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Abstract: A now classical argument for the marginal thermodynamic stability of proteins explains the1

distribution of observed protein stabilities as a consequence of an entropic pull in protein sequence2

space. In particular, most sequences that are sufficiently stable to fold will have stabilities near the3

folding threshold. Here we extend this argument to consider its predictions for epistatic interactions4

for the effects of mutations on the free energy of folding. Although there is abundant evidence to5

indicate that the effects of mutations on the free energy of folding are nearly additive and conserved6

over evolutionary time, we show that these observations are compatible with the hypothesis that a7

non-additive contribution to the folding free energy is essential for observed proteins to maintain8

their native structure. In particular through both simulations and analytical results, we show that9

even very small departures from additivity are sufficient to drive this effect.10

Keywords: thermodynamic stability, epistasis, molecular evolution, purifying selection11

1. Introduction12

The relationship between protein sequence, stability, and function has been a subject of intense13

investigation for decades. A combination of biophysical and evolutionary models and, more recently,14

high-throughput mutagenesis experiments have dramatically advanced our understanding of this15

complex relationship [1–5]. A consensus view has emerged on some aspects of protein functions and16

evolution— e.g., what accounts for the distribution of thermodynamic stabilities observed in nature.17

And yet other questions—e.g., whether genetic interactions play a dominant or minor role in protein18

sequence evolution—remain actively debated, with apparently contradictory empirical and theoretical19

evidence [1–5].20

A nuanced appreciation of the high-dimensional nature of protein sequence space has been21

essential for resolving questions about protein structure, function, and evolution. The observation that22

naturally occurring proteins are only marginally, as opposed to maximally, stable was first interpreted23

as an adaptive feature to permit increased protein flexibility and functionality [6]. But, with some24

exceptions [7], this view has been largely replaced with a more parsimonious explanation based on25

the high dimensionality of sequence space: marginal stabilities are observed because, simply, far26

more sequences are marginally stable than maximally stable [8]. Essential to the development of this27

explanation was the concept of sequence entropy [9,10] – the idea that the sheer number of protein28

sequences that map to a given phenotype exerts a strong entropic pull on the distribution of observed29

phenotypes in viable proteins[11–13]. The field today has mostly settled on a synthetic understanding30

of how simple biophysical models of energy and folding, along with the structure of sequence space,31

conspire to explain the distribution of protein stabilities observed in nature [1–5].32
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By contrast to observed stabilities, the role of epistasis in protein evolution and function remains33

a topic of active debate with unresolved ambiguities. The same bio-physical models that can34

parsimoniously explain observed distributions of stabilities have been reported to show only a weak35

context-dependence of mutational effects on stability [14], or, alternatively, reported to show very36

strong context dependence of mutational effects [13,15,16]. Likewise, experimental studies on the37

fitness effects of mutations in divergent sequence backgrounds have reportedly very weak epistasis38

[14], whereas comparative analysis of divergent proteins has implicated an overriding role for epistasis39

in shaping sequence evolution[17]. How are we to resolve this significant discrepancy about the role40

of epistasis for protein stability and sequence evolution?41

In this paper we address this discrepancy by analyzing simple models for the relationship between42

amino acid sequence and the ∆G of folding. Under selection to maintain a minimum degree of stability,43

these models predict distributions of folding energies that are roughly consistent with those observed44

in nature. Moreover, the models predict very weak interactions between pairs of mutations. These45

predictions are consistent with biophysical measurements of nearly additive mutational effects on46

stability [18], and with reports of consistent effects over both short [14] and long [19] evolutionary47

timescales. And yet, at the same time, we show that a non-additive contribution to the folding free48

energy is essential for allowing proteins to fold stably in our model, for reasons attributable to sequence49

entropy. These results may help to resolve striking discrepancies in the literature on the importance of50

epistasis for protein stability and evolution [1–5].51

2. Methods52

2.1. Simulations53

We consider two simple models for the relationship between amino acid sequences and ∆G of54

folding. All amino acid sequences considered are of length l = 400.55

First we consider a model where epistasis arises due to pair-wise interactions between sites. In56

this probabilistic model, the additive effect on stability for each possible amino acid in each position57

in the primary sequence is drawn from a Gaussian distribution with mean µadd and variance σ2
add.58

In addition, we allow pair-wise interactions between amino acid sites, and the magnitudes of these59

interactions are also drawn from a Gaussian distribution with zero mean and variance σ2
epi. Moreover,60

these pairwise interactions are specified in such a way that the pairwise interaction terms have no61

impact on the average effect of any given amino acid substitution, so that the magnitudes of the62

additive and epistatic effects can be modified independently. That is, the model is equivalent to a63

“random field model” from the fitness landscape literature[20,21] where the only non-zero terms are64

the constant, linear, and pairwise interaction terms. See Appendix A for details on the mathematical65

features and practical implementation of this model.66

Second, we consider a model where epistasis is modeled as a random deviation from additivity67

drawn independently for each genotype, meaning each sequence of amino acids. This model is similar68

to the “rough Mount Fuji” model of fitness landscapes [22,23]. In this case we again draw the69

additive effect of each amino acid in each position from a Gaussian distribution with variance σ2
add,70

but in addition the folding energy of each genotype is perturbed by an independent draw from a71

zero-mean gaussian with variance σ2
HOC (where HOC denotes “house of cards”, since this component72

is completely uncorrelated between mutationally adjacent genotypes, similar to the house of cards73

model of fitness landscapes [24]). Because protein sequence space is too large to store in computer74

memory, we implement a hashing scheme so that in the simulations these epistatic effects remain75

consistent for previously observed genotypes, but are drawn anew for genotypes that have not yet76

been encountered.77

The simulations of protein sequence evolution under selection are based on a threshold model78

for thermodynamic stability: proteins with a negative ∆G of folding are deemed viable and all other79

sequences are deemed inviable. At each step in the simulation, a random position in the protein80
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sequence is chosen and changed to a random alternative amino acid. This new sequence is accepted if81

it is viable and rejected if it is inviable. These simulations are initialized at the sequence predicted to82

be most stable based on its additive effects and allowed to equilibrate for 5000 proposed mutations, a83

time sufficient for the distribution of folding stabilities to become approximately stationary for the84

conditions consider here. After this relaxation period, the simulations continue for an additional 500085

proposed mutations to produce the results shown here. All simulations and all calculations presented86

were implemented in Mathematica and the corresponding Mathematica notebook is included as87

supplemental information.88

The models analyzed here are simpler, and less realistic, than other commonly used models for89

protein evolution based on force fields [25], contact energies [26], or lattice proteins [27]. However,90

we employ these models because their simple structure yields to a variety of exact and approximate91

analytical results, and thus provides a clearer illumination of the theoretical issues involved than the92

more realistic but less tractable alternatives.93

3. Results94

3.1. Epistasis is essential for proper folding of evolved sequences95

We simulated the evolution of a protein of length 400 under a model where each amino acid at96

each position makes an additive contribution to the free energy of folding, and where in addition we97

allow pairwise stability interactions between sites. We imposed truncation selection for spontaneous98

folding so that only sequences with a negative ∆G of folding are considered viable. The parameters99

of the simulations were chosen to be roughly consistent with the observed distribution of folding100

stabilities and mutational effects on stability reported in the literature [e.g. 28–31]101

