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Abstract

A lot of hype has recently been generated around deep learning, a group of artificial intelligence 

approaches able to break accuracy records in pattern recognition. Over the course of just a few years, 

deep learning revolutionized several research fields such as bioinformatics or medicine. Yet such a 

surge of tools and knowledge is still in its infancy in ecology despite the ever-growing size and the 

complexity of ecological datasets. Here we performed a literature review of deep learning 

implementations in ecology to identify its benefits in most ecological disciplines, even in applied 

ecology, up to decision makers and conservationists alike. We also provide guidelines on useful 

resources and recommendations for ecologists to start adding deep learning to their toolkit. At a time 

when automatic monitoring of populations and ecosystems generates a vast amount of data that cannot 

be processed by humans anymore, deep learning could become a necessity in ecology.
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Introduction

Over the course of just a few years, deep learning, a branch of machine learning, has permeated into 

various science disciplines and everyday tasks. This artificial intelligence discipline has become 
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increasingly popular thanks to its high flexibility and performance. For instance, deep learning 

algorithms broke accuracy records in image classification1 or speech recognition2. Deep learning is 

rapidly expanding, revolutionizing the way we use computer power to automatically detect specific 

features in data and to perform tasks such as classification, clustering or creating predictive models3. 

Applications for these tools now span scientific and technological fields as varied as medicine4,5, 

bioinformatics6, finance7, but also automotive engineering (e.g. self-driving cars8), robotics9, or even 

video games10. Such a surge of tools and knowledge provided by deep learning could also be valuable 

in ecology as well, yet its use is still limited in this field and overview of its potential in ecology is 

warranted.

Overall, machine learning tools, not just deep learning ones, are interesting for ecologists because they 

are able to analyze complex nonlinear data, with interactions and missing data, a type of complexity 

frequently encountered in ecology3,11. Machine learning has already been successfully applied to 

ecology to perform tasks such as acoustic classification12, ecological modelling13 or studying animal 

behaviour14. What makes deep learning so powerful resides in the way it can learn features from data. 

Machines can be taught in two main ways. They can learn without supervision where computers try to 

automatically detect patterns and similarities in unlabelled data. With this method, no specific output is 

expected and this is often used as an exploratory tool to detect features in data, reduce its number of 

dimensions or cluster similar groups14. For detection, identification or prediction tasks, learning is 

usually done with supervision. A labelled dataset with the objects to recognize is first given to the 

computers so they can train to associate the labels to the examples. They can then recognize and 

identify these objects in other datasets15. However, with conventional machine learning, it is not enough

to just provide labels. The user also needs to specify in the algorithm what to look for3,15. For instance, 

to detect giraffes in pictures, characteristics of giraffes will need to be programmed for the algorithm to

be able to recognize them. This can hamper non-specialists of machine learning because it usually 
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requires a deep knowledge of the studied system and good programming skills15. In contrast, deep 

learning methods skip such a step. By using general learning procedures, deep learning algorithms are 

able to automatically detect and extract features from data15. This means that we only need to tell a 

deep learning algorithm whether a giraffe is present in a picture and, given enough examples, it will be 

able to figure out by itself what a giraffe looks like. This is made possible by creating a multi-layered 

decomposition of the data with different levels of abstraction that allow the algorithm to learn complex 

functions representing the data15. This ability to auto-detect features in complex, highly dimensional 

data, with highly predictive accuracy is what led to the fast expansion and ubiquity of deep learning 

methods15. And the numerous levels of ecology (from individual to meta-ecosystem scales) should not 

be different from the highly dimensional data deep learning is especially accurate and efficient at.

