, termed OptAux, was used. This algorithm was used to design highly 544 

auxotrophic strains which, when paired in co-culture, require high levels of metabolic cross-545 

feeding in order for the community to grow. Three co-cultures consisting of OptAux designs 546 

were tested in vivo and optimized via adaptive laboratory evolution. By analyzing the genetic 547 

changes observed throughout the evolution we could infer the cellular changes underlying 548 

improvements in the fitness of the highly metabolically-coupled communities. This work thus 549 
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provided new insight into cellular mechanisms for establishing syntrophic growth. A community 550 

ME-model was developed to computationally interpret the communities and their fundamental 551 

properties. Such models are the first to offer a means to study, on the genome-scale, how 552 

efficient proteome allocation to metabolic functions in the community members can influence the 553 

structure of the nascent microbial communities. 554 

OptAux Can be Used to Design Novel Communities 555 

To facilitate the design of co-culture communities requiring significant metabolic rewiring and 556 

cross-feeding, we constructed the OptAux algorithm to find reaction knockouts that will create 557 

auxotrophic strains requiring high amounts of metabolites for growth (Figure 2). OptAux 558 

returned two kinds of solutions depending on the parameters used, so-called Major Subsystem 559 

Elimination (MSE) and Essential Biomass Component Elimination (EBC) designs (Figure 3). 560 

EBC designs are specific with regard to which metabolites are required for the strain to grow 561 

and correspond to auxotrophs that have been validated in previous studies [14,50–54]. OptAux 562 

EBC predictions resulted in eight designs that were previously verified experimentally and five 563 

predictions of untested auxotrophs (Table S1). Conversely, the MSE designs are 564 

computationally predicted to grow when supplemented with a any of variety of different 565 

metabolites and represent largely new designs that have not been characterized experimentally, 566 

though some of the single gene knockout MSE designs were grown in co-culture in [16]. MSE 567 

auxotrophs in co-culture need high levels of cross-feeding in order to grow (0.05 and 0.2 mmol 568 

gDW-1 hr-1 on average for an EBC and MSE strain to grow at a rate of 0.1 hr-1, respectively), 569 

requiring significant metabolic rewiring in its partner strain (Figure S13).  570 
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ALE was Successfully Applied to Increase Fitness of Co-culture 571 

Four OptAux predicted auxotrophic E. coli mutants were constructed in vivo, confirmed as 572 

auxotrophs, and grown in co-culture. A growth rate selection pressure was applied on these 573 

nascent, poorly growing communities via ALE. Three co-cultures of an ΔhisD EBC strain paired 574 

with an MSE strain showed reproducible improvements in growth rate throughout the course of 575 

the ALE (Table 1). Under these conditions each of the strains had to rewire its metabolic 576 

network to both secrete a metabolite required by its partner strain and efficiently import the 577 

metabolite needed to grow itself through mutations that were identified, effectively establishing a 578 

new microbial community. By selecting for growth rate, a novel indirect selection pressure was 579 

applied on each strain to increase the secretion and uptake of the cross-fed metabolites, thus 580 

improving the growth of the co-culture community. This evolution design therefore has potential 581 

as a system to self-optimize microbial strains as industrial producers of metabolites of interest. 582 

 583 

Throughout the course of adaptive laboratory evolution, the nascent communities improved 584 

community fitness by acquiring beneficial mutations (Tables S5-7, Figures S7-9). There was a 585 

high degree of parallelism in the identified shared mutations and duplications which appeared in 586 

each co-culture pair’s ALE lineages, providing confidence that the acquired mutations and 587 

duplications were meaningful and causal in improving community fitness [73]. Consistently, 588 

duplications coincided with genome regions containing mutations acquired in endpoint clones. It 589 

has been shown that, as a mechanism for evolving new cellular functions, microbes duplicate 590 

genome regions to provide the redundancy needed for divergence of function or for acquiring 591 

new or altered capabilities [70].  Further, similar gene duplications in nutrient transporters have 592 

been shown in yeast to provide fitness benefits in glucose limited environments by increasing 593 

the expression of the transporter [68].   594 

 595 
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Beyond enabling an analysis of how the co-cultures were capable of establishing syntrophy, the 596 

sequencing data provided a measure of the structure of the community in terms of relative strain 597 

abundance. All auxotrophic mutants contained a unique characteristic starting mutation (Table 598 

