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Abstract Isothermal titration calorimetry (ITC) is the only technique able to determine both the enthalpy18

and entropy of noncovalent association in a single experiment. The standard data analysis method based19

on nonlinear regression, however, provides unrealistically small uncertainty estimates due to its neglect20

of dominant sources of error. Here, we present a Bayesian framework for sampling from the posterior21

distribution of all thermodynamic parameters and other quantities of interest from one or more ITC22

experiments, allowing uncertainties and correlations to be quantitatively assessed. For a series of ITC23

measurements on metal:chelator and protein:ligand systems, the Bayesian approach yields uncertainties24

which represent the variability from experiment to experiment more accurately than the standard data25

analysis. In some datasets, the median enthalpy of binding is shifted by as much as 1.5 kcal/mol. A Python26

implementation suitable for analysis of data generated by MicroCal instruments (and adaptable to other27

calorimeters) is freely available online.28

29

Introduction30

Isothermal titration calorimetry (ITC) is a widely used biophysical technique for measuring the binding affinity31

between small molecules and biological macromolecules (such as proteins and RNA [8, 15, 26, 27]), as well32

as between proteins [37]. In addition to simple two-component (one-to-one) binding processes, ITC may also33

be used to study more complex processes such as competitive binding [15, 36], binding cooperativity [2],34

and binding events coupled to changes in the protonation state [6, 28] or tautomeric state [11] of one or35

more components. Provided reaction rates are slower than cell mixing times, ITC can even be used to study36

the kinetics of association [23].37

Here, we focus on the thermodynamics of simple two-component association (one-to-one binding). A38

unique and powerful property of ITC is that it can not only determine the free energy of binding (ΔG), but39
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also decompose it into enthalpy (ΔH) and entropy (ΔS) without having to resort to multiple experiments40

at different temperatures to determine these quantities via the van ’t Hoff equation. This decomposition41

has been used to draw conclusions into, for example, how entropy is related to antibody flexibility [35]42

and ordering of disordered loops [4] during antibody affinity maturation. It has also been used to suggest43

that iterative improvements in generations of drugs result in their interactions being increasingly driven by44

enthalpy [14]. Furthermore, it has been used to suggest how force fields might be improved [9].45

It is possible to perform enthalpy-entropy decomposition with ITC because the instrument not only46

detects a binding process, but can determine the heat of binding. The raw data from an ITC instrument is the47

differential power required to maintain a reference cell at the same temperature as the titrand in a sample48

cell (usually a macromolecule dissolved in buffer) as a titrant (usually a small molecule ligand) is injected into49

it. The experimental data  can be summarized as the measured heats of injection,  ≡ {q1, q2,… , qN} ob-50

tained by integrating the differential power over the duration of each injection. Thermodynamic parameters51

are then determined by fitting binding heat models (expressions for the heat in terms of unknown thermo-52

dynamic and experimental parameters) to the integrated heat [38]. The standard protocol for parameter53

estimation, implemented in the Origin software package [17] distributed with the popular MicroCal VP-ITC54

instrument [18], uses a nonlinear least squares fit to estimate the association constant Ka, enthalpy ΔH , and55

stoichiometry n (number of binding sites per mole of receptor), along with their estimated uncertainties.56

Unfortunately, this established procedure for analyzing ITC data does not accurately determine uncer-57

tainties for enthalpy-entropy decomposition because it fails to account for all relevant sources of error. In a58

large-scale interlaboratory study (ABRF-MIRG’02) of a model protein : small molecule binding reaction — the59

binding of carboxybenzenesulfonamide (CBS) to bovine carbonic anhydrase II (CAII) — the variation among60

the reported ITC binding constant and enthalpy from 14 participants was more than an order of magnitude61

larger (and up to three orders of magnitude larger) than standard errors reported by the individual least62

squares analyses [21].63

Spectrophotometric results suggested that titrant concentration errors were likely a major cause of this64

unexpectedly large variation. The standard analysis method accounts for error in the titrand concentration65

by treating the stoichiometry n as a free parameter that can take any real and positive value. On the66

other hand, the titrant concentration, likely an important source of discrepancies among laboratories [34],67

is often treated as exactly known. While precise titrant concentrations are systematically achievable [1],68

strong evidence suggests that large (10–20%) errors in titrant concentration are widespread even amongst69

laboratories skilled in biomolecular calorimetry [21]. It is possible to explicitly treat titrant concentration70

error in nonlinear least squares fitting [1], but this is not typically performed.71

In addition to concentration error, another important source of error that is frequently neglected is72

the so-called first injection anomaly, in which the heat of injection from the first injection is smaller than73

expected. The anomaly often emerges due to backlash in the motorized screw mechanism used to drive74

the syringe plunger [20]; if the last operation of the plunger prior to the first injection is upwards, then less75

titrant will be injected via a subsequent downward movement of the plunger. This issue may be overcome76

by executing a short downward movement of the plunger prior to insertion into the sample cell. Another77

contributing factor to the first injection anomaly is leakage of titrant out of the syringe during instrument78

equilibration. Because the initial injection generally carries the largest magnitude of heat per mole of titrant79

injected, the first injection anomaly (or the inability to account for it) can lead to significant errors in reported80

measurements.81

Here we introduce a new data analysis protocol that accounts for these sources of error and, as we82

shall show, more accurately estimates the uncertainty in derived thermodynamic parameters — especially83

entropy and enthalpy. The approach is modular; additional sources of uncertainty or variability can be84

modeled through simple extensions of the model. Importantly, this analysis procedure also allows the joint85

uncertainties in entropy and enthalpy to be resolved, an essential requirement to evaluating hypotheses86

regarding entropy-enthalpy compensation. Our approach is based on Bayesian statistics, which uses the87

posterior probability distribution,88

p(�|) ∝ p(|�) p(�). (1)
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where p(|�) is the likelihood, a conditional probability of observing data  (in our case, the injection heats89

{q1,… , qN}) given unknown thermodynamic parameters �. p(�) is the prior probability, a function describing90

foreknowledge of the parameters � before conditioning this distribution on the observed data  from this91

experiment.92

A Bayesian analysis has several significant potential advantages over the standard analysis protocol,93

including:94

1. Multimodal posteriors: Bayesian analysis makes no assumptions about the shape of the posterior.95

Therefore, it can treat multimodal posteriors in which two or more distinct sets of parameters describe96

the data. On the other hand, the standard analysis assumes a multivariate Gaussian, which is based97

on a single mode.98

2. Nonlinear parameter correlation: It is feasible to determine whether parameters are correlated,99

even if correlations are nonlinear.100

3. Modularity: Additional sources of uncertainty can be incorporated in a modular fashion simply by101

adding more random variables (nuisance parameters) with associated priors.102

4. Integration of multiple experiments: It is possible to incorporate information from multiple mea-103

surements and even from multiple experimental techniques. The posterior probability of a parameter104

is simply the product of posteriors for each measurement. Information from control experiments, such105

as a blank titration or prior standard measurements, can be incorporated into the prior.106