Box 1: Deep neural networks architectures 

Considering the complexity of ecological data and the ever-growing size of ecological datasets, a 

phenomenon recently amplified by the widespread use of automatic recorders16,17, we believe that deep 

learning can be a key tool for many ecological analyses. Yet, the mathematical complexity and the 

programming skills required to implement such a tool might be intimidating and prevent ecologists to 

use it. Besides, to our knowledge, no paper provides an insightful overview on when a deep learning 

tool could be useful to ecology. Here we perform a literature review of deep learning implementations 

in ecology to identify its benefits in most ecological disciplines, even in applied ecology, up to decision

makers and conservationists alike. We also provide useful insight and resources to help ecologists 

decide whether deep learning is an appropriate method of analysis for their studies.
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We performed a review of articles that use deep learning methods for ecological studies or that describe

methods that could be used in ecological studies such as animal or plant identification or behavioural 

detection. 

Our literature review was performed on April 4th 2018 using four search engines, i.e. Web of Science, 

Science Direct, arxiv.org and bioRxiv. While some articles that have not yet been reviewed by peers can

be found in the last two databases, we decided to include them (n= 26) because the widespread use of 

deep learning is still very recent, the value of their study is clear, and the publishing process can 

sometimes be long. Our goal here was not to validate the science behind the studies but to provide 

examples and ideas on how to use deep learning in ecology. Doing so allowed us to have the most up-

to-date information about research in progress and/or made public. If a published version of an article 

found on a preprint server was available, this version was selected. When available, we restricted our 

search to categories relevant to ecology. Otherwise, the keyword “ecology” was added to the search 

terms. We performed three searches in each website with the following keywords: 1) “deep learning” 

AND algorithm; 2) “convolutional neural network”; 3) “recurrent neural network”. These two types of 

deep learning methods were chosen, as they are currently the two most popular methods in deep 

learning across disciplines. The list of all returned papers can be found at 

https://figshare.com/s/9810c182268244c5d4b2.

Results

In total, 74 unique articles were found. We narrowed down our selection of studies by reading all or 

parts of each paper found and selected 39 papers that described research related to ecology or that 

could be of use for ecologists. Eleven (11) papers were added after searching for articles within the 

reference list of the selected papers. Almost two thirds of the selected papers (n = 32, 64 %) were 

published in 2017 or 2018 (Figure 1), showing the recent interest in the method. Of all 50 selected 
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papers, 46 implemented at least one deep learning model, with one implementing two – a CNN and a 

RNN18. The remaining papers only mentioned or discussed the use of deep learning for ecological 

studies.

Figure 1:Repartition of deep learning implementations in ecology by year and architecture. 

Since deep learning was popularized by the performance of convolutional neural network (CNN) on 

image recognition1, it is not surprising that CNNs are the dominant implementation in ecology (Figure 

1) and that more than half of the studies (n = 25, 54%) exploit deep learning for image processing. 

Other uses include sound processing (n = 7, 15%) or modelisation (n = 10, 22%). Architectural 

differences between RNN and CNN explain why the former have been used for longer (Box 1).

Deep learning methods have already proven to provide good results in a wide range of applications 

(Figure 2). The next sections provide an in-depth review of some areas of ecology that can benefit from

such tools.

Figure 2: Examples of deep learning applications in ecology depending on the study scale

Identification and classification

With the advent of automatic monitoring, ecologists can now accumulate a large amount of data in a 

short amount of time. However, extracting relevant information from the large recorded datasets has 

become a bottleneck, as doing it manually is both tedious and time consuming19,20. Automating the 

analysis process to identify and classify the data has therefore become necessary and deep learning 

methods have proven to be an effective solution. In fact, all top methods from the LifeCLEF 2017 

contest, an event that aims to evaluate the performance of state-of-the-art identification tools for 

biological data, were based on deep learning21. CNNs have already successfully been used to identify 

plants from images of their leaves22,23 and digitized images of herbaria24. CNNs could thus prove to be 
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useful tools for taxonomists. They have also been used to classify acoustic data such as bird songs25–27, 

marine mammals vocalizations28, and even mosquito sounds29. 

Use of deep learning has also been successfully used in plant phenotyping, i.e. classifying the visible 

characteristics of a plant to link them to its genotype. Applications include counting leaves to assess the

growth of the plant30, monitoring the root systems of plants to study their development and their 

interaction with the soil31 or counting wheat spikelets32. While mainly used in agricultural research so 

far, there is no doubt that these techniques could be transposed in ecology, for example to study the 

productivity of an ecosystem or to measure the impacts of herbivory on plant communities.