S3), which was used to track the relative abundance of each member of the co-culture 599 

community throughout the evolutions. Community structures appeared to remain remarkably 600 

consistent both across ALE replicates of the same strain combinations and over time throughout 601 

the ALE lineages (Table 1, Figures S4-5). This finding was corroborated by using the coverage 602 

of the gene deletion regions in population resequencing (Figures S5-6). The observation of 603 

stable community composition is in line with what has been observed in multi-species microbial 604 

soil communities grown in single substrate minimal media [74].  605 

Resequencing Data Provides Insight into Probable Metabolite  606 

Cross-feeding 607 

Mutational evidence, often related to transporter processes, from the evolved populations 608 

provided insight into which metabolites were being cross-fed within the co-cultures. For 609 

instance, all ALE lineages acquired mutations targeting the ABC uptake system for L-histidine 610 

(Figure 5). Given that all of the three evolved co-culture sets included a strain that was an EBC 611 

auxotroph for L-histidine, community growth logically would increase if histidine uptake was 612 

improved in this strain via these genetic changes. Similarly, the three MSE strains that were 613 

paired with the L-histidine auxotroph, ΔpyrC, ΔgdhAΔgltB and ΔgltAΔprpC, displayed evidence 614 

in their resequencing data to suggest that the strains were being cross-fed orotate, glutamate 615 

and 2-oxoglutarate, respectively (Table 2). A community ME-model was constructed for each of 616 

the three communities and the model simulations predicted a hierarchy, where clusters of 617 

metabolites provide slight benefits in predicted community growth rates relative to other 618 
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metabolites. In each case, the mutation data inferred cross-feeding metabolites were contained 619 

in one of the top computationally predicted clusters.  620 

Community ME-modelling Allows for Analyzing Co-culture 621 

Composition 622 

Community ME-models were employed to understand how the proteome efficiency of each 623 

strain drives community composition. ME-models are uniquely capable of addressing this 624 

question because they directly incorporate the proteomic cost of catalyzing a metabolic process, 625 

which is particularly necessary in this system as there is an inherent proteome cost of each 626 

strain to cross-feed the necessary metabolite in co-culture [75]. Kinetic parameters, which play a 627 

role in dictating proteome cost in these community ME-models, were therefore systematically 628 

adjusted to understand how each strain’s proteomic “efficiency” affected the simulation 629 

characteristics. The simulations predicted that, for all of the three co-cultures, the proteomic 630 

efficiency of the ΔhisD would have the largest impact on the relative abundance of each co-631 

culture member (Figure 8B).  This is an expected finding due to the fact that the ΔhisD strain 632 

has the larger cross-feeding burden since it is paired with an MSE strain in each case. Further, 633 

when the ΔhisD secretion proteome efficiency was decreased, the community ME-model 634 

predicted its optimal abundance in the co-culture would actually increase. Though unintuitive, 635 

this prediction is in agreement with a paradox predicted in a previous computational study of 636 

community dynamics [76]. In addition to proteome efficiency, the ME-model predicted that the 637 

identity of the metabolite being cross-fed has an effect on optimal community composition 638 

(Figure 8A). The distributions of possible community compositions based on varying 639 

metabolites and proteome efficiency aligned well with two of the three co-cultures (ΔhisD & 640 

ΔgdhAΔgltB and ΔhisD & ΔpyrC, Figure 8C). This implies that community ME-modelling 641 
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potentially offers a means to study how changes in the characteristics of each strain in co-642 

culture will affect the optimal community structure and growth behavior. 643 

 644 

From an industrial perspective, shifting the community composition could increase the 645 

production of a specific metabolite of interest. Therefore, this modeling method offers a way to 646 

predict how, for instance, LacZ or other unused (i.e., non beneficial) proteins could be efficiently 647 

overexpressed to lower a strain’s proteome efficiency and alter community composition, thus 648 

improving the yield of metabolite secretion. Additionally, this modeling method suggests that the 649 

identity of the cross-feeding metabolite can bias the optimal community composition to some 650 

extent. For instance, for the ΔhisD & ΔgdhAΔgltB co-culture, the ΔhisD relative fraction can vary 651 

from 0.45 to 0.85 if L-alanine is cross-fed versus L-arginine. By somehow biasing the cross-652 

feeding toward one metabolite or the other (e.g., exporter knockout), the community 653 

composition could potentially be manipulated, thus altering the yield of the cross-fed metabolite. 654 

