


Figure 5: LSTM Layer preference across cortex. An index of layer preference is computed for each
voxel in one subject (S1) and then projected onto that subject’s cortical surface. Voxels that are much
better-predicted by layer 1 than the others appear red; layer 2, green; and layer 3, blue. Voxels equally
well-predicted by all layers appear white. Non-significantly predicted voxels (mean r < 0:11) are
gray. Insets show model performance with each layer (averaged across context lengths) for two
representative voxels, one that slightly prefers layers 1 & 3 (left), and one that slightly prefers layer 2
(right). For most voxels there is little difference in performance from different layers. However, there
is a slight preference in AC for layers 1 & 3, and in higher semantic regions for layer 2.

layer preference across cortex in Figure 5. Here a color is assigned to each significantly predicted
voxel according to the relative encoding performance of each layer. Performance of the layer 1
model is shown using the red component of the color, layer 2 using green, and layer 3 using blue.
Non-significantly predicted voxels appear gray, and voxels that are predicted equally well by each
layer appear white.

Overall the performance of all layers is highly similar, rendering most voxels nearly white. Still, layer
2 provides the best predictions by a small margin, giving many voxels a green tint. However, auditory
cortex (AC) shows a clear preference for layers 1 and 3, giving it a purple tint. Thus it seems that
low-level speech processing (AC) is better modeled by layers 1 and 3, while high-level processing
is better modeled by layer 2. This suggests that the middle layer of the LSTM LM is learning the
highest-level representations, while layers 1 and 3, which are “closer" to the word embeddings,
are learning lower-level representations. This finding is in stark contrast to experiments that used
supervised networks (6; 4; 10). Those experiments found that high-level cortical areas were best
modeled by higher layers of the network. Our results suggest that the highest-level representations in
self-supervised models might emerge at the layer which is farthest from the input.

6 Conclusions

In this work, we effectively incorporate context representations for language using an LSTM LM.
We observe that representations outperform state-of-the-art embedding based models and also show
distinct behavior across different context lengths and LSTM layers. Our findings suggest that these
models do indeed incorporate context and temporal order, albeit differently across layers. Finally, we
show how our models explain the differences in language processing across different cortical regions,
from low-level to high-level language areas.

As future work, we would like to explore and understand the information captured in the contextual
representations that helps to model language processing in the cortex. Additionally, it would be
worth exploring the roles played by different LSTM gates in developing these representations while
incorporating context.

8

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327601doi: bioRxiv preprint first posted online May. 21, 2018; 



Acknowledgments

We thank Jack Gallant, Wendy de Heer, Frederic Theunissen, and Thomas Griffiths for helping
design the fMRI experiment and collect the data used here; Brittany Griffin and Anwar Nuñez for
segmenting and flattening cortical surfaces; and Niko Kriegeskorte for useful discussions. Data
collection was supported by NSF grant IIS-1208203 and NIH NEI grant EY019684-01A1. This work
was supported by grants from the Burroughs-Wellcome Fund and NVIDIA. We also acknowledge the
Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported within this paper.

References
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,

M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system for large-scale machine learning.
In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. pp.
265–283. OSDI’16, USENIX Association, Berkeley, CA, USA (2016), http://dl.acm.org/citation.
cfm?id=3026877.3026899

[2] Agrawal, P., Stansbury, D., Malik, J., Gallant, J.L.: Pixels to voxels: Modeling visual representation in the
human brain. CoRR abs/1407.5104 (2014)

[3] Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn.
Res. 3, 1137–1155 (Mar 2003), http://dl.acm.org/citation.cfm?id=944919.944966

[4] Eickenberg, M., Gramfort, A., Varoquaux, G., Thirion, B.: Seeing it all: Convolutional network layers
map the function of the human visual system. NeuroImage 152(Supplement C), 184 – 194 (2017), http:
//www.sciencedirect.com/science/article/pii/S1053811916305481

[5] Gao, J.S., Huth, A.G., Lescroart, M.D., Gallant, J.L.: Pycortex: an interactive surface visualizer for fmri.
Frontiers in Neuroinformatics 9, 23 (2015), https://www.frontiersin.org/article/10.3389/
fninf.2015.00023

[6] Güçlü, U., van Gerven, M.A.J.: Deep neural networks reveal a gradient in the complexity of neural
representations across the ventral stream. Journal of Neuroscience 35(27), 10005–10014 (2015), http:
//www.jneurosci.org/content/35/27/10005

[7] de Heer, W.A., Huth, A.G., Griffiths, T.L., Gallant, J.L., Theunissen, F.E.: The hierarchical cortical
organization of human speech processing. Journal of Neuroscience (2017), http://www.jneurosci.
org/content/early/2017/06/06/JNEUROSCI.3267-16.2017