5. Optimal experimental design: New experiments that maximize the gain of new information can be107

automatically identified. By using techniques from Bayesian experimental design [3], one can choose108

among many potential experiments those that would maximize the gain of new information, either109

sequentially or in batches.110

To clarify, it is possible for analyses based on nonlinear regression to integrate some of these features. In111

nonlinear regression, parameter distributions are inherently non-Gaussian and two-dimensional contour112

plots of different parameters may have non-ellipsoid shapes, indicating nonlinear correlations [29, 33]. It is113

also possible to integrate multiple experiments with a global fit. However, these features are not available in114

the standard protocol.115

Recently, Duvvuri et al. [7] described a new python package for the Bayesian analysis of ITC experiments.116

For the analysis of single experiments, their results were consistent with Origin. They were also able to117

integrate data from multiple buffers, titrant/titrand ratios, and temperatures. However, they did not perform118

substantial error analysis.119

Our present work is based on a different new python package and we more carefully consider the120

uncertainty of different analysis protocols. The primary criterion we use to evaluate and compare analysis121

protocols is based on interval estimates. Interval estimates have somewhat different meanings in Bayesian122

and frequentist statistics. In frequentist statistics, the �% confidence interval is expected to contain the true123

value �% of the time. A confidence interval is inaccurate if the percentage of estimated intervals that contain124

the true value deviates from �%. In Bayesian statistics, the credible interval is not necessarily intended to125

contain the true value a specific percentage of the time; it is simply a region that contains �% of the posterior126

probability. Nonetheless, for the purposes of comparing uncertainties, we evaluate whether the Bayesian127

credible interval (BCI) obtained from our model serves as an accurate confidence interval compared to the128

confidence interval from the standard nonlinear regression protocol (NlRCI). Previously, BCIs have been129

shown to work well as confidence intervals for binding thermodynamics and reference scattering patterns in130

analyses of X-ray scattering experiments of protein:ligand binding [19].131

Experimental132

Titration of Mg(II) into EDTA133

In order to assess the effectiveness of the Bayesian approach in describing the true uncertainty in the134

experimental measurements, we studied a simple complexation reaction—the 1:1 binding of Mg(II) to the135

chelator EDTA—for which multiple experimental replicates can be easily collected. The entire ITC experiment136

was repeated from scratch—with all solutions prepared completely independently so that any concentration137
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errors would be fully independent—a total of 14 times. This is critical, as simply repeating the experimental138

measurement with the same stock solutions would not capture the true experimental variability. For each139

trial, the titrant (MgCl2), titrand (EDTA), and buffer (50 mM Tris-HCl pH 8.0) were weighed and dissolved to140

prepare solutions at the two planned concentrations for the titrant MgCl2 and the titrand EDTA. In the first141

five trials, we prepared the titrant and titrand concentrations as 1.0 mM and 0.1 mM, respectively. In the142

other nine trials, the titrant and titrand concentrations were prepared as 0.5 mM and 0.05 mM, respectively.143

Magnesium chloride hexahydrate [MgCl2⋅(H2O)6] was purchased from Fisher Scientific (Catalog No. BP214-144

500, Lot No. 006533) and anhydrous ethylenediaminetetraacetic acid (EDTA) was purchased from Sigma-145

Aldrich (Catalog No. E6758-500G, Batch No. 034K0034). Tris base was purchased from Fisher Scientific146

(Catalog No. BP154-1, Lot No. 082483). Buffer was prepared by weighing Tris base, adding MilliQ water, and147

adjusting the final pH to 8.0 by dropwise titration with HCl or NaOH. Solutions were prepared by weighing148

powder and adding the appropriate amount of buffer, neglecting the volume occupied by powder, to make149

a concentrated solution (15 mM for MgCl2 and 1.0 mM for EDTA). To maximize the number of significant150

figures, at least 0.1 g of MgCl2 and 0.01 g of EDTA were weighted out. The solutions were then further diluted151

with buffer to prepare the titrant and titrand. For example, to prepare a 0.1 mM solution of EDTA, a pipetman152

was used to measure 9 parts buffer to 1 part of 1.0 mM EDTA.153

ITC measurements were performed on a MicroCal VP-ITC calorimeter. The experiments consisted of a154

total of 24 injections, with the first injection programmed to deliver 2 �L of titrant (MgCl2) into the sample155

cell, and the remaining 23 injections programmed to deliver 12 �L. Data was collected for 60 s prior to the156

first injection and 300 s for each injection. The injection rate for all injections was 0.5 �L/s. All experiments157

were conducted at 298.1 K, and the reference power was fixed at 5 �cal/s.158

The baseline was corrected and injection heats integrated using NITPIC [12].159

Titration of phosphonamidate-type inhibitors into thermolysin160

To demonstrate our approach on protein:ligand systems, we also analyzed titrations of phosphonamidate-161

type inhibitors into thermolysin initially described in Krimmer et al. [13]. For each individual measurement,162

lyophilized thermolysin powder was freshly weighed (1.5–2 mg) and dissolved in an appropriate volume of163

buffer to achieve a concentration of 30 �M. The concentration was confirmed by ultraviolet absorption at164

280 nm. Prior to measurement, the thermolysin soluton was centrifuged for 8 min at 8150 g. In contrast,165

one solution was prepared for all measurements with each ligand by dissolving the pure powder (0.3–0.4166

mg) in buffer without the addition of DMSO. A MX5 microbalance from Mettler Toledo (Switzerland) with a167

readability of 1 �g and a repeatability of 0.8 �g was used for the sample weighting. Measurements were168

repeated in this fashion at least nine times. Results reported in Krimmer et al. [13] were based on three169

repetitions with a fresh batch of thermolysin and after optimizing ITC parameters. In contrast, our present170

analysis was based on all available data for each system except for a small subset with a large baseline shift171

in the middle of an injection.172

Lyophilized thermolysin (EC number 3.4.24.2) from Bacillus thermoproteolyticus was purchased from173

Calbiochem (EMD Biosciences). The inhibitors (Figure 1) P-((((benzyloxy)carbonyl)amino)methyl)-N-((S)-4-met174

hyl-1-oxo-1-(propylamino)pentan-2-yl)phosphonamidicacid (ligand 1), P-((((benzyloxy)carbonyl)amino)methyl175

)-N-((S)-1-(isobutylamino)-4-methyl-1-oxopentan-2-yl)phosphonamidicacid (ligand 2), and P-((((benzyloxy)car176

bonyl)amino)methyl)-N-((S)-4-methyl-1-(((S)-2-methylbutyl)amino)-1-oxopentan-2-yl)phosphonamidicacid (lig-177

and 3), were synthesized as previously described [22]. (Crystal structures of ligands 1 (PDB ID 4MXJ), 2178

