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Abstract 

 

Background: Many neuroimaging studies have investigated reward processing dysfunction 

in major depressive disorder (MDD). These studies have led to the common idea that MDD is 

associated with blunted responses within the reward circuit, particularly in the ventral 

striatum (VS). Yet, the link between MDD and aberrant responses to reward in other brain 

regions remains inconclusive, thus limiting our understanding of the pathophysiology of 

MDD.   

 

Methods: We performed a coordinate-based meta-analysis of 46 neuroimaging studies 

encompassing reward-related responses from a total of 915 patients with MDD and 917 

healthy controls (HCs). We only included studies that reported whole-brain results and 

isolated reward-related processes using an active control condition.   

 

Results: Consistent with the common notion that MDD is characterized by blunted responses 

to reward, we found that experiments reporting blunted responses for reward in MDD relative 

to HCs converged in the bilateral VS. In contrast, we found significant convergence among 

experiments reporting elevated responses for reward in MDD in the right orbitofrontal cortex 

(OFC). We also found that experiments obtaining greater responses to punishment in MDD 

converged in the left sublenticular extended amygdala. 

 

Conclusions: Our meta-analytic findings argue against the idea that MDD is linked to a 

monolithic deficit within the reward system. Instead, our results demonstrate that MDD is 

associated with opposing abnormalities in the reward circuit: hypo-responses in the VS and 

hyper-responses in the OFC. These findings help to reconceptualize our understanding of 

reward-processing abnormalities in MDD, potentially suggesting a role for dysregulated 

corticostriatal connectivity.  
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Introduction 

Depression is a prevalent mental disorder ranked as the leading cause of disability by the 

World Health Organization (1). Therefore, it is of paramount importance to understand its 

underlying neurobiological mechanisms. Over the past decade, theorists have proposed that 

anhedonia, one of the core symptoms of depression, is linked to reward processing 

dysfunction (2–11). In particular, many neuroimaging studies have reported reduced activity 

in the ventral striatum (VS) in response to reward in individuals with major depressive 

disorder (MDD) as compared with healthy controls (HCs; 12–17) .  

The striatum, which can be divided into dorsal and ventral sections, is the primary 

input zone for basal ganglia (18, 19). It receives afferent projections from the midbrain, 

amygdala, and prefrontal cortex (PFC), such as the orbitofrontal cortex (OFC), dorsolateral 

prefrontal cortex (dlPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate 

cortex (ACC; 18, 19). It also projects to such regions as the ventral pallidum, ventral 

tegmental area, and substantia nigra (19). Many of the regions linked to the striatum, 

particularly prefrontal regions, have been associated with the computation and representation 

of reward value (20–31), as well as the regulation of affect and reward-related behavior in 

animals and healthy individuals (32–36).  

Although blunted striatal response to reward in MDD is a well-established finding in 

the literature (2, 6, 37–39), it is less clear how other regions, particularly the PFC, also may 

contribute to reward-processing deficits in MDD. For instance, some studies have found that 

relative to HCs, MDD exhibited greater activation in the OFC (16, 40), dlPFC (15, 41), 

vmPFC (42, 43), ACC (44, 45), middle frontal gyrus (43, 45), inferior frontal gyrus (44, 46), 

subgenual cingulate (42, 46), and dorsomedial prefrontal cortex (43) during the processing of 

rewarding stimuli. In contrast, other studies have reported less activity in MDD in response to 

reward in the OFC (40, 45), ACC (15, 16, 40, 46), middle frontal gyrus (16, 44, 46), and 
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frontal pole (45). The inconsistencies may be due to a number of factors, such as limited 

statistical power (47, 48) and susceptibility artifacts in the PFC (32, 49–51). Therefore, the 

association between prefrontal regions and MDD remains equivocal, both in terms of the 

direction (i.e., hyper- or hypo-responses) and the location of the effect (e.g., OFC, dlPFC, 

vmPFC and/or ACC).  

To address this problem, we performed a coordinate-based meta-analysis of 46 

neuroimaging studies containing reward-related responses from a total of 915 patients with 

MDD and 917 HCs. Our primary hypothesis was that compared with HCs, individuals with 

MDD would exhibit blunted activation of the striatum and abnormal activation of the 

prefrontal regions (e.g., the OFC) during the processing of rewarding stimuli. We also 

explored whether there were consistent neural responses to punishing stimuli in MDD 

relative to HCs. The comprehensive nature of the current meta-analysis allowed us to 

investigate whether a quantitative synthesis of neuroimaging studies on reward processing 

dysfunction in MDD would unveil common activation patterns that may be difficult to 

discern by individual studies due to inconsistent findings. Our analyses addressed two 

specific questions. First, which brain regions show consistent hypo-responses to reward-

relevant stimuli in MDD relative to HCs? Second, which brain regions show consistent 

hyper-responses to reward-relevant stimuli in MDD relative to HCs? 

 

 

Methods and Materials 

Study Selection 

We conducted a systematic literature search to identify neuroimaging studies on reward 

processing abnormalities in mood disorders (Figure 1). Potentially eligible studies published 

between 1/1/1997 and 3/14/2017 were identified by searching the MEDLINE, EMBASE, 
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PsycINFO, PsycARTICLES, Scopus, and Web of Science using the grouped terms (fMRI* 

or PET*) AND (depress* OR bipolar* OR mania* OR manic* OR hypomania* OR 

hypomanic*) AND (reward* OR effort* OR decision* OR reinforce* OR habit* OR 

discounting* OR “prediction error” OR “delayed gratification” OR “approach motivation” 

OR “positive valence systems”). To enhance search sensitivity, the reference lists of the 

retrieved articles and review papers were further checked to identify potentially relevant 

articles. Although our initial goal was to investigate reward processing dysfunction in both 

MDD and bipolar disorder, the current meta-analysis only focused on MDD due to an 

inadequate number of studies on bipolar disorder.  

Inclusion Criteria 

We included studies that (a) used a reward and/or punishment task, (b) reported comparisons 

between people with MDD and HCs, (c) used standardized diagnostic criteria (e.g., DSM) to 

determine psychiatric diagnoses, (d) used fMRI or PET in conjunction with parametric 

analysis or subtraction methodology contrasting an experimental condition and an active 

control condition (e.g., a punishment condition, a lower-intensity reward condition, or a 

neutral condition) to isolate reward-related processes and identify foci of task-related neural 

changes, (e) reported significant results of whole-brain group analyses, as non-whole-brain 

coordinates (e.g., region of interest-based coordinates) have been argued to bias coordinate-

based meta-analyses (52), (f) reported coordinates in a standard stereotactic space [Talairach 

or Montreal Neurological Institute (MNI) space], and (g) used independent samples.  