Conclusions 655 

This work demonstrated a novel approach using both a design algorithm and community 656 

modeling to understand how strains adapt to grow in new community niches. The work also 657 

provided insight into evolutionary strategies bacteria can use to readjust their metabolism and 658 

respond to drastic changes in homeostatic metabolite concentrations while learning to inhabit 659 

this new biological niche. Beyond better understanding ecological communities, this workflow 660 

could be applied as a tool for developing new platform bacterial strains for producing 661 

metabolites of industrial relevance. Lastly, the novel community resource allocation model was 662 

successfully used to predict co-culture community characteristics. This modeling tool could be 663 

leveraged to predict experimental strategies for optimizing a community to fit the desired 664 

application and have broad impacts on human health [77,78]. 665 
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Materials and Methods 666 

Computational Methods 667 

All constraints based modeling analyses were performed in Python using the COBRApy 668 

software package [79] and the iJO1366 metabolic model of E. coli K-12 MG1655 [41]. For 669 

aerobic simulations the maximum oxygen uptake rate was constrained to 20 mmol • dDW-1 • hr-670 

1, and the maximum substrate was constrained to 10 mmol • dDW-1 • hr-1. All iJO1366 671 

optimizations and algorithm solutions presented were found using the Gurobi (Gurobi 672 

Optimization, Inc., Houston, TX) mixed-integer linear programming (MILP) or linear 673 

programming (LP) solver.  The community ME-models were solved using the qMINOS solver in 674 

quad precision [87,88]. All scripts and data used to create the presented results can be found at 675 

www.github.com/coltonlloyd/optaux. 676 

OptAux Algorithm Formulation 677 

The OptAux algorithm was derived based on the ideas from existing MILP algorithms (i.e., 678 

RobustKnock [40] and OptKnock [80]). A new algorithm was written as opposed to 679 

implementing a “reverse” version of RobustKnock where the algorithm would optimize the 680 

uptake of a metabolite at the maximum growth rate. A “reverse” RobustKnock implementation 681 

would lead to strain designs that must take up a high amount of the target metabolite when 682 

approaching the maximum growth rate (Figure S1A). In order for a strain to be truly auxotrophic 683 

for a particular metabolite, however, it must be required at all growth rates (Figure 2A, Figure 684 

S1B).  To ensure that OptAux designs have this auxotrophic phenotype, the inner problem 685 

optimizing for growth rate utilized in RobustKnock was replaced with a set_biomass constraint. 686 

This forced the metabolite uptake optimization to occur at a predefined growth rate and was 687 
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implemented by setting the upper and lower bounds of the biomass objective function to this 688 

value: 689 

 690 

For the simulations ran in this study (S1 Data), the set_biomass value was set as 1/10 the 691 

maximum growth rate for the wild-type simulation in in silico glucose minimal media 692 

supplemented with the metabolite whose uptake is being maximized.   693 

 694 

An additional constraint was applied to represent additional metabolites present in the media. It 695 

was applied by finding all metabolites with exchange reactions with its lower bound set to zero 696 

and increases the bound to the trace_metabolite_threshold, shown for exchange reaction i 697 

below: 698 

 699 

Increasing this threshold ultimately increases the specificity of the OptAux solution in regards to 700 

other metabolites that can potentially restore growth.  In other words, this effectively models a 701 

scenario where, along with the presence of the target metabolite and primary substrate, there 702 

are trace amounts of competing energy source and biosynthetic precursor metabolites in the in 703 

silico media.  704 

 705 

The resulting algorithm is a bilevel MILP Figure 2B) that can be found at 706 

www.github.com/coltonlloyd/optaux. 707 

OptAux Simulations 708 

The OptAux algorithm was ran for all carbon containing metabolites with exchange reactions in 709 