(PDB ID 4MTW), and 3 (PDB ID 4MZN) in complex with thermolysin have been previously reported [13]). All179

measurements were performed with a buffer composed of 20 mM HEPES (pH 7.5), 200 mM NaSCN, and 2180

mM CaCl2⋅ 6H2O. HEPES was purchased from Carl Roth (Catalog No. 9105.3, Batch no. 192184596), NaSCN181

was purchased from Fluka Analytical (Catalog No. 71938-1KG, Lot no. BCBC9384V), and CaCl2⋅6H2O was182

purchased from Carl Roth (Catalog No. T886.2, Lot no. 433205269). Prior to measurement, the buffer was183

filtered through a 0.22 µm filter and degassed under reduced pressure.184

ITC measurements with thermolysin were performed on an MicroCal ITC200 calorimeter from GE Health-185

care (Piscataway, New Jersey). After an initial delay 170 or 180 sec, the initial injection (0.3–0.5 �L) was186

followed by 19–26 main injections (1.2–1.5 �L). The duration of the injection (in sec) was twice the value of187
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Figure 1. Chemical structures of thermolysin ligands used in this study.

the volume (in �L). All measurements were performed at a temperature of the measurement cell of 298.15188

K, a stirring speed of 1000 rpm, titrand (thermolysin) concentration of 30 �M, and a titrant (ligands 1-3)189

concentration of 400 �M. For details on each protocol, see Tables S1–S3 of the Supplementary Material.190

As with the Mg(II):EDTA data, the baseline was corrected and injection heats integrated using NITPIC [12].191

CBS:CAII dataset from the ABRF-MIRG’02 study192

Finally, we considered a protein:ligand ITC dataset from a previously published study which demonstrated193

large interlaboratory variation far in excess of reported error estimates [21]. Injection heat data were194

digitized from Figure 4 in the ABRF-MIRG’02 paper [21], which includes 14 ITC datasets measured fully195

independently on identical source material (aliquots of CAII and dry powder stocks of CBS) by independent196

laboratories. Dataset 2 was generated by an instrument called the CSC 4200 ITC (see Table 2 in [21]) for197

which we could not find the user’s manual to obtain information such as the cell volume. Therefore, we198

excluded this dataset. We also excluded dataset 4 because we were not able to reliably digitize the large199

number of injections. For other datasets, the experimental design parameters were taken from Table 2200

of the study, while the reported thermodynamic parameters and standard errors were taken from Table201

3 [21]. In the ABRF-MIRG’02 study [21], most experiments obtained standard errors were using a nonlinear202

least squares fit. The exceptions were datasets 10 and 14, in which the standard deviation was obtained by203

repeating the same experiment 3 and 5 times, respectively. In these datasets, it was not clearly specified204

whether the entire experiment or just the titration was repeated in each replicate.205

Frequentist confidence intervals206

Origin software was used to perform nonlinear least squares fit of the heat data to obtain the binding207

constant Ka, enthalpy ΔH , and the stoichiometry number n, and their corresponding standard errors.208

Each parameter was assumed to be normally distributed and the standard error was used as a standard209

deviation. The lower and upper bounds of the �% confidence interval were the 1 − �∕2 and 1 + �∕2 percentile,210

respectively, of the normal distribution with a mean as the point estimate and standard deviation as the211

reported uncertainty.212

Sampling from the Bayesian posterior213

Our Bayesian model is constructed to infer the unknown true parameters,214

� ≡ (ΔG,ΔH,ΔH0, [L]s, [R]0, �), (2)

which represent215

• ΔG : the free energy of binding216

• ΔH : the enthalpy of binding217

• ΔH0 : the enthalpy of dilution and stirring per injection218

• [L]s and [R]0 : the concentrations of titrant in the syringe and of the titrand in the cell, respectively219

• � : the standard error of heat measurement per injection, a nuisance parameter needed to write the220

data likelihood. The model assumes all injections include the same number of power measurements.221
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Likelihood222

The data  ≡ {q1, q2,… , qN} consists of the observed heats per injection determined by integrating the223

differential power over the injection time. The corresponding data likelihood function was based on the224

assumption that, because the observed injection heat qn is the sum of many power measurements, the225

measurement error added to the true (unknown) heat q∗n will be normally distributed due to the central limit226

theorem,227

qn ∼  (q∗n (�), �
2). (3)

The total data likelihood for  ≡ {q1, q2,… , qN} is therefore given by228

p(|�) = 1
(2�)N∕2�N

exp

[

− 1
2�2

N
∑

n=1
(qn − q∗n (�))

2

]

. (4)

The model heats q∗n (�) are a function of the parameters �. See Appendix for details of the binding model229

relating � to the true heats q∗n .230

Priors231

The prior p(�) was a product of priors for each parameter, p(�) =
∏

j p(�j). Uniform priors were chosen for232

ΔG, ΔH , and ΔH0:233

ΔG ∼ Uniform(−40 kcal∕mol, 40 kcal∕mol), (5)

234

ΔH ∼ Uniform(−100 kcal∕mol, 100 kcal∕mol), (6)

235

ΔH0 ∼ Uniform(qmin − Δq, qmax + Δq), (7)

where qmin = min{q1, q2,… , qN}, qmax = max{q1, q2,… , qN} and Δq = qmax − qmin, usually reported in units of cal.236

We used three different sets of priors for the true concentrations of titrant in the syringe, [L]s, and237

receptor in the cell, [R]0 (Table 1): General, Flat [R]0, and Comparison. All of the concentration models238

make use of the fact that concentrations must be positive. In the General model, both concentrations are239

assigned lognormal priors with the mean and standard deviation given by their stated experimental values240

and corresponding experimental uncertainties due to preparation steps,241

ln[X]0 ∼ 
(

[X]0, (�[X]0)2
)

. (8)

In the absence of specific quantification of the titrant concentration uncertainty, we assumed a value of242

�[X]0 equal to 10% of the provided [X]0. This specified uncertainty is in line with quantification of typical243

laboratory titrant concentration errors observed by Myszka et al. [21]. In cases where the practitioner uses244

an orthogonal method to quantify titrant concentration or carefully tracks the uncertainty during preparation245

steps, as described in Boyce et al. [1], this more precise concentration uncertainty could be used instead.246

Alternatively, �[X]0 could be treated as a free nuisance parameter. Although the parameter may not be247

precisely determined from a single ITC experiment, it could potentially be elucidated by sampling from a248

Bayesian posterior based on multiple measurements with the same titrand solutions, analogous to a global249

fitting procedure possible with nonlinear least squares [32].250

In the Flat [R]0 model, a uniform prior was used for [R]0 such that,251

[R]0 ∼ Uniform

(

[R]stated0

10
, 10[R]stated0

)

. (9)

This model is useful in cases where the receptor concentration is not clearly known, such as when the sample252

is impure or partially degraded. Due to potential degradation of protein used in some ITC measurements,253

we used this model in our analysis of data for thermolysin. Finally, in the Comparison model, we used a254

uniform prior for [R]0 and a sharply peaked prior for [L]s such that �[L]s = 0.001[L]stateds .255
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Name [R]0 [L]s Purpose