The study with the largest sample size was included if there was sample overlap 

between studies. Reward tasks were operationalized as involving presentation of a rewarding 

stimulus (e.g., winning money, favorite music, positive faces), whereas punishment tasks 

were operationalized as involving presentation of a punishing stimulus (e.g., losing money, 

negative faces). 
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Coordinate-Based Meta-Analysis  

Coordinate-based meta-analyses were performed using GingerALE 2.3.6 (http:// 

brainmap.org), which employs the activation likelihood estimation (ALE) method (53–55). 

The ALE method tests against the null hypothesis that activation foci reported in a body of 

studies are uniformly distributed across the brain, as opposed to concentrated in certain 

regions (53). The method is implemented in the following steps. First, for each included 

study, a map of the activation likelihood is computed. Second, the maps are aggregated to 

compute the ALE score for each voxel. The ALE statistic indicates the probability that at 

least one true peak activation lies in the voxel across the population of all possible studies. 

Finally, a permutation test is employed to identify voxels in which the ALE statistic is larger 

than expected by chance (53–56). The ALE method takes into account heterogeneity in 

spatial uncertainty across studies (53, 55, 56) and differences in number of peak coordinates 

reported per cluster (55). This approach allows random-effects estimates of ALE, increasing 

generalizability of the results (56).  

Statistical Analysis  

Our analysis focused on which brain regions show consistent hypo- or hyper-responses to 

reward-relevant stimuli in MDD relative to HCs. To ensure adequate statistical power and 

limit the possibility that a meta-analytic effect is driven by a small set of studies (52, 57), we 

only conducted a meta-analysis if there was at least 17 independent studies available for 

analysis. We also took steps to minimize within-group effects on the meta-analyses (55). If a 

study reported more than one contrast (often referred to as an “experiment” in meta-

analyses), the contrasts examining similar processes were pooled together to avoid double 

counting the same participants in a meta-analysis. For example, when a study reported 

between-group effects in response to $1.50 and $5 rewards relative to neutral or loss 
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conditions, the coordinates derived from the two contrasts were coded as a single reward 

experiment. 

All analyses were performed in Montreal Neurological Institute (MNI) space. 

Coordinates reported in Talairach space were converted to MNI using the “icbm2tal” 

transformation (58). We assessed statistical significance and corrected for multiple 

comparisons using the permutation-based approach (N = 1000) recommended by the 

developers of GingerALE (52, 59). This approach utilized a cluster-forming threshold of P < 

0.001 (uncorrected) and maintained a cluster-level family-wise error rate of 5% (52).  

 

 

Results 

Given the inconsistency of findings in the literature of reward processing abnormalities in 

MDD, we used a coordinate-based meta-analytic approach and activation likelihood 

estimation (53, 56) to examine whether we could identify consistent activation patterns 

across studies. As shown in Figure 1, our systematic literature search identified a total of 46 

neuroimaging studies that met our inclusion criteria, yielding 4 coordinate-based meta-

analyses with at least 17 independent experiments. Tables S1 and S2 show the characteristics 

of the included studies and their samples. In the present meta-analytic dataset, for the MDD 

group, the mean number of participants was 20.3, the mean age was 35.9, the mean 

percentage of females was 61.6%, and the mean percentage of medication usage was 36.6%. 

For the HC group, the mean number of participants was 20.4, the mean age was 34.5, and the 

mean percentage of females was 60.5%.  

Aberrant Reward Responses in MDD 

A host of studies have reported blunted responses to reward in MDD. These findings tend to 

converge on the striatum. We therefore first examined regions that consistently showed 
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blunted responses to reward. We synthesized results of 26 studies reporting less activity in 

response to reward in people with MDD than HCs (i.e. HC > MDD for reward > 

punishment/neutral stimuli or neutral stimuli > punishment). As expected, our results 

indicated that these studies reliably reported less activation in the bilateral VS in MDD 

(Table 1; Figure 2a).  

As the striatum receives afferent projections from many prefrontal regions, such as 

the OFC and the vmPFC, we hypothesized that MDD would be associated with abnormal 

activation of the prefrontal regions (e.g., the OFC) during the processing of rewarding 

stimuli. To examine this hypothesis, we aggregated results of 22 studies reporting greater 

activity in response to reward in people with MDD than HCs (i.e. MDD > HC for reward > 

punishment/neutral stimuli or neutral stimuli > punishment). Importantly, our results 

indicated that these studies reliably reported greater activation in the right OFC in MDD 

(Table 1; Figure 2b). Taken together, these results suggest that relative to HCs, people with 

MDD exhibited hypo-responses in the VS and, more importantly, hyper-responses in the 

OFC to rewarding stimuli. 

Hyper Punishment Responses in MDD 

We also conducted exploratory analyses to examine which brain regions consistently show 

aberrant responses to punishment in MDD relative to HCs. First, we meta-analyzed 25 

studies reporting greater activity in response to punishment in people with MDD than HCs 

(i.e. MDD > HC for punishment > reward/neutral stimuli or neutral stimuli > reward). Our 

results indicated that these studies reliably reported greater activation in the left sublenticular 

extended amygdala in MDD (Table 2; Figure 3). Second, we synthesized 19 studies reporting 

less activity in response to punishment in people with MDD than HCs (i.e. HC > MDD for 

punishment > reward/neutral stimuli or neutral stimuli > reward). Our results indicated that 

these studies did not report consistent activation patterns. Together, these results suggest that 
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relative to HCs, people with MDD exhibited hyper-responses in the left sublenticular 

extended amygdala during processing of punishment-relevant stimuli. 

 

Discussion 

A growing number of researchers have studied reward processing dysfunction using 

neuroimaging methods to enhance our understanding of the underlying pathophysiology of 

MDD. Many of these studies have shown that patients with MDD exhibit blunted responses 

to reward in the VS, but more disparate patterns of responses in other brain areas (12–16). 