Behaviour studies

Deep neural networks could prove to be valuable assets to study the behaviour of animals by providing 

a means to automatically describe their activities. Insight on the social behaviour of individuals could 

then be gained by describing their body position and tracking their gaze33,34. Images from camera 

trapping can be used to describe and classify the activities of wild animals such as feeding or resting20. 

Collective behaviour and social interactions of species such as bees can be studied by using CNNs to 

locate and identify marked individuals35. 

As telemetry datasets are growing bigger every day, deep learning can be used to detect activity 

patterns such as foraging. Indeed, by training a CNN with GPS localizations coupled with time-depth 

recorder data used to detect the diving behaviour of seabirds, a research team has been able to predict 

diving activities from GPS data alone36. 

Models of animal behaviour can also be created. By analyzing videos of nematode worms (C. elegans),

a recurrent neural network was able to generate realistic simulations of worm behaviours. The model 
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could also be used as a classification tool37. RNNs also allowed the theoretical simulation of courtship 

rituals in monogamous species38 and of the evolution of species recognition in sympatric species39.

Population monitoring

As deep learning can detect, identify and classify individuals in automatic monitoring data, it can also 

be used to help monitor populations. For instance, population size can be estimated by counting 

individuals20, or by using estimation methods such as distance sampling40. By extension, information 

such as population distribution or density can also be calculated from this data as it has already been 

done with traditional methods16.

Detecting symptoms of diseases is a large potential provided by deep learning. For example, CNNs 

already help detect plant diseases in olive trees41, cassavas (Manihot esculenta)42 or various crops43. 

While the primary use has been directed towards agricultural applications, this could also be widely 

applied to wild plant and animal populations to help find hints of scars, malnutrition or the presence of 

visible diseases like mange44.

Ecological modelisation

Ecologists often require powerful and accurate predictive models to better understand complex 

processes or to provide forecasts in a gradually changing world3. Machine learning methods have been 

shown to show great promise in that regard3,11, and deep learning methods are no exception. A deep 

neural network has recently been able to accurately create distribution models of species based on their 

ecological interactions with other species45. With enough data, methods such as deep Boltzmann 

machines could become the avenue for studying ecological interactions46.

Deep networks have the potential to model the influence of environmental variables on living species 

even though they have not yet been applied in this way. Studies in the medical field managed to predict 

gastrointestinal morbidity in humans from pollutants in the environment47,48, a method that could easily 
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be transferable to wild animals. Recurrent networks have also been shown to successfully predict 

abundance and community dynamics based on environmental variables for phytoplankton49–51 and 

benthic communities52. Overall, with functionality in predicting species distribution and environmental 

predictors, this means that deep learning could be part of the toolbox of ecological niche models. 

Ecosystem management and conservation

With human activities affecting all ecosystems, a major task for ecologists has been to monitor and 

understand these ecosystems and their changes for management and conservation purposes53. We argue 

here that deep learning tools are appropriate methods to fulfill such aims. For instance, biodiversity in a

given site can be estimated via the identification of species sampled in automatic recordings54. Beyond 

species identification, the timing of species presence in any given site can also be measured with time 

labels tailored to species lifecycles20. The functioning and stability of ecosystems can then be 

monitored by converting all these species data and interactions into food web models and/or focusing 

on indicator species such as bats, which are very sensitive to habitat and climate change55.

With respect to habitat management, new examples have just been described. By being able to model 

the dynamics of phytoplankton and benthic communities from environmental variables, deep networks 

provided a tool to monitor and improve water quality management49,51,52.

Deep learning is also perfect to perform landscape analysis for large scale monitoring. For instance, in 

order to monitor coral reefs, CNNs have been trained to quantify the percent cover for key benthic 

substrates from high-resolution reef images56. Events that modify the landscape such as cotton blooms 

are detectable using convolutional networks and aerial images57. And by combining satellite imaging, 

LIDAR data and a multi-layer neural network, the aboveground carbon density was quantified in order 

to define areas of high conservation value in forests on the island of Borneo58.
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Beyond mapping species and areas of high value for ecosystems and conservation, deep learning has a 

large set of potential applications to track the impacts of human activities. Recently, deep neural 

networks mapped the footprint of fisheries using tracking information from industrial fishing vessels59. 