General
Lognormal,

�[R]0 = 0.1[R]stated0

Lognormal,

�[L]s = 0.1[L]stateds

Most future analyses

Flat [R]0 Uniform
Lognormal,

�[L]s = 0.1[L]stateds

When the true [R]0 is unknown

Comparison Uniform
Lognormal,

�[L]s = 0.001[L]stateds

Comparison with standard analyses

Table 1. Summary of concentration priors used in this manuscript

The Comparison model mimics the treatment of concentrations in standard nonlinear least squares256

fitting. In the standard procedure, [L]s is assumed to be precisely the stated value while [R]0 can take any257

positive value that minimizes the total residual sum of squares. There is no penalty for changing [R]0 from its258

stated value. This is consistent with flat prior for [R]0 a sharp prior for [L]s. On the other hand, the General259

model allows for but penalizes deviations from the stated values. In the absence of further information, we260

believe that the General model is the most justified of the three models because concentrations are likely to261

be close to their stated values. Our main reason for performing calculations with the Comparison model262

was to isolate the effects of concentration models from other aspects of the Bayesian analysis.263

Finally, since even its order of magnitude may be unknown, an uninformative Jeffreys prior [10] was264

assigned to the noise parameter �,265

p(�) ∝ (�∕�0)−1. (10)

where �0 ≡ 1 cal is a reference quantity that simply renders the ratio �∕�0 dimensionless. This model266

assumes that the injection heat measurement uncertainty � is constant for all injections. This may be a good267

approximation when the same number of power measurements are integrated for each injection (i.e., when268

injections are of identical duration), but when experiments contain injections of different durations, the noise269

variance �2 should be proportional to the number of power measurements summed to give the injection heat270

(with all other things being held constant). More complex noise variance models (such as those considered271

in [31]) could also be considered. The noise model could also be improved using calibration experiments272

based on the same protocol (such as blank titrations), or even other data collected on the instrument for273

other systems; in these cases, likelihoods from independent experiments are simply multiplied.274

While we used uninformative priors (except for our concentrations) in this study, alternative priors275

for other parameters can be used. If some knowledge of thermodynamic parameters or concentrations276

is available from another type of experiment, e.g., spectrophotometric measurements, then these can277

be incorporated into their respective priors. In such cases, the prior could be normally-distributed with278

the sample mean and standard deviation as parameters. Another way to parameterize the prior for279

concentrations is by careful propagation of error during the sample preparation process (from estimates of280

known pipetting error magnitudes, known analytical balance accuracies, and reported compound purities).281

Alternatively, the posterior from a previous (e.g., pilot) ITC experiment can be used as the prior to integrate282

the information from a second ITC experiment with different experimental parameters.283

Sampling from the posterior284

Because it is complex and multidimensional, the posterior distribution (Eq. 1) is not amenable to direct285

sampling using acceptance-rejection or another method that generates independent and identically dis-286

tributed variates. To compute statistics such as the mean, median, mode, credible intervals, and marginal287

distributions of the posterior, we instead sampled from the posterior using Markov chain Monte Carlo288

(MCMC) [16] simulation. Initial values were chosen as follows:289

• for [L]s and [R]0, the stated (intended) concentration was used290

• for ΔH , ΔG, and ΔH0, initial values of zero (in their appropriate energy units) were used291

• for �, the standard deviation of the last four injection heats was used as an initial guess292
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Parameters were updated by sequential Gibbs sampling where each parameter was updated via Metropolis-293

Hastings sampling:294

1. For each single parameter, a proposal is drawn from a normal distribution centered at the current295

value, and a scale of unity for ΔH , ΔG, and ΔH0, or the initial guess value for �, [L]s, and [R]0;296

2. The trial move is accepted or rejected according to the Metropolis criterion. If it is accepted, the next297

value in the Markov chain is the trial move. If it is rejected, the next value in the Markov chain is the298

original value.299

MCMC was performed using a python library that we wrote, bayesian-itc (https://github.com/choderalab/300

bayesian-itc). bayesian-itc uses the Metropolis-Hastings implementation in the PyMC [24] library to perform301

MCMC sampling. For each experiment, sampled parameters were stored after every 2000 MCMC trial moves302

for a total of 5000 samples. Each sample from the Bayesian posterior is a set of six values, as described in303

Equation 2. For each parameter, the �% BCI is estimated based on the shortest interval that contains �% of304

the MCMC samples.305

The precise version of library used in this manuscript was committed to github on May 2, 2018 at https:306

//github.com/nguyentrunghai/bayesian-itc/tree/d8cbf43240862e85d72d7d0c327ae2c6f750e600. The di-307

rectory entitled analysis_of_Mg2EDTA_ABRF-MIRG02_Thermolysin contains all the data needed to reproduce308

the figures in this manuscript.309

The Kullback-Leibler divergence quantifies differences between thermodynamic parame-310

ter distributions obtained from Bayesian and nonlinear least-squares approaches311

To compare posterior marginal distributions, we computed the Kullback-Leibler divergence (KL-divergence),312

between the posterior marginal densities in the two most important thermodynamic quantities of interest,313

(ΔG,ΔH),314

DKL
[

p(ΔG,ΔH|1)||p(ΔG,ΔH|2)
]

= ∫ dΔG ∫ dΔH p(ΔG,ΔH|1) ln
p(ΔG,ΔH|1)
q(ΔG,ΔH|2)

. (11)

p(ΔG,ΔH|1) and p(ΔG,ΔH|2) are the posterior marginal densities specified by two different experiments315

with associated datasets 1 and 2. This metric, commonly used as a measure of deviation between316

two probability densities, can be interpreted as the amount of information lost when p(ΔG,ΔH|2) is317

used to approximate p(ΔG,ΔH|1). The marginal posterior density for each experiment was estimated by318

using a Gaussian kernel density estimate (KDE) based on MCMC samples for ΔG and ΔH (ignoring other319

parameters). We used the KernelDensity package implemented in scikit-learn [25] to estimate the density320

p(ΔG,ΔH). The bandwidth for Gaussian kernel was set to 0.03 kcal/mol. Although the Kullback-Leibler321

divergence can be analytically computed for Gaussian densities, we also used the same KDE method to322

estimate probability densities p(ΔG,ΔH) for nonlinear regression. Samples for ΔG and ΔH were drawn from323

Gaussian distributions with the mean and standard deviation based on nonlinear regression point estimates324

and errors, respectively.325

Results and Discussion326

MCMC sampling leads to precise estimates of Bayesian credible intervals327

Our MCMC sampling protocol appears to yield precise estimates of 95% BCIs (Figure 2 and Figures S1 to S4328

in the Supplementary Material). In all of the selected systems, the estimated 95% BCIs do not substantially329

change after considering about 2000 samples. The standard deviation of estimated upper and lower bounds330

over the five independent simulations in each system was less than 5% of the length of the average interval.331

Therefore, we are confident that the number of MCMC samples and mixing of the MCMC chain is sufficient332

to yield consistent estimates of the BCIs and other statistics of interest.333

Bayesian ITC yields unimodal distributions of linearly correlated parameters334

Bayesian analysis permits multimodal posteriors and nonlinear parameter correlations to be investigated.335