Therefore, it remains unclear what brain regions, other than the VS, are most consistently 

implicated in reward processing among people with MDD. To address this issue, we 

performed a coordinate-based meta-analysis of 46 neuroimaging studies containing reward-

related responses from a total of 915 patients with MDD and 917 HCs. Our meta-analytic 

findings confirm that reward responses within the VS are consistently blunted in MDD 

relative to HCs across studies. In contrast, we find that reward responses within the OFC are 

consistently elevated in MDD. Contrary to the common notion that MDD is characterized by 

blunted responses to reward, these findings suggest that MDD may be characterized by both 

hypo- and hyper-responses to reward at the neural level and highlight the need for a more 

fine-tuned understanding of the various components of reward processing in MDD.  

Although our striatal findings are consistent with previous meta-analytic work 

documenting abnormalities in processing of positive or reward stimuli in MDD (37, 38), we 

emphasize that our work differs in two key ways. First, our results implicate highly 

specific—yet distinct—abnormalities in the reward circuit, with hypo-responses to reward in 

the VS and hyper-responses to reward in the OFC. In sharp contrast, prior meta-analytic work 

has generally reported distributed patterns of abnormalities, with little anatomical agreement 

across studies. For instance, although prior meta-analytic efforts have shown some 
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overlapping findings in parts of the visual cortex, ACC, and basal ganglia, we note that there 

is a striking degree of disagreement across these efforts, with non-overlapping findings all 

throughout the brain (see Table S3 for a complete comparison of findings across studies). 

The lack of agreement across studies can be due potentially to the heterogeneous nature of 

the disorder and the included studies, as well as methodological problems, such as inclusion 

of region-of-interest (ROI) coordinates and overlapping samples, inadequate power due to 

low number of included studies, and differences in inclusion/exclusion criteria (60).  

Second, the analysis methods employed in our study are state-of-the-art and more 

rigorous than prior studies in this area. For instance, the current meta-analysis attempts to 

minimize methodological issues by using more stringent criteria recommended by new 

guidelines (60–62), such as only including whole-brain studies that used an active control 

condition and independent samples, correcting for multiple comparisons, and only 

conducting a meta-analysis when there were at least 17 eligible experiments to ensure 

adequate statistical power and restrict excessive contribution of any particular studies to 

cluster-level thresholding (52). We speculate that the enhanced rigor and methods of our 

study contributed to our ability to identify highly circumscribed and distinct abnormalities in 

the reward circuit.  

In our view, our most important finding is that studies consistently report that people 

with MDD exhibit hyper-responses to reward in the OFC. Exposure to rewards (e.g., money 

and pleasant sights) evokes activity in the OFC (20–22, 24, 25, 63). Therefore, given that 

MDD is traditionally linked to blunted response to reward or reduced capacity to experience 

pleasure (6), our finding of hyperactivity of the OFC in response to reward in MDD may 

seem paradoxical. One interpretation would be that MDD is at least partly characterized by 

hypersensitivity to reward, which fits with a set of experimental studies reporting that 

individuals with severe MDD found dextroamphetamine to be more rewarding than did 
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controls (64–66). Anhedonia, then, may be rooted in decreased connectivity between the 

prefrontal regions and subcortical regions underlying reward-related behavior, as suggested 

by previous research (67).  

Alternatively, OFC hyperactivity may reflect enhanced inhibitory control over 

subcortical regions underlying reward-related behavior, causing anhedonia. Optogenetic and 

neuroimaging studies have revealed that hyperactivity in prefrontal regions (e.g., medial 

PFC, vmPFC) innervated by glutamatergic neurons may causally inhibit reward-related 

behavior via suppressing striatal responses to dopamine neurons in the midbrain (4, 33) and 

increasing connectivity between the medial PFC, lateral OFC, and VS (4, 33). In addition, 

increased negative effective connectivity between the orbital and medial PFC and amygdala 

in response to reward has been found in MDD but not bipolar depression or healthy controls 

(68), suggesting that the OFC might exert over-control over subcortical regions in MDD but 

not bipolar depression or healthy individuals. The differences in the effects of OFC between 

the groups might be explained by research demonstrating that stimulation of the medial PFC 

at different frequencies affect dopamine release in the VS differently. Specifically, although 

stimulation of the medial PFC at low frequencies (10 Hz), which correspond to the firing rate 

of PFC neurons during performance of cognitive tasks, decreased dopamine release in the 

VS, high frequency stimulation (60 Hz) increased dopamine release in the VS (33, 69) and 

has strong antidepressant effects (70, 71). Taken together, OFC hyperactivity may inhibit 

reward-related behavior and lead to anhedonia via suppressing striatal responses to dopamine 

neurons in the midbrain (4, 33) and increasing connectivity between the PFC and the VS in 

MDD (4, 33).  

The role of corticostriatal connectivity during reward processing in MDD remains an 

open and important question (72). We believe our meta-analytic results will provide a 

springboard for future studies that seek to understand the role of dysregulated corticostriatal 
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connectivity in MDD and develop a full picture of the pathophysiology of MDD. These 

endeavors will require empirical assessments of connectivity within the reward circuit using 

psychophysiological interaction analysis (73–75) and dynamic causal modeling (76). Such 

approaches have shown promise for revealing specific patterns of task-dependent 

corticostriatal interactions in samples containing healthy individuals (77–80), clinical 

populations (67, 72, 81), or a mix of both (82). Nevertheless, a caveat of such approaches is 

that dysregulated corticostriatal connectivity may involve modulatory regions, such as the 

midbrain (83). Taken together, our results help delineate specific abnormalities within the 

reward circuit and supply a foundation for refining connectivity-based models of 

psychopathology.  

In addition to distinct abnormalities with the reward circuit, our study also finds that 

MDD is associated with hyper-responses in the left sublenticular extended amygdala in 

response to punishment. Our finding fits with others in suggesting that amygdala 

hyperactivation is linked to the processing of affectively salient, especially punishing, stimuli 

in MDD, and may underlie negativity bias in depression (84, 85). It is also in agreement with 

a long series of studies indicating that the amygdala may be a key brain region implicated in 

the pathophysiology of depression (86–88). 