And in order to reduce illegal trafficking, it has been suggested to use deep learning algorithms to 

monitor such activities on social media to automatically detect pictures of illegal wildlife products60.

To go even further, deep learning has already been envisioned as a cornerstone to create fully 

automated system designed to create and manage wild ecosystems61. Data gathered by automated 

sensors would be sent to a deep learning algorithm that could then take decisions such as reseeding by 

using drones or eradicating invasive species with robots. Such systems would allow continuous 

ecosystem management without requiring any human intervention61. While this type of large-scale 

automatic systems is seen on the applied perspective, we could suggest a fundamental use aiming at 

mapping and studying biodiversity patterns and processes across various ecosystems.

Box 2: Deep learning toolkit

Challenges to apply deep learning in ecology

While deep learning methods are powerful and promising for ecologists, it is also important to 

remember that these tools also have requirements that need to be considered before deciding to 

implement them. Here are some of the major difficulties that can be encountered when dabbling in deep

learning waters.

Perhaps the biggest challenge for deep learning lies in the need for a large training dataset to achieve 

high accuracy. Algorithms are trained by examples and the machine can only detect what has been 

previously shown to her. This implies that training datasets must often need thousands to millions of 

examples – depending on the task – with bigger datasets giving better results62. This also implies that 

the dataset we want to analyze must have a consequent size and that finding the right threshold of size 
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is critical. For instance, in acoustic processing, at least 36 hours of recording are required for a deep 

learning algorithm to become more efficient than human listening 25. Although this is a challenge in its 

own, the good news is, it is now relatively easy to gather hours and hours of acoustic recordings63. 

To help alleviate the need for data-hungry training examples, multiple solutions have appeared in 

recent years and are readily available in ecology. A popular choice is transfer learning64. Transfer 

learning consists of pre-training a model to detect specific features tailored to the type of data to 

process on a large dataset with similar characteristics. For instance, a user who wants to detect objects 

in pictures but has a limited annotated set can first pre-train his model on a large public image dataset, 

even if the images are unrelated to the objects to detect (Box 2). The model can learn to detect features 

like edges or colours64, and can be then trained on the smaller dataset containing the objects to 

recognize. To save time, it is even possible to directly download the results of pre-training on large 

public image datasets for some popular implementations of CNN64. Another way to help feed the model

with enough data is data augmentation. Data augmentation consists in the artificial generation of more 

data for training from annotated samples. For instance, with sound recordings, noise can be added or 

the sound distorted. With images, colours can be altered or the images flipped or rotated. This allows 

not only a greater variety of data to be fed to the model but also a sufficient quantity to be provided for 

efficient training. Deep learning can even be used to generate realistic datasets for training. This 

method has been applied to successfully generate plant images65,66 or bee markers67.

Training on very large datasets also comes with another requirement: computing power. To effectively 

train a deep learning algorithm, it will need to learn millions of parameters68. To achieve that, very 

powerful hardware resources are needed. In fact, the recent explosion in deep learning has been made 

possible to the technological advancement in computer hardware and especially the use of graphics 

processing units (GPU) found in graphic cards69 (Box2). The good news is that training a deep learning 
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algorithm can technically be done on any recent hardware, allowing any ecologists with a reasonably 

powerful laptop to do it. However good graphics cards can speed up the training time by orders of 

magnitude69. Even then, training the model can take several days to converge for very complex 

analyses and fine tuning the model for improved accuracy could require several training sessions25,68. 

Nevertheless, once the training is done, the model created is generally quite performing and capable of 

going through large datasets efficiently compared to other alternative approaches, thus leading to time 

savings25.