Qualitative trends in the posterior density may be visualized by generating histograms of MCMC samples336
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Figure 2. Convergence of 95% Bayesian credible intervals (BCIs) with MCMC sampling. 5000 MCMC samples were
generated from the Bayesian posterior (General model) for several variables based on one ITC experiment measuring

Mg(II):EDTA binding. For five independent repetitions of the MC simulations, the black lines are running estimates, as the

number of samples is increased, of the upper and lower limits of 95% BCIs. The red line and error bars are the average

and standard deviation across the five independent simulations. Similar plots for ligands 1-3 binding to thermolysin and
CBS:CAII are available as Figures S1 to S4 in the Supplementary Material.
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drawn from the posterior. For our systems, representative 1D marginal distributions of key parameters337

(Figure 3) are unimodal. Although some skew is evident in ΔH , the Gaussian distribution could be considered338

a reasonable approximation for most of these parameters. Our observation is consistent with previous339

analyses of nonlinear regression which showed that a Gaussian assumption is appropriate when the340

magnitude of statistical error is less than 10% of a parameter [29, 33].341

Representative 2D marginal distributions (Figure 4) show that some pairs of parameters are nearly342

independent and others are highly correlated, with varying degrees of correlation in between. Of particular343

interest is the fact that while the free energy ΔG and enthalpy ΔH are mostly uncorrelated (top left of Figure344

4), there is high correlation between the enthalpic (ΔH) and entropic (TΔS) contributions to binding (top345

right of Figure 4) and between ΔH and the receptor concentration [R]0 (bottom right of Figure 4). These346

correlations are not considered in the standard nonlinear regression analysis.347

Given that the correlations appear to be linear, they can be succinctly summarized via the correlation348

coefficient. The estimated correlation matrix shown in Table 2 indicates that the titrant [L]s and titrand349

concentrations [R]0 are highly correlated with each other and with the enthalpy ΔH but only weakly with ΔG.350

This result is consistent with Tellinghuisen [30], who evaluated the sensitivity of the binding constant and351

enthalpy to changes in concentration.352

ΔG ΔH ΔH0 [L]s [R]0 ln �
ΔG 1 0.50(1) 0.280(8) 0.541(9) 0.553(9) 0.00(2)
ΔH 0.50(1) 1 −0.07(1) 0.9893(2) 0.9884(2) 0.01(1)
ΔH0 0.280(8) −0.07(1) 1 0.00(1) 0.01(1) 0.016(9)
[L]s 0.551(9) 0.9893(2) 0.00(1) 1 0.998 87(3) 0.01(1)
[R]0 0.553(9) 0.9884(2) 0.01(1) 0.998 87(3) 1 0.01(1)
ln � 0.00(2) 0.01(1) 0.016(9) 0.01(1) 0.01(1) 1

Table 2. Correlation matrix estimated from the Bayesian posterior (General model) for an Mg(II):EDTA binding dataset.
Numbers in parentheses denote the uncertainty in the last digit.

Estimates of concentrations and ΔH are correlated because the effect of changing one of the parameters353

can be largely counteracted by changing another. When samples from a Bayesian posterior for MG(II):EDTA354

binding were used to parameterize a simple linear model for [L]s and ΔH as a function of [R]0, different355

parameter values led to essentially the same integrated heat curve (Figure 5). An important implication of356

this enthalpy-concentration compensation is that given a measured integrated heat curve, the precise values357

of the three parameters are underdetermined; by itself, ITC cannot simultaneously determine the titrant or358

titrand concentration and the enthalpy of binding.359

Median enthalpy estimates are sensitive to the titrand concentration model360

Even though nonlinear least squares fitting and Bayesian analysis are based on the same binding model,361

other variations in the analysis procedure may lead to different estimates of ΔG and ΔH . We compare362

different analysis methods by considering how the median (which is less sensitive to outliers than the mean)363

of each quantity within a dataset. For all datasets, the median estimate of ΔG is largely consistent across the364

different analysis methods. In contrast, with the thermolysin datasets, ΔH estimates are consistent between365

all models except for the General model, which differ by as much as 1.5 kcal/mol (Table 3).366

The consistency between all models except for the General model indicates that the major reason for367

discrepancy is the prior on the receptor concentration. In all but the General model, the titrand concentration368

freely changes (subject to the constraint [R]0 > 0) from stated concentration without penalty. In the General369

model, the prior penalizes deviations from the stated value of [R]0. Estimates of the concentration affect ΔH370

but not ΔG because concentrations are highly correlated with ΔH but not with ΔG.371

It is also evident that the titrand concentration is the determining factor for the shift in median ΔH372

because the titrant concentration is lognormal in all the Bayesian priors. Modifying the standard deviation in373

the lognormal distribution affects credible intervals but does not change the median. By elimination, the374
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Figure 3. Representative 1D marginal distributions of thermodynamic parameters from Bayesian ITC analysis.
1D marginal probability densities for thermodynamic parameters of interest were estimated based on 5000 MCMC

samples generated from the Bayesian posterior (General model) for one ITC experiment measuring Mg(II):EDTA binding.

Horizontal bars show 95% Bayesian credible intervals. The triangle in density plot of [R]o indicates the stated value.
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Figure 4. Representative 2D marginal distributions of pairs of thermodynamic properties from Bayesian ITCanalysis. 2D joint marginal probability densities were estimated based on 5000 MCMC samples generated from the
Bayesian posterior (General model) for one ITC experiment measuring Mg(II):EDTA binding.
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Figure 5. Integrated heat for different values of titrand concentration [R]0 for Mg(II):EDTA binding. Corresponding
values of [L]s and ΔH were based on a simple linear regression of [L]s and of ΔH versus [R]0. The other parameters (ΔG,
ΔH0) took the last value from the MCMC time series (General model).
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Dataset Nonlinear least

squares

Comparison Flat [R]0 General

Mg(II):EDTA -2.25 (0.06) -2.24 (0.05) -2.19 (0.04)

ligand 1:thermolysin -5.84 (0.27) -5.89 (0.22) -5.92 (0.21) -4.41 (0.31)

ligand 2:thermolysin -5.08 (0.07) -4.92 (0.06) -4.96 (0.07) -4.23 (0.09)

ligand 3:thermolysin -5.28 (0.08) -5.10 (0.09) -5.14 (0.1) -4.46 (0.29)

CBS:CAII -10.36 (0.6) -10.22 (0.53) -10.05 (0.76)

Table 3. Median estimates of ΔH (kcal/mol). For nonlinear least squares, the value is the median of the different
point estimates across different measurements. For Bayesian analysis, it is the median of the median sample from each

Bayesian posterior. The numbers in parentheses are standard deviations estimated by bootstrapping: resampling the

datasets (for nonlinear least squares) or the MCMC samples (for Bayesian analysis) with replacement 1000 times.