Although our meta-analysis reveals circumscribed patterns of abnormal responses to 

affective stimuli in the amygdala, VS, and OFC, we note that our findings should be 

interpreted in the context of two limitations. First, heterogeneity across studies may have 

added noise to our analyses and restricted our capacity for detecting true effects. Specifically, 

due to the limited number of studies, our analyses collapsed across different reward processes 

(e.g., anticipation and outcome), reward modalities (e.g., monetary and social), and specific 

contrasts that would help isolate and differentiate neural responses to salience and valence 

(31, 89–92). In addition, our analyses also collapsed across different mood states, 
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psychotropic medication usage, ages, and comorbidities (88, 93, 94). In doing so, important 

differences in brain activation may be obscured and more specific questions related to brain 

activation—particularly questions related to neural representations of valence or salience (89, 

95–97)—cannot be addressed in our work. Future studies should examine how these factors 

may affect reward processing in MDD. Nevertheless, we highlight that the convergence of 

findings despite the heterogeneity of the included studies is striking and suggests that the 

current findings may reflect trait abnormalities of MDD. Second, many included studies have 

relatively small sample sizes and report coordinates that are not corrected for multiple 

comparisons, which may lead to biased results (47, 48). The validity of a meta-

analysis hinges on the validity of the included studies (98). Future work should follow the 

most updated guidelines for best practices in the field to avoid generating biased findings 

(99). 

Notwithstanding these caveats, our meta-analysis shows that MDD is consistently 

associated with opposing abnormalities in the reward circuit in response to reward: hypo-

response in the VS and hyper-response in the OFC. Our meta-analytic results therefore argue 

against the common notion that MDD is only associated with blunted responses to reward. 

Our findings suggest that MDD may be tied to opposing abnormalities in the OFC and VS, 

which may suggest MDD stems, in part, from dysregulated connectivity between these 

regions. We believe our findings will help lay a foundation towards developing a more 

refined understanding and treatment of MDD and its comorbid psychiatric disorders, 

particularly ones that involve persistent maladaptive behavior (100). For example, a more 

refined understanding of the abnormalities in the reward circuitry in MDD may help 

distinguish other disorders exhibiting reward processing abnormalities, such as bipolar 

disorder and schizophrenia (6). Finally, given that previous treatment targets for deep brain 
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stimulation for treatment-resistant depression have yielded mixed results (101–110), the 

portion of OFC implicated by our results could be a promising treatment target. 
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Table 1. Peak Coordinates of Group Differences in Neural Responses to Reward. 
 
Contrast Cluster Size (mm3) Probabilistic Anatomical Label x y z 
MDD > HC 848 Frontal Orbital Cortex (23%), 

Frontal Pole (12%) 
20 32 -12 

HC > MDD 3032 Subcallosal Cortex (11%) -2 8 -4 
  Lateral Ventricle (65%),  

Caudate (20%) 
-6 18 4 

  Pallidum (17%), Caudate (8%) 12 8 -2 
  Putamen (86%) 16 8 -8 
  Accumbens (73%),  

Caudate (24%) 
10 16 -4 

  Caudate (97%) 14 14 10 
Coordinates are in MNI space. Probabilistic labels reflect the probability that a coordinate 
belongs to a given region. For clarity, we only report labels whose likelihood exceeds 5%. 
MDD, major depressive disorder; HC, healthy controls. 
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Table 2. Peak Coordinates of Group Differences in Neural Responses to Punishment. 
 
Contrast Cluster Size (mm3) Probabilistic Anatomical Label x y z 
MDD > HC 1096 Amygdala (82%) -26 -8 -14 
  Amygdala (57%) -16 -2 -18 

Coordinates are in MNI space. Probabilistic labels reflect the probability that a coordinate 
belongs to a given region. For clarity, we only report labels whose likelihood exceeds 5%. 
MDD, major depressive disorder; HC, healthy controls. 
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Figure 1. Flowchart of Study Selection. Our systematic literature search identified a total of 

46 neuroimaging studies that met our inclusion criteria, yielding 4 coordinate-based meta-

analyses with at least 17 independent studies; ROI, region of interest; MDD, major 

depressive disorder.  

2565 citations identified via literature search

206 full-text articles assessed for eligibility

46 included studies

160 articles excluded due to
    43 Unsuitable analyses (e.g., ROI)
    36 Not meeting standard diagnostic criteria for MDD
    17 Unsuitable task and/or stimuli
    15 Overlapping samples
    14 No relevant significant group effects
    9 Review articles       
    8 No relevant comparison groups
    7 No active control conditions 
    1 Inadequate reporting
    1 Non fMRI or PET studies

2359 citations excluded based on title/abstract review

Reward tasks
1. Greater brain activity in MDD: 22 studies
2. Less brain activity in MDD: 26 studies

Punishment tasks
3. Greater brain activity in MDD: 25 studies
4. Less brain activity in MDD: 19 studies
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Figure 2. Opposing Abnormalities in the Reward Circuit in Response to Reward in Major 

Depressive Disorder (MDD). (A) To examine regions that consistently showed blunted 

response to reward, we synthesized 26 studies reporting less activity in response to reward in 

people with MDD than healthy controls (HCs). Our results indicated that these studies 

reliably report less activation in the bilateral ventral striatum (VS) in MDD. (B) To identify 

regions that consistently showed hyper-responses to reward, we meta-analyzed 22 studies 

reporting greater activity in response to reward in people with MDD than HCs. Our results 

indicated that these studies reliably report greater activation in the right orbitofrontal cortex 

(OFC) in MDD.  

Y = 32

A

X = 23Z = -15

Hyper Response to Reward in the OFCB

Hypo Response to Reward in the VS

Y = 12 X = -8Z = 1
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Figure 3. Hyper Response to Punishment in the Sublenticular Extended Amygdala (SLEA) 

in Major Depressive Disorder (MDD). To conduct exploratory analyses to examine which 

brain regions consistently show elevated response to punishment in MDD relative to healthy 

controls (HCs), we meta-analyzed 25 studies reporting greater activity in response to 

punishment in people with MDD than HCs. Our results indicated that these studies reliably 

report greater activation in the left SLEA in MDD. 

 

Hyper Response to Punishment in the SLEA

Y = -6 X = -26Z = -16
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Meta-analysis of Reward Processing in Major Depressive Disorder: Distinct Abnormalities within the Reward Circuit? 
 

Supplemental Information 

 

Table S1. Characteristics of the Study Samples Included in the Meta-Analysis. 
 MDD Patients   Healthy Controls 

Study n Age % Female % 
Medicated 

Mood 
States 

Comorbidity  n Age %Female 

Arnone et al. (1) Depressed 
= 38; 
remitted = 
24 

Depressed 
= 36.1; 
remitted = 
33.8 

Depressed 
= 12%; 
remitted = 
6% 

0.0% Depressed 
and 
Remitted 

Exclusion of a concurrent 
comorbid axis I psychiatric 
disorder or primary cluster A or 
B axis II disorder. 