iJO1366. For each optimization the target metabolite is selected and the maximum uptake of the 710 

metabolite is set to 10 mmol/gDW/hr. The model was then reduced by performing flux variability 711 
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analysis (FVA) on every reaction in the model and setting the upper and lower bounds of each 712 

reaction to the FVA results. If FVA computed that no flux could be carried through the reaction, 713 

then it was removed from the model. Additionally, reactions were excluded from knockout 714 

consideration if they met one of the following criteria: 1) it is a iJO1366 false positive when 715 

glucose is the primary carbon substrate [81] 2) it is essential in LB rich media [15] 3) its 716 

annotated subsystem is one of the following: Cell Envelope Biosynthesis, Exchange, Inorganic 717 

Ion Transport and Metabolism,  Lipopolysaccharide Biosynthesis / Recycling, Murein 718 

Biosynthesis, Murein Recycling, Transport, Inner Membrane, Transport, Outer Membrane, 719 

Transport, Outer Membrane Porin, or tRNA Charging 4) it involves a metabolite with more than 720 

10 carbons 5) it is a spontaneous reaction. 721 

Identifying Gene Mutations and Duplications 722 

The FASTQ data from the samples sequencing was filtered and trimmed using AfterQC version 723 

0.9.6 [82]. The quality controlled reads were aligned to the genome sequence of E. coli K-12 724 

BW25113 (CP009273.1) [83] using Bowtie2 version 2.3.0 [84]. Mutations were identified based 725 

on the aligned reads using breseq version 0.32.0b [55]. If the sample was of a co-culture 726 

population and not a clone, the predict polymorphism option was used with a frequency cutoff of 727 

0.025. The output of the breseq mutation analysis for all samples can be found in S3 Data. 728 

 729 

Duplications were found by analyzing the BAM sequence alignment files output from Bowtie 730 

using the pysam Python package [85]. Pysam was used to compute the sequencing read 731 

coverage at each DNA position within the genome sequence. For population samples, a cutoff 732 

of 1.25 x coverage fit mean (measure of average read alignment coverage over the genome), a 733 

relatively low threshold to account for the varying fractional abundances of the strains in 734 

community. A gene was flagged as duplicated in the sample if over 80% of the base pairs in the 735 

gene ORF had alignment coverage above the duplication threshold. Duplications found in 736 
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starting strains were excluded from duplication analysis. Further the set of duplicated genes 737 

were grouped together if there are located next to each other on the genome. A new group was 738 

made if there was more than five genes separating a duplicated gene from the next duplicated 739 

gene (S4 Data). 740 

 741 

Aligned contig coverage across the E. coli genome is noisy and therefore must be filtered before 742 

plotting in order to observe its dominant features. This was accomplished by first splitting the 743 

coverage vector into 50,000 segments such that each segment represented ~100 base pairs 744 

and the average of the segments was found. Locally weighted scatterplot smoothing (LOWESS) 745 

was then applied to the array of concatenated segments using the statsmodel package in 746 

python [86]. For the smoothing 0.5% of all of the segments was used when estimating each 747 

coverage value (y-value), and zero residual-based reweightings were performed. The remaining 748 

parameters were set to their default. 749 

Calculating Strain Abundances from Resequencing Data 750 

The fractional strain abundance of each strain in co-culture were predicted using two features of 751 

the resequencing data of each co-culture population sample: 1) the frequency of characteristic 752 

mutations of each strain and 2) the relative coverage of the knocked out genes.  753 

 754 

Each of the stains used in this study possessed a unique characteristic mutation (Table S3), 755 

which could be used as a barcode to track the strain. The breseq population mutation calling 756 

pipeline would identify the characteristic mutations of each strain in co-culture and report the 757 

frequency that the mutation occurred. This output was used to track their presence.  For strains 758 

with two characteristic mutations (ΔhisD, ΔgdhAΔgltB) the average of the frequency of each 759 

gene was used as a prediction of the relative abundance of that strain. One mutation in 760 

particular, an IS element insertion in yqiC which is characteristic of the ΔhisD strain, was not 761 
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detected in several samples when ΔhisD was in co-culture with ΔpyrC. This is likely due to the 762 

low frequency of the ΔhisD strain in that particular population. In those cases, the ΔhisD strain 763 

abundance was predicted using only the frequency of the lrhA/alaA intergenic SNP (Figure S5). 764 