factor that leads to the shift in the median is usage of a lognormal instead of uniform prior for the titrand375

concentration.376

BCIs are superior to NlRCIs377

In addition to the median enthalpy, the width and and consistency of intervals is also dependent on the378

concentration model (See Table 4, Figure 6, and Figures S5 to S16 in the Supplementary Material). For ΔH379

and [R]0 in particular, NlRCIs and BCIs based on the Comparison model are narrower and correspondingly380

less consistent with one another than BCIs based on other concentration models. BCIs based on the General381

model are substantially broader and those based on the flat [R]0 model are broader still. However, all the382

BCIs and NlRCIs for ΔG are of comparable magnitude.383

System General Flat [R]0 Comparison

Mg(II):EDTA 6 S5

ligand 1:thermolysin S6 S7 S8

ligand 2:thermolysin S9 S10 S11

ligand 3:thermolysin S12 S13 S14

CBS:CAII S15 S16

Table 4. Figure numbers for confidence interval plots in this manuscript

In contrast with the dependence of the shift in the median enthalpy on the titrand concentration model,384

the change in interval size is primarily driven by the titrant concentration model. The Comparison and Flat385

[R]0 model have the same uniform prior for the titrand concentration. However, the size of the ΔH and [R]0386

intervals for the Flat [R]0 model is much larger because the standard deviation in the lognormal model for387

[L]s is larger.388

On a note related to the width and consistency between confidence intervals, nearly every pair of 95%389

BCIs for ΔG and ΔH from the General and Flat [R]0 model have at least some overlap with one another. (The390

95% BCIs for [R]0 do not overlap when the stated concentrations differ, as in the Mg(II):EDTA and CBS:CAII391

datasets.) As with other statistics, BCIs based on the Comparison model are very similar to NlRCIs (Figures392

S5, S8, S11, S14, and S16 in the Supplementary Material).393

One complication with assessing confidence interval estimates is that we do not know the “true” value.394

Because we do not know the “true” value, we used the median value from repeated experiments as an395

approximation. The mean value is also a suitable choice, but the median is less sensitive to outliers.396

Most of the 95% BCIs for ΔG, ΔH , and [R]0 from the General and Flat [R]0 models contain the median.397

One exception is for the CBS:CAII dataset, in which BCIs for ΔG capture the median less consistently. In398

contrast, while most 95% NlRCIs for ΔG contain the median (except in the CBS:CAII dataset), the 95% NlRCIs399

for ΔH and [R]0 generally do not. BCIs from the Comparison model behave similarly to NlRCIs (Figures S5,400

S8, S11, S14, and S16 in the Supplementary Material). The size of these intervals appear to be significantly401

underestimated in all of our systems.402
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Bayesian approach Nonlinear least squares

Figure 6. Uncertainty estimates fromBayesian and nonlinear least squares analyses ofMg(II):EDTA ITC replicates.
95% credible intervals estimated from the Bayesian posterior based on the General model (left) and confidence intervals

from nonlinear least squares (right) for parameters specifying magnesium binding to EDTA. The vertical green lines are

the median. There are two median estimates for R because the experiments were done at two different concentrations.
Red bars denote the standard deviations of the lower and upper bounds, estimated by bootstrapping, and are a total of

two standard deviations wide.
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A better way to visualize the performance of BCIs and NlRCIs as confidence intervals is to compare the403

fraction of intervals that contain the median with the stated confidence level. If the confidence levels truly404

specify the probability of containing the true value, then data points should lie along the diagonal solid line405

of Figure 7 and Figures S17 to S20 in the Supplementary Material. Points below the diagonal indicate that406

stated confidence intervals are too small; points above the diagonal indicate that they are too large.407

By this metric, BCIs based on the General model perform nearly ideally for Mg(II):EDTA and less reliably408

for the other datasets. In the cases of Mg(II):EDTA and ligand 2:thermolysin binding, the observed fraction409

of BCIs (General model) for ΔG and ΔH that contain the median is very close to the ideal line (Figure 7410

and Figure S18 in the Supplementary Material). For the other datasets, BCIs based on the General model411

are less consistent with observed rates. In the cases of ligand 1:thermolysin and ligand 3:thermolysin, the412

median-containing frequency of ΔG BCIs is also very close the ideal line whereas that ΔH BCIs deviates from413

ideality, especially for larger confidence intervals (Figures S17 and S19 in Supplementary Material). In the414

CBS:CAII dataset, however, BCIs for ΔH are more consistent with observed rates than for ΔG.415

Intervals from other models had variable performance. NlRCIs of ΔG have similar performance to BCIs416

but the observed rate at which NlRCIs for ΔH contain the median is significantly less than ideal. This417

deviation from ideality is consistent with the poorly overlapping 95 % confidence intervals for ΔH . BCIs418

from the Comparison model behave similarly to NlRCIs. In contrast with intervals from other models, BCIs419

based on the flat [R]0 model generally overestimate the width of intervals for the thermolysin model. The420

overestimation of intervals suggests that the uniform prior employed in this analysis is too uninformative.421

Overall, our Bayesian method (with the General model) led to reasonable BCIs for multiple measurements422

performed by a single individual within a single laboratory. The performance of BCIs in accounting for423

laboratory-to-laboratory variability in the CBS:CAII datasets digitized from the ABRF-MIRG’02 paper [21] was424

weaker. In this dataset, there must be one or more significant sources of error that the present approach425

fails to account for.426

The strong correlation between concentrations and ΔH explains the dramatic improvement of the427

credible intervals of ΔH (e.g. Figure 7) when the uncertainty in [L]s is included in the Bayesian analysis. In the428

same vein, the weak correlation between concentrations and ΔG explains why NlRCIs for ΔG are reasonable429

(Figure 7) even if the titrant concentration was treated as exactly known in the fit. Trends in the accuracy of430

confidence intervals are consistent with previous analyses based on error propagation [1, 5, 30, 34], which431

showed that titrant concentration errors propagate to small relative errors in ΔG but large relative errors in432

ΔH . If the error in titrant concentration is correctly propagated, it may be possible to make NlRCIs more433

accurate [1], but testing this is beyond the scope of the present work. In subsequent analysis, we will only434

consider the General model.435

Binding parameter distributions are more consistent with Bayesian analysis than nonlin-436

ear regression437

In most datasets, the estimated Kullback-Leibler divergence between pairs of Bayesian posteriors is smaller438

than those estimated for nonlinear regression (Figure 8 and Figures S21 to S24 in Supplementary Material.)439

For the thermolysin datasets where the flat [R]0 model was tested, the Kullback-Leibler divergence for the flat440

[R]0 model was even smaller than for the general model. Therefore, marginals of the Bayesian posteriors are441

more consistent with one another than the Gaussian distributions from nonlinear regression. This finding442

agrees with above analyses that the Bayesian posterior captures the variance among experiments better443

than nonlinear least squares. The one exception is with the CBS:CAII dataset, in which the Kullback-Leibler444

divergence matrix based on the Bayesian method is comparable to the one from nonlinear regression (Figure445