 54 32.4 20.0% 

Arrondo et al. (2) 24 33.1 29.2% 54.2% Depressed Exclusion of alcohol or drug 
dependence. 

 21 34.3 23.5% 

Bremner et al. (3) 18 40 66.7% 0.0% Depressed Exclusion of organic mental 
disorders or comorbid psychotic 
disorders, post-traumatic stress 
disorder, childhood trauma, 
alcohol or substance abuse or 
dependence, or dyslexia. No 
current or past history of 
comorbid psychiatric disorders. 

 9 35 77.8% 

Burger et al. (4) 36 40.7 61.1% 100.0% Depressed Exclusion of substance 
dependence. Inclusion of PD, 
agoraphobia, generalized 
anxiety disorder, social phobia, 
obsessive compulsive disorder, 
post-traumatic stress disorder, 
somatoform disorder, eating 

 36 41.3 52.8% 
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disorder, dysthymia, alcohol 
abuse, and substance abuse. 

Chantiluke et al. 
(5) 

20 16.2 50.0% 0.0% Depressed Exclusion of major psychiatric 
disorders. 

 21 16.3 52.4% 

Chase et al. (6) 40 31 77.5% 77.5% Depressed No exclusion of psychiatric 
comorbidities. Inclusion of 
lifetime comorbid anxiety 
disorders and substance use 
disorders. 

 37 33.1 67.6% 

Davey et al. (7) 19 18.6 64.7% 52.9% Depressed Exclusion of psychotic disorder, 
substance dependence, 
pervasive developmental 
disorder, or intellectual 
disability. Inclusion of anxiety 
disorders. 

 20 19.3 63.2% 

Demenescu et al. 
(8) 

59 36.2 66.1% 23.7% Depressed Exclusion of axis I disorders, 
such as psychotic disorder or 
dementia, current alcohol or 
substance abuse. 

 56 39.8 60.7% 

Dichter et al. (9) 19 23.6 78.9% 0.0% Remitted Exclusion of current axis I 
psychopathology. 

 19 27.9 63.2% 

Elliott et al. (10) 10 42.2 70.0% 100.0% Depressed Exclusion of current comorbid 
anxiety disorders, substance 
abuse or dependence, bipolar 
disorder, or other psychiatric 
diagnoses. Inclusion of past 
history of PD and bulimia. 

 11 37.6 72.7% 

Epstein et al. (11) 10 35.6 90.0% 0.0% Depressed Exclusion of major psychiatric 
disorders and substance abuse. 

 12 32 58.3% 

Fournier et al. (12) 26 30.6 69.0% 69.2% Depressed Exclusion of bipolar disorder, 
borderline personality disorder, 
and alcohol/substance use 

 28 32.6 57.0% 
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disorder within 2 months before 
the scan. Inclusion of history of 
anxiety disorder and substance 
abuse. 

Fu et al. (13) and 
(14) 

19 43.2 68.4% 100.0% Depressed Exclusion of current axis I 
disorder and history of 
substance abuse within 2 
months of study participation. 

 19 42.8 57.9% 

Fu et al. (15) 16 40 81.3% 0.0% Depressed Exclusion of other axis I 
disorder, including anxiety 
disorder or history of substance 
within 2 months of study 
participation. 

 16 39.2 81.3% 

Gorka et al. (16) MDD only 
= 9; 
MDD+PD 
= 13 

MDD only 
= 25.4; 
MDD+PD 
= 39.1 

MDD only 
= 66.7%; 
MDD+PD 
= 76.9% 

MDD only 
= 11.1%; 
MDD+PD 
= 30.8% 

Depressed All participants: Exclusion of 
lifetime psychotic disorder or 
bipolar disorder and inclusion 
of past alcohol/substance 
abuse/dependence; MDD only: 
exclusion of lifetime anxiety 
disorder; MDD+PD: inclusion 
of PD, social phobia, specific 
phobia, post-traumatic stress 
disorder, generalized anxiety 
disorder, and obsessive 
compulsive disorder. 

 18 29.5 72.2% 

Gotlib et al. (17) 18 35.2 72.2% 50.0% Depressed Exclusion of psychotic ideation, 
social phobia, PD, mania, or 
substance abuse in the past 6 
months or behavioral 
indications of possible impaired 
mental status. 

 18 30.8 72.2% 

Gradin et al. (18) 25 25.5 68.0% 0.0% Depressed Unspecified  25 25.4 68.0% 
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Hall et al. (19) 29 37.4 55.2% 51.7% Depressed Exclusion of history of alcohol 
or substance abuse. 

 25 37.7 55.2% 

Johnston et al. (20) 19 50.8 78.9% 85.0% Depressed Exclusion of other primary 
psychiatric disorder and 
substance misuse. 

 21 46.1 71.4% 

Keedwell et al. 
(21) 

12 43 66.7% 66.7% Depressed Exclusion of other axis I 
disorder. 

 12 36 66.7% 

Knutson et al. (22) 14 30.7 64.3% 0.0% Depressed Exclusion of other current axis I 
disorder. 

 12 28.7 66.7% 

Kumar et al. (23) 15 45.3 60.0% 100.0% Depressed Exclusion of other axis I or II 
disorders and a history of 
substance or alcohol misuse. 

 18 42 61.1% 

Kumari et al. (24) 6 47 100.0% Unspecifie
d 

Depressed Unspecified  6 44 100.0% 

Laurent et al. (25) 11 24.1 
(whole 
sample) 

100.0% 23.1% Depressed No exclusion of psychiatric 
comorbidities. Inclusion of past 
substance abuse/dependence, 
anxiety disorders, and eating 
disorder. 

 11 24.1 
(whole 
sample
) 

100.0% 

Mitterschiffthaler 
et al. (26) 

17 39.3 82.4% 0.0% Depressed Exclusion of comorbid axis I 
disorder and substance/alcohol 
abuse within 2 months prior to 
study participation. 

 17 39.4 82.4% 

Murrough et al. 
(27) 

20 38.1 44.4% 0.0% Depressed Exclusion of lifetime history of 
psychotic illness or bipolar 
disorder and current alcohol or 
substance abuse. 