[8] Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L.: Natural speech reveals the
semantic maps that tile human cerebral cortex. Nature 532(7600), 453–458 (2016), https://doi.org/
10.1038/nature17637

[9] Kay, K., Naselaris, T., Prenger, R., Gallant, J.: Identifying natural images from human brain activity.
Nature 452(7185), 352–355 (3 2008)

[10] Kell, A.J., Yamins, D.L., Shook, E.N., Norman-Haignere, S.V., McDermott, J.H.: A task-optimized
neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical
processing hierarchy. Neuron 98(3), 630 – 644.e16 (2018), http://www.sciencedirect.com/
science/article/pii/S0896627318302502

[11] Lerner, Y., Honey, C.J., Silbert, L.J., Hasson, U.: Topographic mapping of a hierarchy of temporal
receptive windows using a narrated story. Journal of Neuroscience 31(8), 2906–2915 (2011), http:
//www.jneurosci.org/content/31/8/2906

[12] McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: Contextualized word vectors.
CoRR abs/1708.00107 (2017)

[13] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling,
M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013), http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
pdf

9

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327601doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=944919.944966
http://www.sciencedirect.com/science/article/pii/S1053811916305481
http://www.sciencedirect.com/science/article/pii/S1053811916305481
https://www.frontiersin.org/article/10.3389/fninf.2015.00023
https://www.frontiersin.org/article/10.3389/fninf.2015.00023
http://www.jneurosci.org/content/35/27/10005
http://www.jneurosci.org/content/35/27/10005
http://www.jneurosci.org/content/early/2017/06/06/JNEUROSCI.3267-16.2017
http://www.jneurosci.org/content/early/2017/06/06/JNEUROSCI.3267-16.2017
https://doi.org/10.1038/nature17637
https://doi.org/10.1038/nature17637
http://www.sciencedirect.com/science/article/pii/S0896627318302502
http://www.sciencedirect.com/science/article/pii/S0896627318302502
http://www.jneurosci.org/content/31/8/2906
http://www.jneurosci.org/content/31/8/2906
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://dx.doi.org/10.1101/327601


[14] Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A.:
Predicting human brain activity associated with the meanings of nouns. Science 320(5880), 1191–1195
(2008), http://science.sciencemag.org/content/320/5880/1191

[15] Naselaris, T., Kay, K., Nishimoto, S., Gallant, J.: Encoding and decoding in fmri 56, 400–10 (05 2011)

[16] Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S.J., Kanwisher, N., Botvinick, M., Fedorenko, E.:
Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1), 963
(2018)

[17] Peters, M.E., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional
language models. In: ACL (1). pp. 1756–1765. Association for Computational Linguistics (2017)

[18] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep
contextualized word representations. CoRR abs/1802.05365 (2018), http://arxiv.org/abs/1802.
05365

[19] Qian, P., Qiu, X., Huang, X.: Bridging lstm architecture and the neural dynamics during reading. In:
Proceedings of International Joint Conference on Artificial Intelligence (2016), https://arxiv.org/
abs/1604.06635

[20] Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016)

[21] Sundermeyer, M., Schlüter, R., Ney, H.: Lstm neural networks for language modeling. In: Thirteenth
Annual Conference of the International Speech Communication Association (2012)

[22] Wehbe, L., Murphy, B., Talukdar, P., Fyshe, A., Ramdas, A., Mitchell, T.: Simultaneously uncovering the
patterns of brain regions involved in different story reading subprocesses. PLOS ONE 9(11), 1–19 (11
2014), https://doi.org/10.1371/journal.pone.0112575

[23] Wehbe, L., Vaswani, A., Knight, K., Mitchell, T.M.: Aligning context-based statistical models of language
with brain activity during reading. In: EMNLP (2014)

[24] Wu, M.C.K., David, S.V., Gallant, J.L.: Complete functional characterization of sensory neurons by system
identification. Annual Review of Neuroscience 29(1), 477–505 (2006), https://doi.org/10.1146/
annurev.neuro.29.051605.113024, pMID: 16776594

[25] Xu, H., Murphy, B., Fyshe, A.: Brainbench: A brain-image test suite for distributional semantic models. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. pp. 2017–2021
(2016)

10

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327601doi: bioRxiv preprint first posted online May. 21, 2018; 

http://science.sciencemag.org/content/320/5880/1191
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1604.06635
https://arxiv.org/abs/1604.06635
https://doi.org/10.1371/journal.pone.0112575
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
http://dx.doi.org/10.1101/327601