S21 in the Supplementary Material).446

Conclusions447

In this study we have applied Bayesian statistics to analyze ITC data for the first time. We were able to448

account for various sources of error including, most importantly, uncertainties in the titrand and titrant449

concentrations. Due to the inclusion of concentration uncertainties, BCIs more accurately capture the450
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variance between independent experiments than NlRCIs. In some datasets, the concentration error model451

led to differences in binding enthalpy estimates. Correlation between different parameters computed from452

the Bayesian posterior helps rationalize the effects of concentration uncertainty on the accuracy of ΔG and453

ΔH .454
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ΔG ΔH

Figure 7. Uncertainty validation for Bayesian and nonlinear least squares analyses of Mg(II):EDTA data. For the
Mg2:EDTA binding experiments, the predicted versus observed rate (%) in which intervals contain the median value for

binding parameters is shown. Intervals were BCIs based on the General model (blue leftward triangles), Comparison

model (green rightward triangles), or nonlinear least squares confidence intervals (red circles). Error bars are standard

deviations based on bootstrapping.
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2.90 2.72 3.03 -0.16 1.00 2.68 4.25 3.04 5.07 3.38 4.25 3.64 3.96 3.81
0.93 -0.38 1.26 -0.30 0.86 1.00 2.01 2.08 4.80 2.92 3.54 3.58 2.67 2.86
2.69 2.22 2.00 1.75 2.20 1.52 1.00 1.24 5.11 2.90 2.88 3.28 2.34 2.19
3.01 2.35 1.06 2.15 2.27 2.11 2.01 1.00 5.31 1.13 2.18 2.29 0.07 0.38
4.62 4.91 5.22 4.73 4.62 4.84 5.22 5.32 1.00 5.55 5.74 5.76 5.51 5.54
3.37 2.85 1.87 2.57 2.61 2.74 3.11 0.55 5.47 1.00 2.11 1.48 1.53 0.93
4.04 3.66 3.12 3.50 3.48 3.48 2.96 2.07 5.69 2.27 1.00 1.41 2.04 1.30
4.13 3.79 3.25 3.47 3.46 3.70 3.94 2.42 5.79 1.82 2.30 1.00 2.97 2.31
3.23 2.65 1.56 2.49 2.52 2.45 2.09 -0.59 5.38 0.89 1.83 2.05 1.00 -0.74
3.46 2.95 2.06 2.77 2.77 2.76 2.33 0.21 5.46 0.98 1.25 1.71 -0.56 1.00

1.5

0.0

1.5

3.0

4.5

1.5

0.0

1.5
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Figure 8. The natural logarithm of Kullback-Leibler divergence between Bayesian approach (General model) andnonlinear least-squares. The natural logarithm of the KL-divergence between posterior marginal distributions (top) and
between Gaussian distributions of nonlinear least squares errors (bottom) is shown. Each column and row corresponds

to one of the 14 datasets of Mg(II):EDTA binding. The diagonal elements should be ln 0 = −∞ but were set to 1 for
visualization.

18 of 21

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327676doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327676
http://creativecommons.org/licenses/by/4.0/


Bayesian ITC

References466

[1] Boyce, S. E., Tellinghuisen, J., and Chodera, J. D. (2015). Avoiding accuracy-limiting pitfalls in the study of protein-ligand467

interactions with isothermal titration calorimetry. bioRxiv, (2):023796.468

[2] Brown, A. (2009). Analysis of Cooperativity by Isothermal Titration Calorimetry. International Journal of Molecular469

Sciences, 10(8):3457–3477.470

[3] Chaloner, K. and Verdinelli, I. (1995). Bayesian Experimental Design: A Review. Statistical Science, 10(3):273–304.471

[4] Cho, S., Swaminathan, C. P., Bonsor, D. A., Kerzic, M. C., Guan, R., Yang, J., Kieke, M. C., Andersen, P. S., Kranz, D. M.,472

Mariuzza, R. A., and Sundberg, E. J. (2010). Assessing energetic contributions to binding from a disordered region in a473

protein-protein interaction. Biochemistry, 49(43):9256–9268.474

[5] Chodera, J. D. andMobley, D. L. (2013). Entropy-{Enthalpy} {Compensation}: {Role} and {Ramifications} in {Biomolecular}475

{Ligand} {Recognition} and {Design}. Annual Review of Biophysics, 42(1):121–142.476

[6] Czodrowski, P., Sotriffer, C. a., and Klebe, G. (2007). Protonation Changes upon Ligand Binding to Trypsin and Thrombin:477

Structural Interpretation Based on pKa Calculations and ITC Experiments. Journal of Molecular Biology, 367(5):1347–1356.478

[7] Duvvuri, H., Wheeler, L. C., and Harms, M. J. (2017). pytc: a python package for analysis of Isothermal Titration479

Calorimetry experiments. bioRxiv.480

[8] Feig, A. L. (2007). Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers,481

87(5-6):293–301.482

[9] Henriksen, N. M., Fenley, A. T., and Gilson, M. K. (2015). Computational Calorimetry: High-Precision Calculation of483

Host-Guest Binding Thermodynamics. Journal of Chemical Theory and Computation, 11(9):4377–4394.484

[10] Jeffreys, H. (1946). An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society485

A: Mathematical, Physical and Engineering Sciences, 186(1007):453–461.486

[11] Jin, L., Amaya-Mazo, X., Apel, M. E., Sankisa, S. S., Johnson, E., Zbyszynska, M. A., and Han, A. (2007). Ca2+ and Mg2+487

bind tetracycline with distinct stoichiometries and linked deprotonation. Biophysical Chemistry, 128(2-3):185–196.488

[12] Keller, S., Vargas, C., Zhao, H., Piszczek, G., Brautigam, C. A., and Schuck, P. (2012). High-Precision Isothermal Titration489

Calorimetry with Automated Peak-Shape Analysis. Analytical Chemistry, 84:5066–5073.490

[13] Krimmer, S. G., Betz, M., Heine, A., and Klebe, G. (2014). Methyl, ethyl, propyl, butyl: futile but not for water, as491

the correlation of structure and thermodynamic signature shows in a congeneric series of thermolysin inhibitors.492

ChemMedChem, 9(4):833–846.493

[14] Ladbury, J. E., Klebe, G., and Freire, E. (2010). Adding calorimetric data to decision making in lead discovery: a hot tip.494

Nature Reviews Drug Discovery, 9(1):23–27.495

[15] Leavitt, S. and Freire, E. (2001). Direct measurement of protein binding energetics by isothermal titration calorimetry.496

Curr Opin Struct Biol, 11(5):560–566.497

[16] Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer, New York, 2nd edition.498

[17] MicroCal. ITC Data Analysis in Origin Tutorial Guide.499

[18] MicroCal. VP-ITC Manual.500

[19] Minh, D. D. L. and Makowski, L. (2013). Wide-angle X-ray solution scattering for protein-ligand binding: multivariate501

curve resolution with bayesian confidence intervals. Biophysical Journal, 104(4):873–83.502