Figure 1a shows the distribution of folding energies observed in these simulations after the102

process was allowed to reach stationarity. The mean of this distribution is only slightly negative,103

indicating that the evolved proteins are marginally stable, as predicted by theory and observed in104

nature [8,11,29,31,32]. Examining the effects of single amino acid substitutions for sequences drawn105

from this distribution (Figure 1b), we observe that the mean is approximately positive 1.133 kcal/mol106

with standard deviation 1.44 kcal/mol, consistent with empirical observations [28–30], and that the107

distribution of energetic effects that are fixed over the course of the simulations (Figure 1c) is shifted to108

have approximately zero mean (0.0009 kcal/mol) and a smaller standard deviation (1.0493 kcal/mol)109

as observed previously [16,33,34].110

Interactions between mutations also have a similar magnitude to those observed in previous111

studies, with double mutants stabilities nearly exactly predicted by the observed additive effects of112

their constituent single mutations (Figure 1d, R2 = 0.99976). Furthermore, the additive effects of113

mutations that fix along our simulated evolutionary trajectories remain relatively consistent over time114

(Figure 1e), with a root mean square change of only 0.5052 kcal/mol at 50% sequence divergence,115

consistent with the empirical measurements of Risso et al. [19], who observed an RMS change of .67116

kcal/mol among mutations that fix at a similar level of divergence. Because we are working with117

simulated data, we can also assess the extent to which the observed mutational effects reflect the true118

additive effects of mutations. Figure 1f shoes that the observed effects of the possible single amino119

acid substitutions in an evolved background are highly correlated with the true underlying additive120

effects of these same mutations (R2 = 0.887).121
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Figure 1. Free energy of folding, stability effects of mutations, and contribution of additive effects to
folding stability for populations evolving at stationarity under truncation selection for protein stability
with pair-wise energetic interactions: (a) Free energy of folding for evolved sequences. (b) Distribution
of stability effects of mutations for evolved sequences. (c) Distribution of stability effects of mutations
fixed along simulated trajectories. (d) Stability effects of double mutants for evolved sequences versus
predicted stability based on the sum of single mutant effects. 500 random double mutants in a single
evolved background shown, R2 = 0.99976. (e) Effects of single mutations that fixed along trajectory in
two evolved backgrounds that differ by 50% sequence divergence, R2 = 0.8266. (f) Observed stability
effects of mutations are highly correlated with the true average additive effects of the corresponding
mutations, R2 = 0.887. (g) Free energy of folding versus additive contribution to folding for evolved
sequences. The additive contribution to folding is not a good indicator of the free energy of folding
(R2 = 0.0672) and observed sequences cannot fold spontaneously based on the additive contribution
alone. The solid curve is derived from our analytical approximations and is predicted to contain 95%
of the evolved sequences. Simulations conducted under the pairwise epistasis model with µadd = 1,
σ2

add = 1, σ2
epi = 0.0003.

To summarize, our simulations are qualitatively similar to both previous empirical and theoretical122

investigations of long-term evolution under selection for protein folding stability, and, on the face of it,123

they suggest that epistasis for protein folding stability plays only a minor role. However, when we124

actually compute the additive contribution to protein stability observed in our simulations, a very125

different picture emerges (Figure 1d). Shockingly, we find that the observed additive contribution to126

folding stability is not nearly sufficient to allow spontaneous folding (mean ∆G of folding from the127

additive component is 22.45 kcal/mol) so that epistatic interactions are required for folding for all the128

sequences observed at stationarity. Furthermore, the additive contribution to folding stability is almost129

completely uncorrelated with the actual folding stability (R2=0.06). Thus, epistasis plays an essential130
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role in the simulation results, despite its near absence in the simulated double-mutant data and the131

observed conservation of energetic effects at 50% sequence divergence.132
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Figure 2. Free energy of folding, stability effects of mutations, and contribution of additive effects to
folding stability for populations evolving at stationarity under truncation selection for protein stability
under the independent epistatic effects model: (a) Free energy of folding for evolved sequences.
(b) Distribution of stability effects of mutations for evolved sequences. (c) Distribution of stability
effects of mutations fixed along simulated trajectories. (d) Stability effects of double mutants for
evolved sequences versus predicted stability based on the sum of single mutant effects. 500 random
double mutants are shown. (e) Effects of single mutations that fixed along trajectory in two evolved
backgrounds that differ by 50% sequence divergence, R2 = 0.9856. (f) Observed stability effects of
mutations are highly correlated with the true average additive effects of the corresponding mutations.
(g) The additive contribution to folding is a good indicator of the free energy of folding (R2 = 0.9863)
and 95% of observed sequences can fold spontaneously based on the additive contribution alone.
The solid curve is derived from our analytical approximations and is predicted to contain 95% of
the evolved sequences. Simulations conducted under the independent random effects model with
µadd = 1, σ2

add = 1, σ2
HOC = .01.