 20 35 45.0% 

Osuch et al. (28) 16 22.6 68.8% 6.3% Depressed Unspecified  15 23.5 73.3% 
Pizzagalli et al. 
(29) 

30 43.2 50.0% 0.0% Depressed Exclusion of other axis I 
disorder except for anxiety 
disorders. 

 31 38.8 41.9% 
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Remijnse et al. 
(30) 

20 35 40.0% 0.0% Depressed Exclusion of current alcohol or 
substance abuse at the time of 
study participation. Inclusion of 
social anxiety disorder, 
generalized anxiety disorder, 
PD without agoraphobia, PD, 
and cannabis abuse in early and 
sustained full remission. 

 27 32 70.4% 

Rizvi et al. (31) 21 38.9 66.7% 0.0% Depressed Exclusion of other primary axis 
I disorder, lifetime history of 
hypomania/mania, psychosis, 
obsessive compulsive disorder, 
or eating disorder, and 
substance abuse or dependence 
(except nicotine or caffeine) 
within the last 3 months. 

 18 36.2 66.7% 

Rosenblau et al. 
(32) 

12 43.5 41.7% 0.0% Depressed Exclusion of other axis I or II 
disorders. 

 12 45.8 41.7% 

Scheuerecker et al. 
(33) 

13 37.9 23.1% 0.0% Depressed Exclusion of past alcohol or 
substance abuse, other mental 
illnesses, and personality 
disorders. 

 15 35.5 33.3% 

Schiller et al. (34) 19 23.6 78.9% 0.0% Remitted Exclusion of current axis I 
psychopathology. 

 19 27.9 63.2% 

Segarra et al. (35) 24 33.1 29.2% 54.0% Depressed Exclusion of dependence on 
alcohol or recreational drugs. 

 21 34.3 19.0% 

Sharp et al. (36) 14 13.4 100.0% Unspecifie
d 

Depressed Exclusion of current use of 
nicotine, illicit drugs, psychotic 
disorders, bipolar I disorder, 
learning disabilities, and mental 
retardation.  

 19 13.7 100.0% 
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Smoski et al. (37) 14 34.8 50.0% 0.0% Depressed Exclusion of current mood 
disorder, anxiety disorder, 
psychotic disorder, substance 
abuse, or active suicidal 
ideation and history of 
psychosis or mania. 

 15 30.8 60.0% 

Smoski et al. (38) 9 34.4 Unspecifie
d 

44.4% Depressed Inclusion of generalized anxiety 
disorder and binge eating 
disorder. 

 13 26.2 Unspecifi
ed 

Surguladze et al. 
(39) 

16 42.3 37.5% 100.0% Depressed Exclusion of illicit substance 
abuse. 

 14 35.1 42.9% 

Surguladze et al. 
(40) 

9 42.8 44.4% 100.0% Depressed Exclusion of illicit substance 
abuse and other axis I disorders. 

 9 39.7 44.4% 

Townsend et al. 
(41) 

15 45.6 40.0% 0.0% Depressed Exclusion of comorbid axis I 
disorder. 

 15 44.8 40.0% 

Wagner et al. (42) 19 39.9 55.0% 100.0% Depressed Exclusion of current comorbid 
axis I disorder and a history of 
manic episodes. 

 20 34.1 60.0% 

Wang et al. (43) 12 69.1 58.3% 91.7% Depressed Exclusion of another major 
psychiatric disorder and 
alcohol/drug abuse/dependence. 
Inclusion of generalized anxiety 
disorder. 

 20 73.1 60.0% 

Young et al. (44) 16 37.1 87.5% 0.0% Depressed Exclusion of serious suicidal 
ideation, psychosis, 
drug/alcohol abuse in the past 
year and dependence (except for 
nicotine) in their lifetime. 

 16 37.8 87.5% 

Zhang et al. (45) 21 43.8 38.1% 100.0% Depressed Exclusion of illicit substance 
use or substance use disorders. 

 25 39.3 36.0% 
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Zhong et al. (46) 29 20.5 55.2% 0.0% Depressed Exclusion of lifetime substance 
dependence and substance 
abuse in the last 6 months. 

 31 20.8 51.6% 

MDD, major depressive disorder; PD, panic disorder. 
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Table S2. Study Characteristics. 
Study fMRI 

or PET 
Design Space Paradigm Stimuli Contrast 

Arnone et al. (1) fMRI Block MNI Viewing faces with happy, sad, 
fearful, and neutral emotions 

Faces MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Negative > Neutral 
MDD > HC, Outcome: Positive > Neutral 

Arrondo et al. (2) fMRI Event-
related 

MNI Modified monetary incentive delay 
task 

Money HC > MDD, Anticipation: Reward > Non-Reward 

Bremner et al. 
(3) 

PET Block MNI Verbal declarative memory tasks 
with neutral paragraph encoding 
compared to a control condition and 
sad word pair retrieval compared to a 
control condition. 

Words and 
paragraphs 

MDD > HC, Outcome: Negative > Neutral  
HC > MDD, Outcome: Negative > Neutral 

Burger et al. (4) fMRI Event-
related 

MNI Face matching paradigm Faces HC > MDD, Outcome: Negative > Neutral  
HC > MDD, Outcome: Positive > Neutral 

Chantiluke et al. 
(5) 

fMRI Event-
related 

TAL Reward continuous performance task Money MDD > HC, Outcome: Reward > Non-Reward 
HC > MDD, Outcome: Reward > Non-Reward 

Chase et al. (6) fMRI Event-
related 

MNI Card guessing paradigm Money MDD > HC, Anticipation: Reward > Non-Reward 
HC > MDD, Anticipation: Reward > Non-Reward 
MDD > HC, Anticipation: Reward Expectancy 
HC > MDD, Anticipation: Reward Expectancy 
MDD > HC, Outcome: Prediction Error 

Davey et al. (7) fMRI Block MNI Viewing faces giving positive or 
control feedback 

Faces MDD > HC, Outcome: Reward > Non-Reward 

Demenescu et al. 
(8) 

fMRI Event-
related 

MNI Viewing faces with angry, fearful, 
sad, happy, and neutral expressions 
and scrambled faces; rating gender or 
pressing buttons in conformity with 
the instruction presented on the 
screen 