Another common problem with deep learning is that it has limited potential for solving a task it was not

designed and trained for62. For instance, if we design an acoustic recognizer to identify a particular 

species from its calls, it will have a hard time recognizing taxonomically distant species calls. At the 

moment, the easiest way to solve this would be to increase the training dataset size to include samples 

of other species of interest, signalling the need for linking deep learning and more traditional analysis 

approaches.

Concluding remarks

Deep learning, just like other machine learning algorithms, provide useful methods to analyze 

nonlinear data with complex interactions and can therefore be useful for ecological studies. But where 

deep learning algorithms really shine lies in their ability to automatically detect by themselves objects 

of interest in data – such as animals in pictures – just by knowing whether the object is present or not. 

Moreover, they can do that with great accuracy, making them choice tools for identification and 

classification tasks. While the emphasis has been on so far supervised methods due to their 

performance and ease of training, future developments in unsupervised learning are expected, thus 

potentially removing the need for annotated datasets altogether 15. 
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Deep learning shows a lot of promise for ecologists. While the popularity of the method is still very 

recent, implementations are already covering a wide array of ecological questions and can prove very 

useful tools for managers, conservationists or decision makers by providing a fast, objective and 

reliable way to analyze huge amounts of monitoring data. Applications can also go beyond ecology and

deep learning could also be valuable to evolutionists or biologists in general. However, developing a 

deep learning solution is not a trivial task yet and ecologists do need to take time to evaluate whether 

this is the right tool for the job. Requirements in terms of training datasets, training time, development 

complexity and computing power are all aspects that should be considered before going down the deep 

learning path.

As ecology enters the realm of big data, relying on artificial intelligence to analyze data will become 

more and more common. Ecologists will then have to acquire or have access to good programming 

and/or mathematical skills. While this might seem scary at first sight, we believe that there is one 

simple solution to this challenge: collaboration across disciplines. A stronger interaction between 

computer scientists and ecologists could unravel new synergies and approaches in data classification 

and analyses, deepening our understanding of fundamental and applied research in ecology. This in turn

would allow ecologists to focus on the ecological questions rather than on the technical aspects of data 

analysis and computer scientists to delineate new avenues on some of the most complex data and units 

of our biological world such as ecosystems. We also strongly encourage sharing datasets and codes 

whenever possible to make ecological research faster, easier and directly replicable in the future, 

especially when using complex tools such as deep learning. With software getting more powerful and 

easier to use, experience being accumulated and shared and resources such as datasets made available 

to everyone, we believe that deep learning could become an accessible and powerful reference tool for 

ecologists.
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Figure 1: Repartition of deep learning implementations in ecology by year and architecture. 
Implementations were grouped in 4 categories: convolutional neural networks (CNN), recurrent neural 
networks (RNN), and unsupervised methods. The "Other" category includes studies where 
classification of the type of algorithm was either difficult to identify or undisclosed. Note that one 
study18 was counted twice as it implemented a combination of CNN and RNN.
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Figure 2: Examples of deep learning applications in ecology depending on the study scale
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Box 1: Deep neural networks architectures

From a technical standpoint, deep learning algorithms are multilayered neural networks. Neural 

networks are models that process information in a way inspired by biological processes, with highly 

interconnected processing units called neurons working together to solve problems3,11(Figure I). Neural 

networks have three main parts: 1) an input layer that receives the data, 2) an output layer that gives the

result of the model, and 3) the processing core that contains one or more hidden layers. What 

differentiates a conventional neural network from a deep one is the number of hidden layers, which 

represents the depth of the network. Unfortunately, there is no consensus on how many hidden layers 

are required to differentiate a shallow from a deep neural network69.

During training, the network adjusts its behaviour in order to obtain the desired output. This is done by 

computing an error function by comparing the output of the model to the correct answer. The network 

then tries to minimize it by adjusting internal parameters of the function called weights, generally by 

using a process called gradient descent15. 

Among deep networks, several structures can be found. Feedforward networks map an input of 

determined size (e.g. an image) to an output of a given size (e.g. a classification probability) by going 

through a fixed number of layers15. One of the feedforward implementation that received the most 

attention due to its ease of training and good generalization is the convolutional neural network (CNN).