3.2. Enrichment for epistasis observed under pairwise, but not independent models133

In order to better understand the causes of these counter-intuitive results, we considered an134

alternative landscape with an identical additive component but with epistasis modeled as random135

draw for each sequence (from a zero-mean Gaussian distribution with variance σ2
HOC = .01), Figure 1c.136

The results of these simulations are shown in Figure 2. In this case, the distribution of folding137

stabilities, distribution of mutational effects, and extent of observed epistasis in pairwise mutations138

are qualitatively unchanged from the results observed under the prior, pairwise interaction model139
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(Figure 2a-f vs. Figure 1a-f). However, in this case the paradoxical contribution of epistasis to folding140

stability is absent, so that the additive contribution to stability is sufficient for spontaneous folding141

for most evolved sequences, and the observed folding energy is highly correlated with the additive142

contribution (R2=0.9865, Figure 2d). We therefore conclude that enrichment for epistasis under143

stabilizing selection occurs with pair-wise epistatic interactions but not with fully random interactions.144

What explains this difference in behavior between the model with pair-wise epistatic interactions145

and the model with independent epistatic effects for each sequence? In order to address this question,146

we conducted a mathematical analysis of the random field model (see Appendix B). What we came147

to understand was that the amount of epistasis observed in double mutants under the pair-wise148

interaction model vastly underestimates the total amount of epistasis in the energy landscape. This149

occurs because making a double mutant only results in changes to relatively few interaction pairs (i.e.150

those interaction pairs involving the site of either single mutant). However, as additional mutations151

are added to the sequence, more pairs are perturbed, which unleashes additional epistasis.152

More precisely, in the mathematical analysis we considered the expected magnitude of the153

observed epistasis as a function of the number of mutations from an arbitrary focal sequence. That154

is, we calculated the expected variance in the epistatic contribution among the set of all sequences at155

a given distance d from this focal sequence. The results are shown in Figure 3 where the variance at156

d = 2 is set to 1, so that the variance is expressed relative to the variance observed in a double mutant157

analysis. We see that for small d this variance increases roughly linearly, and eventually saturates at158

almost 50 times the expected variance at d = 2. In contrast, the independent random epistasis model159

is essentially constant at all positive distances. Thus, similar levels of observed epistasis in double160

mutants make vastly different predictions for the total amount of epistasis under the two models.161
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Figure 3. Expected epistatic variance as a function of distance from the focal sequence for amino acid
sequences of length l = 400. Results for the pair-wise model shown in black, results for the independent
epistasis model shown in gray. All variances are normalized relative to the expected variance at d = 2
which is set to 1. Notice that epistatic variance at large distances is much larger than epistatic variance
at distance d = 2 for the pair-wise epistasis model but not for the independent epistasis model.

3.3. Bivariate normal approximation for joint distribution of additive and epistatic contributions captures162

impact of sequence entropy163

Our results on the surprising implications of small observed epistatic effects under the pairwise164

interaction model make the results in Figure 1g appear somewhat more plausible because more165

epistasis is present in the landscape than is apparent from the double mutants. But this observation166

still does not provide a definite explanation for the large contribution of epistatic interactions to folding167

stability.168
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We now provide such an explanation, based on considering the fraction of random sequences169

that have any given pair of additive and epistatic contributions (see Appendix C for details). In170

particular, we assume that the distribution of additive contributions to the free energy of folding for171

random sequences is normally distributed with mean µ1 and variance σ2
1 , that the distribution of172

epistatic contributions is normally distributed with mean 0 and variance σ2
2 , and that the additive173

and epistatic contributions are uncorrelated so that the total folding energy of a random sequence174

∆G = ∆Gadd + ∆Gepi is also normally distributed, with mean µ = µ1 and variance σ2 = σ2
1 + σ2

2 .175

These normal approximations are reasonable considering that ∆Gadd is calculated by adding up the176

energy contribution of each site in the sequence, and ∆Gepi is calculated by adding up the energy177

contribution of each pair of sites in the sequence for a large number l = 400 of sites. We also note178

that in the mutation-limited regime depicted in our simulations, the stationary distribution of the179

simulated random walk will be uniform on the set of genotypes with negative folding energies that180

are path-connected with our choice of starting genotype [35]. Under the assumption that almost all181

genotypes with negative folding energies are path-connected, picking a sequence from the stationary182

distribution is equivalent to picking a sequence from the uniform distribution on sequences with183

negative folding energies, and so our problem reduces to understanding the distribution of additive184

folding contributions among all sequences with negative free energies of folding.185

Under the above approximation, we now consider how—for a typical viable sequence— the186

additive and epistatic energies jointly produce a negative free energy of folding. The key idea is187

that there are so many more sequences with positive additive contributions to folding than there are188

sequences with negative additive contributions that most sequences that fold have a positive additive189

contribution despite the fact that any particular sequence with a positive additive contribution to the190

free energy of folding has only a minuscule chance of actually folding.191

More precisely, let us fix the value of the additive energy at ∆Gadd = x, and count the number of192

sequences, with this given ∆Gadd, that fold. The number of sequences with ∆Gadd = x is proportional193

to the probability density for the distribution of ∆Gadd, PDF(N (µ1, σ2
1 ))(x). Adding the epistatic194

energy to the additive energy, the sequences with ∆Gadd = x that fold are the sequences for which195

∆Gepi < −x, i.e. their number is proportional to the cumulative distribution function of ∆Gepi196

evaluated at −x, CDF(N (0, σ2
2 ))(−x). Putting the two pieces together, the number of sequences that197

have ∆Gadd = x and, at the same time fold, is proportional to198

PDF(N (µ1, σ2
1 ))(x)×CDF(N (0, σ2

2 ))(−x).

Figure 4 shows this calculation for x values near the viability threshold 0. We see that over199

this range of folding energies the number of sequences is growing extremely rapidly (Figure 4a) so200

that, roughly speaking, the number of sequences with a given additive energy increases 10-fold for201

every additional .45 kcal/mol. Now, Figure 4b shows the fraction of sequences with a given additive202

contribution that spontaneously fold. This is near 1 for most sequences with a negative contribution,203

but decreases exponentially for positive additive contributions. The net result (Figure 4c) is that a204

typical additive contribution for a sequence that folds is often around 22 or 23 kcal/mol. While only a205

tiny fraction of sequences with additive energies in this range fold (roughly 1 in a million), there are206

roughly 10 billion times more sequences in this 1 kcal/mol range than there are all sequences that207

would spontaneously fold based on their additive contribution (i.e. with ∆Gadd < 0), so that in the208

end most sequences that fold have substantially positive additive contributions to the free energy of209

folding.210
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Figure 4. Illustration of the main mechanism behind the essentiality of epistatic interactions
for spontaneous folding: (a) Density of random sequences with given additive free energy
P (∆Gadd = x) = PDF(N (µ1, σ2

1 ))(x). (b) Fraction of sequences that fold given additive free energy
P(∆G < 0|∆Gadd = x) = CDF(N (0, σ2

2 ))(−x). (c) Density of random sequences that fold and have
the given additive free energy P (∆G < 0 ∩ ∆Gadd = x).