[20] Mizoue, L. S. and Tellinghuisen, J. (2004). The role of backlash in the "first injection anomaly" in isothermal titration503

calorimetry. Analytical Biochemistry, 326(1):125–127.504

[21] Myszka, D. G., Abdiche, Y. N., Arisaka, F., Byron, O., Eisenstein, E., Hensley, P., Thomson, J. A., Lombardo, C. R., Schwarz,505

F., Stafford, W., and Doyle, M. L. (2003). The ABRF-MIRG’02 Study: Assembly State, Thermodynamic, and Kinetic Analysis506

of an Enzyme/Inhibitor Interaction. Journal of Biomolecular Techniques, 14(4):247–269.507

[22] Nasief, N. N. and Hangauer, D. (2014). Influence of Neighboring Groups on the Thermodynamics of Hydrophobic508

Binding: An Added Complex Facet to the Hydrophobic Effect. Journal of Medicinal Chemistry, 57(6):2315–2333.509

19 of 21

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327676doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327676
http://creativecommons.org/licenses/by/4.0/


Bayesian ITC

[23] Nilsson, M., Valente, A. J. M., Olofsson, G., Söderman, O., Bonini, M., Soderman, O., and Bonini, M. (2008). Ther-510

modynamic and Kinetic Characterization of Host-Guest Association between Bolaform Surfactants and alpha- and511

beta-Cyclodextrins. Journal Of Physical Chemistry B, 112(36):11310–11316.512

[24] Patil, A., Huard, D., and Fonnesbeck, C. (2010). PyMC: Bayesian Stochastic Modelling in Python. Journal of Statistical513

Software, Articles, 35(4):1–81.514

[25] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,515

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:516

Machine Learning in {P}ython. Journal of Machine Learning Research, 12:2825–2830.517

[26] Rajarathnam, K. and Rösgen, J. (2014). Isothermal titration calorimetry of membrane proteins — Progress and518

challenges. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(1):69–77.519

[27] Salim, N. N. and Feig, A. L. (2009). Isothermal titration calorimetry of RNA. Methods, 47(3):198–205.520

[28] Steuber, H., Czodrowski, P., Sotriffer, C. a., and Klebe, G. (2007). Tracing Changes in Protonation: A Prerequisite to521

Factorize Thermodynamic Data of Inhibitor Binding to Aldose Reductase. Journal of Molecular Biology, 373(5):1305–1320.522

[29] Tellinghuisen, J. (2003). A study of statistical error in isothermal titration calorimetry. Analytical Biochemistry,523

321(1):79–88.524

[30] Tellinghuisen, J. (2005a). Optimizing experimental parameters in isothermal titration calorimetry. Journal of Physical525

Chemistry B, 109(42):20027–20035.526

[31] Tellinghuisen, J. (2005b). Statistical error in isothermal titration calorimetry: Variance function estimation from527

generalized least squares. Analytical Biochemistry, 343(1):106–115.528

[32] Tellinghuisen, J. (2007). Calibration in isothermal titration calorimetry: Heat and cell volume from heat of dilution of529

NaCl(aq). Analytical Biochemistry, 360(1):47–55.530

[33] Tellinghuisen, J. (2018). Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.531

Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(4):886–894.532

[34] Tellinghuisen, J. and Chodera, J. D. (2011). Systematic errors in isothermal titration calorimetry: Concentrations and533

baselines. Analytical Biochemistry, 414(2):297–299.534

[35] Thielges, M. C., Zimmermann, J., Yu, W., Oda, M., and Romesberg, F. E. (2008). Exploring the energy landscape of535

antibody- antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry, 47(27):7237–7247.536

[36] Velazquez-Campoy, A., Kiso, Y., and Freire, E. (2001). The binding energetics of first- and second-generation HIV-1537

protease inhibitors: implications for drug design. Archives of biochemistry and biophysics, 390(2):169–175.538

[37] Velazquez-Campoy, A., Leavitt, S. A., and Freire, E. (2004). Characterization of Protein-Protein Interactions by Isothermal539

Titration Calorimetry, pages 35–54. Humana Press, Totowa, NJ.540

[38] Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N. (1989). Rapid Measurement of Binding Constants and Heats of541

Binding Using a New Titration Calorimetr. Anal.Biochem., 179(1):131–137.542

20 of 21

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/327676doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327676
http://creativecommons.org/licenses/by/4.0/


Bayesian ITC

Appendix543

Simple two-component (1:1) association binding model544

In a simple two-component (1:1) complexation reaction, we have reversible association between a ligand L545

and a receptor R546

R + L
Ka
⇌ RL, (12)

where the association constant Ka or the binding free energy ΔG is related to concentrations [X] of the547

microscopic species at equilibrium by,548

Ka ≡ exp(−�ΔG) =
[RL]
[R][L]

. (13)

With each injection, three effects will contribute to the true quantity of heat q∗i liberated due to injection i:549

(1) the association of Rwith L, (2) the dilution of ligand and buffer into the protein solution (as most solutions550

are nonideal), and (3) the mechanical heat produced by the injection and stirring. We subsume the latter two551

components into a single term ΔH0, and write552

q∗i = ΔH ∗ V0 ∗
(

[RL]i − di ∗ [RL]i−1
)

+ ΔH0, (14)

where ΔH is the enthalpy change associated with binding, [RL]i is the complex equilibrium concentration553

after injection i, V0 is the cell volume, and di is the dilution factor after an injection with volume vi, defined as554

di = 1 − (vi∕V0). (15)

In what follows, we will express the complex equilibrium concentration after injection i, [RL]i, in terms of555

Ka, the cell volume V0, the initial concentration of the receptor [R]0, and syringe concentration of the ligand556

[L]s.557

The total quantity (number of moles) of receptor Ri and ligand Li in the cell after injection i is given by558

Ri = V0 [R]0 ∗ dcum,i, (16)

559

Li = V0 ∗ [L]s ∗ (1 − dcum,i), (17)

where d
cum,i is the cumulative dilution factor given by560

d
cum,i =

∏

i
1 − (vi∕V0). (18)

This model accounts for perfusion of receptor and ligand from the cell at a constant cell volume while561

assuming the mixing after injection is instantaneous as in [32].562

Conservation of mass gives us the constraints563

Ri = V0 ([R]i + [RL]i) (19)
564

Li = V0 ([L]i + [RL]i). (20)

Combining Eqs. 13 and 20 gives565

[R]i =
[RL]i

Ka
Li
V0
−Ka[RL]i

. (21)

Substituting Eq. 21 into Eq. 19 yields a quadratic equation in the complex equilibrium concentration [RL]i:566

[RL]2i −
(

Ri

V0
+ 1
Ka

+
Li
V0

)

[RL]i +
Ri ⋅ Li
V 2
0

= 0, (22)

where the only solution that satisfies 0 ≤ [RL]i ≤ min{[R], [L]i} is567

[RL]i =
1
2V0

⎧

⎪

⎨

⎪

⎩

(

Ri + Li +
V0
Ka

)

−

[

(

Ri + Li +
V0
Ka

)2

− 4RiLi

]
1
2
⎫

⎪

⎬

⎪

⎭

. (23)
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