 765 

The second method used the contig read alignment to compare the coverage of the deleted 766 

genes in each strain to the fit mean coverage of the sample. As an example, for a strain paired 767 

with the ΔhisD strain, the average coverage of the base pairs in the hisD ORF divided by the fit 768 

mean for that sample, would give an approximation of its relative abundance in the population. 769 

As with the characteristic mutation approach, if the two genes are knocked out in the strain, the 770 

average coverage of the two genes is used to make the approximation (Figure S5).  771 

 772 

When reporting the relative abundance predictions, the predicted abundances of each strain 773 

was normalized by the sum of the predicted abundances of the two strains in co-culture. This 774 

ensured that the abundance predictions summed to one. Predictions made using the two 775 

described methods showed general agreement (Figure S6). 776 

Community Modeling 777 

Community ME-models were created using a multicompartment FBA approach, where each of 778 

the two mutant strains in co-culture occupy a compartment with an additional shared 779 

compartment where each of the strains can exchange metabolites. The relative abundance of 780 

each strain was accounted for by adjusting the exchange reaction from a strain’s compartment 781 

into the shared compartments. For secretion, this was done by multiplying these exchange 782 

reactions as follows: 783 

 784 

 785 
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 786 

and for uptake: 787 

 788 

 789 

 790 

where vsecrete is the secretion flux from strain 1 and has units of mmol • gDWStrain1
-1 • hr-1 and 791 

XStrain1  is the fractional abundance of strain 1 with units of gDWStrain1• gDWCommunity . Therefore 792 

applying this coefficient to metaboliteShared gives the reaction fluxes from strain 1 (vsecrete) in units 793 

of mmol •  gDWCommunity
-1 • hr-1. For the subsequent uptake of the shared metabolite by strain 2,  794 

the fractional abundance of strain 2 is applied giving units of  mmol •  gDWStrain2
-1 • hr-1 (Figure 795 

S10). 796 

 797 

Using this community modeling approach, the fractional abundance (Xi) of each strain in the co-798 

culture was implemented as a parameter that could be varied from 0 to 1, which in turn had on 799 

impact on the optimal growth state of the community. Simulations were ran varying XStrain1 800 

(abundance of strain 1) from 0.05 to 0.95 and the community growth rate was optimized. The 801 

metabolites that were allowed to be cross-fed in simulation were limited to the set of metabolites 802 

that can computationally restore the growth of each auxotroph (Table S4).  803 

 804 

For the community simulations, the iJL1678b [32] model of E. coli K-12 MG1655 was used with 805 

the uptake of metabolites in the in silico glucose minimal growth media into the shared 806 

compartment left unconstrained, as the ME-model is self limiting [33].  The non-growth 807 

associated ATP maintenance and the growth associated ATP maintenance were set to the 808 

default parameter values in the model. The RNA degradation constraints were removed to 809 

prevent high ATP costs at the low community growth rates. Since, the newly formed 810 
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communities are highly unoptimized and growing slowly, the unmodeled/unused protein fraction 811 

parameter was set to 75%. If a metabolite had a reaction to import the metabolite across the 812 

inner membrane, but no export reaction, a reaction to transport the metabolite from the cytosol 813 

to the periplasm was added to the model. For more on the model parameters, refer to [32] and 814 

[33]. 815 

 816 

To vary the proteomic efficiency (keff) of the export metabolites, first the exchange reaction into 817 

the shared compartment for all potential cross-feeding metabolites except the metabolites 818 

inferred from the experimental data (Table 2) was constrained to zero. Then the enzymatic 819 

efficiency of the outer membrane transport process of only the inferred metabolite was altered in 820 

each strain. The outer membrane transport reactions for each inferred metabolite (i.e.,HIStex, 821 

GLUtex, AKGtex, and OROTtex for L-histidine, L-glutamate, 2-oxoglutarate, and orotate, 822 

respectively) have multiple outer membrane porins capable of facilitating the transport process. 823 