The above argument leads to a simple prediction for the joint distribution of the free energy of211

folding and additive contribution to folding shown in Figures 1g and 2g: since the joint distribution212

for random sequences is bivariate normal, the distribution of observed energies should simply be213

this bivariate normal distribution truncated at ∆G = 0 kcal/mol. This approximation is shown in214

Figures 1g and 2g by a dashed gray curve that is predicted to contain 95% of the observations, and we215

see that this prediction is in reasonable agreement with our simulations.216

Moreover, under this bivariate normal approximation the average contribution of epistasis to217

the mean free energy of folding observed in our simulations can be calculated in a manner exactly218

analogous to Galton’s classical results on regression to the mean [36], or the difference between the219

selection differential and the response to selection in the breeder’s equation from quantitative genetics220

[37,38]. In particular, we find that the mean additive energy of viable sequences is approximately221

E(∆Gadd|∆G < 0) ≈ µσ2
2 /(σ2

1 + σ2
2 ) (see Appendix C for details), so that the mean contribution of222

epistasis is approximately −µσ2
2 /(σ2

1 + σ2
2 ), or equivalently −µ(1− R2), where R2 is given by the223

squared correlation coefficient of additive and total folding energies taken over all of sequence space.224

As a result, even if the mapping from sequence to folding energy is nearly additive, in the sense that R2
225

is almost 1, the predicted epistatic contribution to the folding stability can still be substantial provided226

that the expected folding energy µ of a random sequence is sufficiently disfavorable.227

4. Discussion228

The role of epistasis in long-term protein evolution remains a topic of active debate [1–5]. Here we229

have explored a surprising phenomenon where the effects of mutations on the ∆G of folding appear to230

combine nearly additively, and nonetheless what little epistasis is present plays a critical role, to the231

extent that observed sequences would not be able to fold in the absence of these epistatic interactions.232

We showed that this phenomenon occurs in a model where interactions occur between pairs of sites but233

not in a model where each sequence differs from its additive prediction by an independent draw from234

a normal distribution. The difference between the two models arises because pair-wise interactions235

can appear nearly additive in double mutants while still producing a substantial amount of epistasis236

over sequence space as a whole. We also present simple analytical approximations that predict the237

extent of the epistatic contribution to stability in our simulations. Furthermore, these approximations238

suggest that this phenomenon occurs due to sequence entropy: many more sequences can fold due to239

a combination of epistatic and additive contributions than can fold based on the additive contributions240

to stability alone, and so the epistatic contribution to stability is typically essential when one observes241

a random sequence that folds. These results add to a growing literature demonstrating that natural242

selection can enrich for epistatic interactions in both adaptive [39–41], and nearly neutral [16] evolution,243

such that the mutations that fix during evolution can have a very different pattern of epistasis than244

random mutations.245
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Our simulations (Figure 1) recapitulate the known qualitative features of protein evolution under246

purifying selection for folding stability to a surprising degree, with the exception of matching the247

observed stability margin, which is smaller in our simulations than for experimentally measured248

folding energies [29] (free energy of folding is typically -5 to -10 kcal/mol versus -1 kcal/mol in our249

simulations). However, this extremely small stability margin is a well-known artifact of our decision250

to model fitness as a step function in stability [8] rather than a more realistic logistic function [11,30],251

and the fact that our simulations do not include any of the other factors that would tend to increase252

the stability margin such as selection for mutational robustness [8,32,35] or selection to prevent253

misfolding due to errors in translation [42]. Nonetheless the simple sequence-to-fitness mapping254

employed in our simulations allows us to provide a relatively simple and complete theory for the255

observed phenomenon. Moreover, we emphasize that it is easy to find realistic parameters where256

the mean additive contribution to stability is far less stable than shown in Figure 1, so we anticipate257

that the possibility that most sequences fold only due to epistasis would be robust even if sequences258

experienced a much larger stability margin.259
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Figure 5. Joint distribution of ∆G of folding and the additive contribution to ∆G of folding for the
independent epistasis model with σ2

HOC chosen so that the bivariate normal approximation matches the
bivariate normal approximation shown in Figure 1g. Simulations conducted under the independent
epistasis model with µadd = 1, σ2

add = 1, σ2
HOC = 21.6. Dashed curve shows area predicted to include

95% of sequences at stationarity under the bivariate normal approximation; dashed vertical line shows
approximate left-most edge of region where bivariate normal approximation is valid based on a crude
percolation theory argument (see text).

A different limitation of our results concerns the assumption, in our truncated bivariate normal260

approximation, that the set of sequences with negative folding energies is mutationally connected,261

and hence accessible to an evolving population. In particular, the theory breaks down if a large262

fraction of sequences that fold appear as isolated peaks or small isolated clusters of sequences. Figure 5263

shows an example of this limitation for the case of the independent model with parameters chosen264

so that the bivariate normal approximation is identical to the bivariate normal approximation for the265

pairwise model shown in Figure 1. The figure shows some enrichment for epistasis but not as much as266

predicted by our bivariate normal approximation. Using the crude percolation-theory argument that267

the connected network of sequences can extend only up to the additive energy at which each sequence268

has on average one neighbor that folds due to epistasis [43], we can derive the approximate upper269

limit of the distribution of additive energies as −σHOCΨ−1(1/(400× 19)) = 16.96, where Ψ−1 is the270

inverse cumulative distribution function of a standard normal distribution. This approximate upper271

limit is shown by the dashed vertical line in Figure 5. We see that the cloud of observed sequences is272

primarily to the left of this line, with a notable absence of sequences with substantially more positive273

additive contributions. This analysis of connectivity of the set of sequences that fold highlights that274

pairwise interactions have several special features: not only can they appear locally non-epistatic275

while harboring a substantial amount of epistasis at greater distances, but as long as the individual276

coefficients remain small they produce energy landscapes that change smoothly over sequence space,277
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producing the enormous connected networks of sequences whose traversal allows the evolution of a278

sizable epistatic contribution to folding.279

It is natural to ask whether the essentiality of epistatic interactions for the functionality of evolved280

sequences is likely to hold in other contexts where additivity is thought to prevail, such as protein-DNA281

and protein-protein binding [18]. However, this effect is unlikely to occur in most of these cases because282

the sequences are much shorter and the set of functional sequences makes up a much larger proportion283

of genotypic space. In particular, it is helpful to consider the z-score of functional sequences relative to284

random sequences, since the regression to the mean effect observed here is proportional to the absolute285

value of the z-score. For instance, the average TF binding motif in bacteria has an information content286

of 23 bits, corresponding to a p-value of 10−7 or a z-score of roughly -5, with eukaryotic transcription287

factors having even smaller information contents and therefore smaller absolute value z-scores [44].288