Faces MDD > HC, Outcome: Positive > Scrambled Face 

Dichter et al. (9) fMRI Event-
related 

MNI Modified monetary incentive delay 
task 

Money MDD > HC, Anticipation: Reward > Non-Reward  
MDD > HC, Outcome: Reward > Non-Reward 
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HC > MDD, Outcome: Reward > Non-Reward 
Elliott et al. (10) fMRI Block MNI Affective go/no go task Words MDD > HC, Outcome: Negative > Positive  

HC > MDD, Outcome: Positive > Negative 
Epstein et al. 
(11) 

fMRI Block MNI Viewing positive, negative, and 
neutral words 

Words MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Negative > Neutral 
HC > MDD, Outcome: Positive > Neutral 

Fournier et al. 
(12) 

fMRI Block MNI Labeling a color flash superimposed 
upon neutral faces that gradually 
morphed into angry, fearful, sad, or 
happy faces 

Faces MDD > HC, Outcome: Negative > Neutral MDD 
> HC, Outcome: Positive > Neutral 

Fu et al. (13) and 
(14) 

fMRI Event-
related 

TAL Indicating the sex of faces morphed 
to represent low, medium, and high 
intensities of sadness 

Faces MDD > HC, Outcome: Negative (low, medium, 
and high intensity) 
HC > MDD, Outcome: Positive (low, medium, 
and high intensity) 

Fu et al. (15) fMRI Event-
related 

TAL Indicating the sex of faces morphed 
to represent low, medium, and high 
intensities of sadness 

Faces MDD > HC, Outcome: Negative (low, medium, 
and high intensity) 
HC > MDD, Outcome: Negative (low, medium, 
and high intensity) 

Gorka et al. (16) fMRI Block MNI Passive slot machine task  Money MDD > HC, Anticipation: Reward > Non-Reward 
HC > MDD, Anticipation: Reward > Non-Reward 

Gotlib et al. (17) fMRI Block MNI Indicating the sex of faces that were 
fearful, angry, sad, happy, neutral, or 
scrambled 

Faces MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Negative > Neutral 
MDD > HC, Outcome: Positive > Neutral 
HC > MDD, Outcome: Positive > Neutral 

Gradin et al. (18) fMRI Event-
related 

MNI Ultimatum game Money HC > MDD, Outcome: Increasing fairness 
(decreasing inequality) 
MDD > HC, Outcome: Increasing inequality 
(decreasing fairness) 

Hall et al. (19) fMRI Event-
related 

TAL Contingency reversal reward 
paradigm 

Money HC > MDD, Outcome: Magnitude of Loss: Large 
Loss > Small Loss 
HC > MDD, Outcome: Magnitude of Reward: 
Large Reward > Small Reward 
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MDD > HC, Outcome: Reward Acquisition > 
Punishment Reversal 
HC > MDD, Outcome: Reward Acquisition > 
Punishment Reversal 

Johnston et al. 
(20) 

fMRI Event-
related 

MNI Modified Pessiglione task Voucher MDD > HC, Outcome: Loss > Non-Loss 
HC > MDD, Outcome: Loss > Non-Loss 
MDD > HC, Outcome: Reward > Non-Reward 
HC > MDD, Outcome: Reward > Non-Reward 

Keedwell et al. 
(21) 

fMRI Block TAL Being exposed to happy, sad, or 
neutral autobiographical memory 
prompts and facial expressions 

Autobiogra
phical 
memory 
and faces 

MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Negative > Neutral 
MDD > HC, Outcome: Positive > Neutral 
HC > MDD, Outcome: Positive > Neutral 

Knutson et al. 
(22) 

fMRI Event-
related 

TAL Monetary incentive delay task Money MDD > HC, Anticipation: Reward > Non-Reward 
HC > MDD, Anticipation: Reward > Non-Reward 
HC > MDD, Outcome: Non-Loss > Loss 
HC > MDD, Outcome: Reward > Non-Reward 

Kumar et al. (23) fMRI Event-
related 

MNI Pavlovian reward-learning paradigm Water MDD > HC, Outcome: Prediction Error 
HC > MDD, Outcome: Prediction Error 

Kumari et al. 
(24) 

fMRI Block TAL Viewing positive or negative pictures 
with a caption 

Pictures 
and 
captions 

HC > MDD, Outcome: Negative > Neutral 
MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Positive > Neutral 
MDD > HC, Outcome: Positive > Neutral 
HC > MDD, Outcome: Positive > Negative 
MDD > HC, Outcome: Positive > Negative 

Laurent et al. 
(25) 

fMRI Event-
related 

MNI Seeing own infant vs. other infant 
distress faces 

Faces HC > MDD, Outcome: Very negative > Negative 

Mitterschiffthaler 
et al. (26) 

fMRI Block MNI Naming the color of negative and 
neutral words 

Words MDD > HC, Outcome: Negative > Neutral 

Murrough et al. 
(27) 

fMRI Event-
related 

MNI Rating emotional valence of happy, 
sad, or neutral faces 

Faces HC > MDD, Outcome: 100% Positive > Neutral 

Osuch et al. (28) fMRI Block MNI Listening to favorite vs. neutral 
music 

Music HC > MDD, Outcome: Favorite Music > Neutral 
Music 
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Pizzagalli et al. 
(29) 

fMRI Event-
related 

MNI Monetary incentive delay task Money MDD > HC, Anticipation: Loss > Non-Loss 
HC > MDD, Anticipation: Loss > Non-Loss 
MDD > HC, Anticipation: Reward > Non-Reward 
HC > MDD, Anticipation: Reward > Non-Reward 
MDD > HC, Outcome: Loss > Non-Loss 
HC > MDD, Outcome: Loss > Non-Loss 
MDD > HC, Outcome: Reward > Non-Reward 
HC > MDD, Outcome: Reward > Non-Reward 

Remijnse et al. 
(30) 

fMRI Event-
related 

MNI Reversal learning task Points MDD > HC, Outcome: Loss > Baseline 
HC > MDD, Outcome: Loss > Baseline 
MDD > HC, Outcome: Reward > Baseline 

Rizvi et al. (31) fMRI Blocked MNI Viewing IAPS pictures that elicit 
positive, negative or neutral affective 
states 

Pictures MDD > HC, Outcome: Positive > Neutral 
MDD > HC, Outcome: Negative > Neutral 

Rosenblau et al. 
(32) 

fMRI Event-
related 

MNI Viewing IAPS pictures that elicit 
positive, negative or neutral affective 
states with and without cues 
indicating their emotional valence 

Pictures MDD > HC, Anticipation: Negative > Neutral 
MDD > HC, Outcome: Negative > Neutral 