CNNs are designed to process multiple arrays of data such as colour images and generally consist of 

stacking groups of convolutional layers and pooling layers in a way inspired by biological visual 

systems15.
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Recurrent neural networks (RNN) usually have only one hidden layer but they process elements in 

sequence, one at a time and keep a memory of previous elements, with each output included in the 

input of the next element15. The summation of each individual step can thus be seen as one very deep 

feedforward network. This makes them particularly interesting for sequential input such as speech or 

time series 15. A popular implementation of RNN is the Long Term Short-Memory network (LSTM), an

architecture capable of learning long-term dependencies that has proven especially efficient for tasks 

such as speech recognition70 or translation71.

Unfold

Input Layer

Hidden Layer

Output Layer

t - 1 t t +1 

a) Feedforward network b) Simple recurrent network

Figure I: Architecture of common neural networks. a) Feedforward networks are unidirectional, 
from the input layer to the output layer and through hidden layers. Deep feedforward networks have 
usually at least three hidden layers. b) Simple recurrent neural networks get input from previous time 
steps and can be unfolded to feedfoward networks
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Box 2: Deep learning toolkit

Here we provide some resources that might be useful in order to successfully create and deploy a deep 

learning tool.

Libraries and packages:

With the rapid development of deep learning, a great number of libraries and packages have been 

created to set a deep network with minimal effort. Most of the popular tools are open source and 

packages are available in multiple programming languages such as Python, R, Java, Javascript, 

MATLAB or C++. Note, however, that Python seems to be the most popular programming language for

deep learning at the moment (Table I). Keep in mind that most of these tools are currently in active 

development and could therefore evolve rapidly.

Table I: List of deep learning frameworks and their language

Framework Language URL

Tensorflow Python, C/C++, R, Java, Go, Julia https://www.tensorflow.org/

Caffe Python http://caffe.berkeleyvision.org/

PyTorch Python https://pytorch.org/

Deeplearning4J Java, Scala https://deeplearning4j.org/

Keras Python, R https://keras.io/

MATLAB + Neural
Network Toolbox

MATLAB https://www.mathworks.com/products/neural-network.html

Apache MXNET C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl http://mxnet.incubator.apache.org/

PlaidML Python https://github.com/plaidml/plaidml

Graphic cards

While optional, deep learning benefits a lot from the use of graphics processing units (GPU) to speed 

up training. However, at the moment of writing, the market of deep learning is mostly dominated by the

manufacturer nVidia, who offers cards specially designed for deep learning applications. Therefore, 

while some deep learning framework – such as plaidML – support all graphics card, most frameworks 
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only offer GPU acceleration for graphics cards created by nVidia. Fortunately for researchers, a grant 

program exists to offer free graphics cards to promote research with deep learning.

Other useful resources

Github.com: a website originally designed as a tool to freely share and keep track of change in 

programming code. By promoting open source collaboration, github provides not only a great way to 

save your code but also a reference database in which examples and tools can be found.

Kaggle.com: A data science website that allows you to host competitions to get the best machine 

learning models suited to your data. By providing training and reference datasets, the expected results 

and offering a reward, data scientists can create for your deep learning models without you having to 

learn how to do it. It also provides a useful source of information, examples, reference databases as 

well as access to an experienced community for those who want to learn more about deep learning by 

themselves

Reference databases:

Public annotated databases can increasingly be found online in order to facilitate the training of deep 

neural networks in ecology. Some of them include bird sounds such as the Macaulay 

(https://www.macaulaylibrary.org/) or Xeno-Canto (https://www.xeno-canto.org/) libraries, bat calls55, 

plants65, or animal images72. More generalist reference databases are also available to pre-train neural 

networks such as MNIST (http://yann.lecun.com/exdb/mnist/) or ImageNet (http://image-net.org/).

As scientists are increasingly required to render their research data available, training datasets will 

become easier to come by in the near future; and the recent surge in data repositories facilitate data-

hungry analyses. Some journals such as Scientific Data even focus solely on the publication of research

datasets73.
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