In contrast, the z-scores of the spontaneously folding sequences observed in our simulations are on289

the order of -20, which we would expect to result in a roughly 4-fold larger contribution of epistasis290

to binding energy at stationarity than for a bacterial transcription factor binding site. Such extreme291

z-scores are not even possible in short DNA elements, e.g. the most extreme z-score possible in a292

DNA sequence of length 20 is only -7. Thus, the essentiality of epistatic interactions observed here293

is likely possible only because protein sequence space is very large compared to other well-studied294

sequence-function relationships focused on smaller genetic elements.295

Finally it is important to emphasize that the key question of whether epistatic interactions296

for protein stability are essential for protein folding in naturally evolved sequences remains open.297

Our contribution only demonstrates that such an effect is qualitatively consistent with empirical298

observations on the thermodynamic effects of mutations and the results of prior simulation studies,299

and suggests that the overall importance of epistasis for stability depends on the precise form of300

epistasis involved. Intriguingly, the experimental observation that pairwise correlations between301

site-specific amino acid usages are sometimes necessary for folding [45] provides evidence for both the302

presence of the low-order epistatic interactions that result in a substantial contribution of epistasis to303

protein folding and also for the possible essentiality of these interactions. Thus, determining whether304

epistasis is essential for folding of observed sequences is a key question for the field, from both305

theoretical and empirical perspectives. Importantly, our analysis shows that most standard designs306

for examining the extent of epistasis for protein stability cannot adjudicate this question, because307

they examine how the extent of mutations change at a only single distance from a reference genotype.308

For instance, the analysis of double mutants considers the change in the effect of a mutation in a309

sequence at distance 1; and comparison of the effects of mutations on two diverged backgrounds,310

e.g., [14,19], can only determine the extent of epistasis at that one level of divergence. Rather, the two311

theories analyzed here differ in how the extent of epistasis changes with distance (e.g. Figure 3 and312

Appendix B.3). Thus, the critical experiment is to measure how the energetic effects of individual313

mutations change across several different levels of sequence divergence (c.f. [16]).314
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Appendix A326

Appendix A.1 Model for folding energy327

Given an alphabet A = {0, 1, ..., a − 1} and a sequence length l, let S be the set all possible328

strings of length l built from alphabet A. The free energy of folding ∆G(x) for each sequence x ∈ S is329

defined as the sum of (1) an additive component that measures the energy contribution of each allele330

at each position in the sequence, and (2) an epistatic component that describes the energy contribution331

of pairwise interactions among alleles for the pairwise model, or a random draw from a normal332

distribution for the independent epistasis model:333

∆G(x) := ∆Gadd(x) + ∆Gepi(x). (A1)

To specify each of the terms ∆Gadd(x) and ∆Gepi(x), we introduce the following notations. Let xk334

denote the k-th letter in the sequence x. Then, for a set of indices K = {k1, . . . , k|K|}, let βK,α denote the335

energetic contribution to the folding energy of x when the substring xk1 xk2 . . . xk|K| is equal to α. Using336

this notation, we let:337

∆Gadd(x) :=
l

∑
k=1

β{k},xk
(A2)

be the additive contribution to the folding energy, and338

∆Gepi(x) :=
l−1

∑
k1=1

l

∑
k2=k1+1

β{k1,k2},xk1
xk2

(A3)

be the epistatic contribution for the pairwise model. For the independent epistasis model, we instead339

let ∆Gepi(x) be an independent random draw from a normal distribution with mean 0 and variance340

σ2
HOC.341

Having described the form of our energy model, we now describe how we choose the βK,α. Some342

care is needed in this choice in order to ensure that ∆Gepi(x) for the pairwise model is a pure epistatic343

contribution, that is, that the average effect of any given point mutation over sequence space is zero.344

For the independent epistasis model, no additional steps are needed because the epistatic contribution345

is drawn independently for each sequence and each possible point mutation can appear on many346

genetic backgrounds, so by the law of large numbers the average epistatic effect of any given point347

mutation will be very near zero.348

We first describe how we choose the βK,α for the additive component. For each position k, the349

vector of coefficients ~β{k} := (β{k},0, . . . , β{k},α−1) specifies the contribution to folding energy of each350

allele at the given position. We impose the constraint351

1
a

a−1

∑
α=0

β{k},α = µadd, (A4)

so that the mean additive folding energy over all possible sequences is lµadd, i.e. 〈∆Gadd(x)〉x = lµadd.352

Turning to the epistatic component for the pair-wise model, for each position pair (k1, k2) such353

that k2 < k1, the matrix of coefficients B{k1,k2} := (β{k1,k2},α1α2
)α1α2 specifies the contribution to folding354

energy resulting from the interaction of the alleles at the given positions. We impose the constraints355

that all row and all column sums of B{k1,k2} equal 0, i.e.356

a−1

∑
α1=0

β{k1,k2},α1α2
= 0, α2 ∈ A, and

a−1

∑
α2=0

β{k1,k2},α1α2
= 0, α1 ∈ A. (A5)
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These constraints ensure that the mean epistatic energy over all possible sequences is 0, i.e.357

〈∆Gepi(x)〉x = 0. It also follows from conditions (A4) and (A5) that the vectors ∆Gadd :=358

(∆Gadd(x))x∈S and ∆Gepi := (∆Gepi(x))x∈S are orthogonal, see Appendix B.2.359

We now turn to our procedure for drawing the additive and pairwise coefficients βK,α subject to360

the above constraints.361

Appendix A.2 Choosing the coefficients for the energy function362

For each position k, we choose ~β{k} := (β{k},0, . . . , β{k},a−1) from an a-dimensional normal363

distribution that has identical marginals, mean vector (µadd, . . . , µadd), and some covariance matrix364

that ensures that constraint (A4) is satisfied. Similarly, for each pair of positions (k1, k2), k2 < k1, we365

choose the elements of B{k1,k2} := (β{k1,k2},α1α2
)α1α2 from an a2-dimensional normal distribution that366

has identical marginals, mean vector~0, and some covariance matrix that ensures that the constraints367

in (A5) are satisfied. To draw the coefficients from such distributions we implement the following368

procedures.369

Appendix A.2.1 Choosing the coefficients for the first order terms370

The subspace of Ra defined by the constraint in (A4) is a hyperplane specified by the normal371

vector~n = (1, . . . , 1) going through the point (µadd, . . . , µadd). Let~ei, i = 1, . . . , a, denote the standard372

basis in Ra, i.e. (~ei)j = 1 if j = i and 0 otherwise. We obtain a basis spanning Ra if we take the standard373

basis and replace its first vector by~n:374

{~n,~e2, . . . ,~ea}.