To account for this the keff kinetic parameter of each of porin and reaction changed by 824 

multiplying the default keff value by the appropriate multiplier. The COBRAme software was used 825 

for all ME-model manipulations [32]. 826 

Reproducibility 827 

All code and data necessary to reproduce the results can be found on GitHub at 828 

https://github.com/coltonlloyd/OptAux.  829 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327270doi: bioRxiv preprint 

https://doi.org/10.1101/327270
http://creativecommons.org/licenses/by/4.0/


40 

Experimental Methods 830 

E. Coli Strain Construction 831 

All single gene knockouts used in this work were obtained from the Keio collection, a collection 832 

of all single gene knockouts in E. coli K-12 BW25113 [15]. To generate double gene knockout 833 

strains, the second knockout genes were identified from the Keio collection as donor strains, 834 

and their P1 phage lysates were generated for the transduction into the receiving single KO 835 

strains. For instance, the ΔgltA or ΔgltB knockout strain was a donor strain and the ΔprpC or 836 

ΔgdhA knockout strain was a receiving strain (Table S2). These four knockout strains were 837 

used for the construction of double knockout strains of ΔgltAΔprpC and ΔgdhAΔgltB. Each 838 

mutant was confirmed not to grow in glucose M9 minimal media without supplementation of an 839 

auxotrophic metabolite predicted by the iJO1366 model.  840 

Adaptive Laboratory Evolution 841 

Cultures were initially inoculated with equal numbers of cells from the two relevant auxotrophs, 842 

then serially propagated (100 μL passage volume) in 15 mL (working volume) flasks of M9 843 

minimal medium with 4 g/L glucose, kept at 37°C and well-mixed for full aeration. An automated 844 

system passed the cultures to fresh flasks once they had reached an OD600 of 0.3 (Tecan 845 

Sunrise plate reader, equivalent to an OD600 of ~1 on a traditional spectrophotometer with a 1 846 

cm path length), a point at which nutrients were still in excess and exponential growth had not 847 

started to taper off. Four OD600 measurements were taken from each flask, and the slope of 848 

ln(OD600) vs. time determined the culture growth rates. 849 
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Resequencing 850 

Co-culture populations samples were collected at multiple points throughout the ALE and 851 

sequenced. Additionally, the starting mutant strains and both mutants isolated from the ALE 852 

endpoint samples were sequenced. The ΔhisD endpoint clone was unable to be isolated via 853 

colony selection for ALE #11 . Genomic DNA of the co-culture populations and mutant clones 854 

was isolated using the Macherey-Nagel NucleoSpin tissue kit, following the manufacturer’s 855 

protocol for use with bacterial cells. The quality of isolated genomic DNA was assessed using 856 

Nanodrop UV absorbance ratios. DNA was quantified using the Qubit double-stranded DNA 857 

(dsDNA) high-sensitivity assay. Paired-end whole genome DNA sequencing libraries were 858 

generated using Illumina’s Kappa kit and run on an Illumina MiSeq platform with a PE600v3 kit. 859 

DNA sequencing data from this study will be made available on the Sequence Read Archive 860 

database (submission no. SUB3903910). 861 
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Supporting Information 880 

S1 Data. OptAux Solutions. Output of the OptAux algorithm ran for one, two, and three 881 

reaction knockouts on glucose minimal media for all carbon containing exchange metabolites. 882 

Four different trace metabolite thresholds were used (0, 0.01, 0.1, 2). 883 

 884 

S2 Data. Major Subsystem Elimination Designs. All MSE designs along with further 885 

information regarding the subsystems of the reaction knockouts and the metabolites that can 886 

restore growth in each design. 887 

 888 

S3 Data. Mutations. The breseq identified mutations for all samples collected in this work. Both 889 

the full output and a table with only mutations observed in the endpoint clones are provided. 890 

 891 

S4 Data. Duplications. Genes with read coverage meeting the duplication criteria. Seperate 892 

spreadsheets are provided for all samples using the mutant pair, ale number, flask number, 893 

isolate number, and replicate number to identify each sample.  894 
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