Scheuerecker et 
al. (33) 

fMRI Block MNI Face matching paradigm Faces MDD > HC, Outcome: Negative > Neutral 

Schiller et al. 
(34) 

fMRI Event-
related 

MNI Monetary incentive delay task Money HC > MDD, Anticipation: Loss > Non-Loss 
HC > MDD, Outcome: Loss > Non-Loss 

Segarra et al. 
(35) 

fMRI Event-
related 

MNI Simulated slot-machine game Money HC > MDD, Outcome: Unexpected Reward > 
Full Miss 

Sharp et al. (36) fMRI Event-
related 

TAL Card guessing paradigm Money HC > MDD, Outcome: Reward > Non-Reward 

Smoski et al. 
(38) 

fMRI Event-
related 

MNI Modified monetary incentive delay 
task  

Money MDD > HC, Anticipation: Money > Control 
HC > MDD, Anticipation: Money > Control 
MDD > HC, Outcome: Non-Win > Control 
HC > MDD, Outcome: Non-Win > Control 
MDD > HC, Outcome: Winning > Control 
HC > MDD, Outcome: Winning > Control 
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MDD > HC, Selection: Money > Control 
HC > MDD, Selection: Money > Control 

Smoski et al. 
(37) 

fMRI Event-
related 

MNI Wheel of fortune task Money HC > MDD, Anticipation: Reward > Non-Reward 
HC > MDD, Outcome: Reward > Non-Reward 

Surguladze et al. 
(40) 

fMRI Event-
related 

TAL Indicating the sex of neutral faces 
and faces morphed to represent mild 
and high intensities of fear and 
disgust 

Faces HC > MDD, Outcome: Increasing intensities of 
happy faces 
MDD > HC, Outcome: Increasing intensities of 
sad faces 

Surguladze et al. 
(39) 

fMRI Event-
related 

TAL Indicating the sex of neutral faces 
and faces morphed to represent mild 
and high intensities of sadness and 
happiness 

Faces MDD > HC, Outcome: Differential response to 
100% disgust 
HC > MDD, Outcome: Differential response to 
50% fear 

Townsend et al. 
(41) 

fMRI Block MNI Face matching paradigm Faces HC > MDD, Outcome: Negative > Neutral 

Wagner et al. 
(42) 

fMRI Event-
related 

MNI Self-referential processing task Statements MDD > HC, Outcome: Neutral > Negative 
MDD > HC, Outcome: Neutral > Positive 

Wang et al. (43) fMRI Event-
related 

MNI Emotional oddball task Pictures MDD > HC, Outcome: Negative > Neutral 

Young et al. (44) fMRI Event-
related 

TAL Autobiographical memory task Words and 
autobiogra
phical 
memories 

HC > MDD, Outcome: Very Positive > Positive 
HC > MDD, Outcome: Very Negative > Negative 
MDD > HC, Outcome: Very Negative > Negative 

Zhang et al. (45) fMRI Event-
related 

MNI Viewing IAPS positive, neutral, and 
negative pictures with or without 
valence cues  

Pictures MDD > HC, Outcome: Reward > Non-Reward 

Zhong et al. (46) fMRI Block MNI Face matching paradigm Faces MDD > HC, Outcome: Negative > Neutral 
HC > MDD, Outcome: Negative > Neutral 

MNI, Montreal Neurological Institute space; TAL, Talairach space; IAPS, International Affective Picture System; MDD, major depressive 
disorder; HC, healthy controls 
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Table S3. Comparison of Findings on Reward Responses (i.e., Reward > 
Punishment/Neutral) in Previous Meta-analyses.  
Brain Region MNI Coordinates 

x y z 
Groenewold et al. 2013 (47)  
MDD > HC    
Lingual Gyrus 26 -92 -14 
Olfactorius Cortex 4 22 -14 
Middle Orbitofrontal 2 26 -14 
Rectus 2 30 -24 
Middle Orbitofrontal 0 26 -12 
Rectus 0 24 -24 
HC > MDD    
Cerebellum -16 -74 -28 
Lingual Gyrus -18 -62 -6 
Fusiform Gyrus -22 -74 -14 
Inferior Occipital Gyrus -30 -80 -12 
Rolandic Operculum -40 -24 20 
Insula -36 -24 22 
Superior Temporal Gyrus -40 -36 12 
Heschl Gyrus -46 -16 12 
Postcentral Gyrus -50 -18 18 
Supramarginal Gyrus -50 -22 18 
Anterior Cingulate Cortex -2 28 16 
Anterior Cingulate Cortex 4 32 14 
Lingual Gyrus -18 -62 -6 
Cerebellum -6 -58 -4 
Calcarine Sulcus -20 -54 4 
Fusiform Gyrus -26 -58 -12 
Precuneus -20 -52 2 
Pallidum 18 0 -4 
Putamen 28 -4 8 
Thalamus 14 -8 0 
Insula 38 10 -12 
Amygdala 30 -2 -12 
Caudate 16 26 6 
Fusiform 44 -62 -20 
Crus Cerebellum 44 -64 -20 
Brain Region TAL Coordinates 

x y z 
Zhang et al. 2013 (48)  
MDD > HC    
Cuneus 4 -86 18 
Cuneus -6 86 22 
Frontal Lobe 20 30 -6 
Middle Frontal Gyrus 40 28 38 
Superior Frontal Gyrus -4 48 32 
Fusiform Gyrus -48 -74 -12 
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Middle Frontal Gyrus -48 14 30 
Lingual Gyrus 12 -52 4 
Lingual Gyrus 14 -54 0 
HC > MDD    
Caudate -6 18 4 
Caudate -8 -8 10 
Thalamus -10 -12 8 
Thalamus -14 -14 16 
Caudate -12 -4 20 
Cerebellum 4 -36 -4 
Cerebellum -4 -42 4 
Putamen 14 8 2 
Caudate 14 14 10 
Anterior Cingulate -8 30 10 
Insula 34 -4 16 
Cerebellum -6 -60 -20 

MNI, Montreal Neurological Institute space; MDD, major depressive disorder; HC, healthy 
controls; TAL, Talairach space. Ventral striatum is the only area implicated in reward 
processing in MDD relative to HCs across the two previous meta-analyses and the current 
meta-analysis (see Table 1 for peak coordinates of group differences in neural responses to 
reward found in the current meta-analysis). 
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