By performing Gram-Schmidt orthogonalization on this set of vectors, in the given order, we obtain375

an orthogonal basis in Ra whose first vector is the normal vector ~n. Let~bi, i = 1, . . . , a− 1, denote376

the normalized vectors of this basis other than ~n, i.e. the~bi vectors are orthonormal and span the377

hyperplane specified by constraint (A4). It follows that if~z ∈ R(a−1) is a vector of iid random variables378

of normal distribution with mean 0 and some standard deviation σadd, then the vector379

(µadd, . . . , µadd) +
a−1

∑
k=1

zk~bk (A6)

has the desired distribution. In particular, each component µadd + ∑a−1
k=1 zk(~bk)i has normal distribution380

with mean µadd and variance ((α− 1)/α)σ2
add, i.e.381

β{k},α ∼ N
(

µadd,

√
α− 1

α
σadd

)
. (A7)

Appendix A.2.2 Choosing the coefficients for the second order terms382

For each position pair (k1, k2), k2 < k1, we choose the elements of B := (β{k1,k2},α1α2
)α1α2 from an383

a2-dimensional normal distribution that has identical marginals, mean vector~0, and some covariance384

matrix that ensures that the constraints in (A5) are satisfied. In what follows, instead of using the385

matrix notation B for the coefficients, we use a vector notation, obtained by concatenating the rows of386

B.387

The subspace of Ra2
defined by the constraints in (A5) is obtained as the intersection of the set of388

hyperplanes specified by the normal vectors389

(~nrow,i)j =

{
1 if j ∈ {(i− 1)a + 1, (i− 1)a + 2, . . . , (i− 1)a + (a− 1)}
0 otherwise

, i = 1, 2, . . . , a− 1, (A8)
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(~ncolumn,i)j =

{
1 if j ∈ {i, a + i, 2a + i, . . . , (a− 2)a + i}
0 otherwise

, i = 1, 2, . . . , a− 1, (A9)

and390

~nj = 1, j ∈ {1, 2, . . . , a2}. (A10)

Let~ei, i = 1, . . . , a2, denote the standard basis in Ra2
, i.e. (~ei)j = 1 if j = i and 0 otherwise. Then,391

the set of vectors392

{~n} ∪ {~nrow,i : i = 1, . . . , a− 1} ∪ {~ncolumn,i : i = 1, . . . , a− 1} ∪ {~ei : i = 1, . . . , (a− 1)2}

form a basis spanning Ra2
. By performing Gram-Schmidt orthogonalization on this set of vectors, in393

the given order, we obtain an orthogonal basis in Ra2
whose first 2a− 1 vectors span the orthogonal394

complement of the subspace defined by the constraints in (A4). Let us denote the normalized version395

of the rest of the vectors of this basis by~bi, i = 1, . . . , (a− 1)2. If~z ∈ R(a−1)2
is a vector of iid random396

variables of normal distribution with mean 0 and some standard deviation σβ,2, then the vector397

(a−1)2

∑
k=1

zk~bk (A11)

has the desired distribution. In particular, each component ∑
(a−1)2

k=1 zk(~bk)i has normal distribution398

with mean 0 and variance (α− 1)2/α2σ2
add, i.e.399

β{k1,k2},α1α2
∼ N

(
0,

α− 1
α

σepi

)
. (A12)

Appendix B400

Appendix B.1 Background401

To derive the expected variance due to epistasis at a given distance from a focal genotypes, as402

shown in Figure 3, we will first need to introduce some notation .403

Given an alphabet A = {0, 1, ..., a− 1}, let S be the set all possible sequences (configurations) of404

length l, with cardinality |S| = al ≡ N. We introduce the Hamming distance d:405

d : S × S → {0, 1, · · · , l}

d(x, x′) = d(x′, x) = Number of sites where x and x′ differ.

Then set of all sequences form the Hamming graph, G = (S , E), with set of edges406

E = {(x, x′) ∈ S × S|d(x, x′) = 1}

That is, two sequences x and x′ are adjacent on G, i.e. x ∼ x′, if and only if d(x, x′) = 1.407

The graph Laplacian L of G is a N × N matrix

L(x, x′) =


l(a− 1) x = x′

−1 x ∼ x′

0 otherwise

. (A13)

Applying L to any N-dimensional vector f , we have408
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(L f )(x) = l(a− 1) f (x)− ∑
x′∼x

f (x′) = ∑
x′∼x

f (x)− f (x′), (A14)

which is the sum of differences between the focal type x and all the adjacent sequences.409

The graph Lalpacian L has l + 1 distinct eigenvalues ak, l ≥ k ≥ 0, each with multiplicity410

( l
k)(a− 1)k. The k-th eigenspace can be interpreted as the space of all energy landscapes of interaction411

order k.412

Appendix B.2 Orthogonality of ∆Gepi and ∆Gadd413

Before we derive the results shown in Figure 3, we pause to show that with the constraint on the414

coefficients β defined previously, ∆Gadd and ∆Gepi are contained in orthogonal eigenspaces therefore415

are mutually orthogonal and also orthogonal to the eigenspaces of higher order interactions.416

Appendix B.2.1 ∆Gadd417

Recall the definition:418

∆Gadd(x) =
l

∑
k=1

β{k},xk
. (A15)

We first split the vector ∆Gadd into its constant and linear components:419

∆Glin ≡ ∆Gadd − lµadd1, (A16)

where 1 denote the column vector with all one’s. For any graph Laplacian, L1 = 0, therefore the420

constant part of ∆Gadd is in the null space of L, which is equivalent to the eigenspace associated with421

eigenvalue zero. Furthermore, according to equation A14:422

(L∆Glin)(x) = l(a− 1)∆Glin(x)− ∑
x′∼x

∆Glin(x′)

= l(a− 1)∆Glin(x) + l2(a− 1)µadd − ∑
x′∼x

l

∑
k=1

β{k},{x′k}

= l(a− 1)∆Glin(x) + l2(a− 1)µadd −
l

∑
k=1

∑
x′∼x

β{k},{x′k}

= l(a− 1)∆Glin(x) + l2(a− 1)µadd −
l

∑
k=1

(
(l − 1)(a− 1)β{k},{xk} + ∑

α∈A\{xk}
β{k},{α}

)

= l(a− 1)∆Glin(x) + l2(a− 1)µadd −
l

∑
k=1

(
(l − 1)(a− 1)β{k},{xk} + a µadd − β{k},{xk}

)
= l(a− 1)∆Glin(x)−

l

∑
k=1

(
((l − 1)(a− 1)− 1)β{k},{xk} − (l(a− 1)− a)µadd

)
= l(a− 1)∆Glin(x)−

(
l(a− 1)− a

) l

∑
k=1

(
β{k},{xk} − µadd

)
= l(a− 1)∆Glin(x)−

(
l(a− 1)− a

)
∆Glin(x)

= a∆Glin(x)

On the fourth line, for each choice of site k, we group the sequences that are adjacent to x into two423

groups. The first group consist of (l − 1)(a− 1) sequences that are identical to the focal x on site k, so424

have coefficient β{k},{xk}. The other group consist of the rest a− 1 sequences that differ from x at site k.425
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So we need to sum through α ∈ A\{xk}. Due to the constraint that 1
a ∑a−1

α=0 β{k},{α} = µadd, this sum426

must be equal to a µadd − β{k},{xk}. Then on the seventh line we also note that (l − 1)(a− 1)− 1 =427

l(a− 1)− a. Thus, we conclude that ∆Glin is an eigenvector of L with eigenvalue a.428

To summarize, we have shown that the constant and linear part of ∆Gadd belong to the zeroth429

and first eigenspace of L with eigenvalues 0 and a, respectively. We also note that since L∆Gadd =430

a∆Glin = a∆Gadd − aβ∅, ∆Gadd is an "elementary" landscape [46,47].431

Appendix B.2.2 ∆Gepi432

Next, we verify that ∆Gepi is an eigenvector of the graph Laplacian L with eigenvalue 2a. The433

spirit is the same as with ∆Glin. First note that (L∆Gepi)(x) = l(a− 1)∆Gepi(x)− ∑x′∼x ∆Gepi(x′).434

The second term can be expanded as:435

∑
x′∼x

∆Gepi(x′) = ∑
x′∼x

∑
k2<k1

β{k1,k2},{x′k1
,x′k2
} = ∑

k2<k1

∑
x′∼x

β{k1,k2},{x′k1
,x′k2
} (A17)

= ∑
k2<k1

(
(l − 2)(a− 1)β{k1,k2},{xk1

,xk2
} + ∑

α1∈A\{xk1
}

β{k1,k2},{α1,xk2
} (A18)

+ ∑
α2∈A\{xk2

}
β{k1,k2},{xk1

,α2}

)
(A19)

= ∑
k2<k1

(
(l − 2)(a− 1)β{k1,k2},{xk1

,xk2
} − 2β{k1,k2},{xk1

,xk2
}

)
(A20)

= ∑
k2<k1

(
(l − 2)(a− 1)− 2

)
β{k1,k2},{xk1

,xk2
} (A21)

=
(
(l − 2)(a− 1)− 2

)
∆Gepi(x) (A22)

, where on the third line we divide the sequences that are adjacent to x into three groups. The first436

group consist of (l− 2)(a− 1) sequences that are identical to the focal x on the two sites that are chosen,437

so have the same coefficient as x: β{k1,k2},{xk1
,xk2
}. The other two groups each consist of sequences that438

differ from x at site k1 or k2. Due to the constraint that ∑α∈A β{k1,k2},{α1,α2} = 0 for α = α1, α2, the sum439

through the a− 1 sequences that differ from x on each site must be equal to −β{k1,k2},{xk1
,xk2
}440

Therefore,441

(L∆Gepi)(x) = l(a− 1)∆Gepi(x)− ∑
x′∼x

∆Gepi(x′) (A23)

=
(
l(a− 1)− (l − 2)(a− 1) + 2

)
∆Gepi(x) (A24)

= 2a∆Gepi(x). (A25)

We have shown that ∆Glin and ∆Gepi are eigenvectors of the graph Laplacian L and have442

eigenvalues a and 2a, respectively. Therefore they are mutually orthogonal, and furthermore ∆Gepi443

is orthogonal to ∆Gadd, since ∆Gadd is contained in the union of the eigenspaces corresponding to 0444

and a, whereas ∆Gepi is in the eigenspace corresponding to eigenvalue 2a. Furthermore, all of ∆Gadd,445

∆Glin and ∆Gepi are orthogonal to eigenspaces spanned by interactions of order greater than 2.446

Appendix B.3 Expected variance in energy of distance classes under the random field model447

We now derive the results shown in Figure 3. For a sequence x ∈ S , its energy under a general448

random field model is [20,21]449
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f (x) =
l

∑
k=0

( l
k)(a−1)k

∑
i=1

bki
φki

(x), (A26)

where {φki
}l≥k≥0 is the set of orthonormal basis functions that spans RS and φki

is the i-th basis450

function of interaction order k. {bki
} are random variables representing the interaction coefficients.451

Here we choose {φki
} to be eigenvectors of the the graph Laplacian L associated with G.452

For simplicity, here we only consider models with interactions of a certain order k ≥ 1, so453

f (x) = ∑
i

bki
φki

(x). (A27)

Since the {bki
} of different orders are statistically independent, to simplify the notation, we derive the454

following results for energy landscapes with only k-th order interactions and only consider landscapes455

with multiple orders of interaction at the end. In our random field model, the coefficients bki
’s for a456

given k are drawn i.i.d from some distribution with mean 0 and variance σ2
k . Without loss of generality,457

we set σ2
k = 1. So we have458

f ∼ D(0, W), (A28)

where W is the covariance matrix. The distribution D is not specified here because we are only459

concerned with the first and second moment. The covariance matrix W only depends on d(x, x′) and460

its entries are given by:461

σf (x) f (x′) = E[∑
i

bki
φki

(x)∑
j

bkj
φkj

(x′)] (A29)

= ∑
i,j

E[bki
bkj

]φki
(x)φkj

(x′) (A30)

= ∑
i

E[b2
ki
]φki

(x)φki
(x′) (A31)

= ∑
i

φki
(x)φki

(x′) (A32)

=
min{k,d(x,x′)}

∑
q=0

a−l(−1)q(a− 1)k−q
(

d(x, x′)
q

)(
l − d(x, x′)

k− q

)
(A33)

≡ wk(d(x, x′)) (A34)

The second to last step is not obvious but is well known in coding theory and some theoretical studies462

of fitness landscape and is commonly referred to as the Krawtchouk polynomial [20,48].463

For an energy landscape f drawn from the above distribution, the sample variance of energies of464

all sequences at distance l ≥ d > 0 to wt is:465

V({ f (x)|x ∈ S(wt, d)}) ≡ V(d) =
1
n ∑

x∈S(wt,d)
( f (x)− 〈 f (x′)〉S(wt,d))

2 (A35)

Here, we use 〈·〉T to denote the mean taken over the set T. S(wt, d) = {x ∈ S|d(x, wt) = d} is the set466

of all sequences at distance d to wt and |S(wt, d)| = ( l
d)(a− 1)d = n.467

Using a well-known expression for the expected sample variance, we can write [49]:468

E[V(d)] =
n− 1

n
(σ2

d + σ2
d,µ − σd). (A36)

The three quantities are:469
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σ2
d =

1
n ∑

x∈S(wt,d)
σ2

f (x) (A37)

σ2
d,µ =

1
n− 1 ∑

x∈S(wt,d)
(E[ f (x)]− 1

n ∑
x′∈S(wt,d)

E[ f (x′)])2 (A38)

σd = 〈σf (x) f (x′)〉{(x,x′)∈S2(wt,d)|x 6=x′}. (A39)

We now turn to deriving each of these three quantities individually.470

First, we have the mean of variances σ2
d for sequences at distance d to wt. By setting d = 0 in the471

Krawchouk polynomial:472

σ2
f (x) = wk(0) = a−l

(
l
k

)
(a− 1)kσ2

k = a−l
(

l
k

)
(a− 1)k, (A40)

for all x ∈ S(wt, d). ( l
k)(a− 1)k is the number of k-th order interactions. And the last step was simplified473

by setting σ2
k = 1.474

Next, we have σ2
d,µ, which is the variance of the mean energy, E[ f (x)], of sequences in S(wt, d).475

Since E[ f (x)] is constant across all x ∈ S(wt, d), we have476

σ2
d,µ = 0. (A41)

Last is the mean covariance between energies of sequences x, x′ ∈ S(wt, d), x 6= x′:477

σd = 〈σf (x) f (x′)〉{(x,x′)∈S2(wt,d)|x 6=x′} (A42)

=
1

( l
d)(a− 1)d ∑

x∈S(wt,d)
〈σf (x) f (x′)〉{x′ |d(x′ ,wt)=d,x′ 6=x} (A43)

= 〈σf (x) f (x′)〉{x′ |d(x′ ,wt)=d,x′ 6=x} (A44)

=
1

( l
d)(a− 1)d − 1

min{l,2d}

∑
d′=1

N(d, d′)wk(d′) (A45)

Due to the assumption that the covariance structure only depends on d, the summand on the second478

line is the same for all x ∈ S(wt, d). Therefore we can arbitrarily pick a sequence x and calculate a479

weighted sum with weights given by480

N(d, d′) = |{x′|d(wt, x′) = d, d(x, x′) = d′}| = |S(wt, d) ∩ S(x, d′)|, (A46)

which is the number of sequences at distance d to wt and d′ to x. Note that N(d, d′) is the same for all481

x ∈ S(wt, d) so only depends d and d′. The normalizing factor482

min{l,2d}

∑
d′=1

N(d, d′) =
(

l
d

)
(a− 1)d − 1 (A47)

is the total number of sequences in S(wt, d) minus the focal sequence x.483

Our final task is to count N(d, d′). First we pick d ≥ s ≥ 0 sites out of d sites on which x and wt484

differ and set the states of x′ on these sites to be the same as wt. The number of choices: (d
s). Second,485

since d(x′, wt) = d, we must choose s sites out of the l − d sites where x and wt are identical and set486

them to be one of the a− 1 states for x′. The number of choices is (l−d
s )(a− 1)s. Third, now we have x487

and x′ differ on 2s sites and since d(x, x′) = d′, we need to choose d′ − 2s sites for x′ out of the d− s488
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Table A1. A simple example for counting N(d, d′), with d(wt, x) = d(wt, x′) = 6, and d(x, x′) = 4.

wt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
x′ 0 0 0 0 0 0 0 1 1 1 1 2 2 0 0

sites whose states we have not decided yet and set the states of x′ to be one of the a− 2 states that is489

different from both x and wt. The number of choices is ( d−s
d′−2s)(a− 2)d′−2s

490

Putting these together we have491

N(d, d′) =
min{d,b d′

2 c}

∑
s=0

(
d
s

)(
l − d

s

)
(a− 1)s

(
d− s

d′ − 2s

)
(a− 2)d′−2s, (A48)

and so finally we have:492

n
n− 1

E[V(d)] = σ2
d + σ2

d,µ − σd (A49)

= a−l
(

l
k

)
(a− 1)k − 1

( l
d)(a− 1)d − 1

min{l,2d}

∑
d′=1

N(d, d′)wk(d′) (A50)

= wk(0)−
1

( l
d)(a− 1)d − 1

min{l,2d}

∑
d′=1

N(d, d′)wk(d′). (A51)

It may be possible to further simplify this expression by plugging in N(d, d′) and wk(d′) so that it493

is more intelligible. But calculation of E[V(d)] based on this expression is computationally feasible494

since both N(d, d′) and wk(d) are easy to calculate.495

We have derived the results above for energy landscapes with only k-th order interactions and by496

setting σ2
k = 1. For an energy landscape with all orders of interactions with Walsh coefficients bki

’s497

drawn i.i.d with mean 0 and variance σ2
k for each order k,498

E[V(d)] =
1

1− ( l
d)
−1

(a− 1)−d

l

∑
k=0

σ2
k

(
wk(0)−

1

( l
d)(a− 1)d − 1

min{l,2d}

∑
d′=1

N(d, d′)wk(d′)
)

. (A52)

Appendix C499

Appendix C.1 Bivariate normal approximation500

We approximate (∆Gadd, ∆Gepi) with a bivariate normal distribution with mean vector

(µ1, 0) := (lµadd, 0) (A53)

and covariance matrix (
σ2

1 0
0 σ2

2

)
:=

(
l α−1

α σ2
add 0

0 ( l
2)

(α−1)2

α2 σ2
epi

)
, (A54)

where the parameters were chosen according to the procedure described in Appendix A. Therefore, in501

this approximation, the total folding energy ∆G = ∆Gadd + ∆Gepi is also normally distributed, with502

mean µ := µ1 and variance σ2 := σ2
1 + σ2

2 . Using this normal approximation, we give an analytical503

justification for the phenomenon observed in Figure 2, that although the effect of epistasis is small, it is504

nonetheless crucial for folding. The analytical formulas we obtain for describing this phenomenon505

will also specify the regime of model parameters for which we can expect to see the phenomenon. We506
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shall use two quantities to measure the strength of this phenomenon. For the smallness of the epistatic507

effect, we use the measure σ2
2 /σ2, the fraction of the variance across all sequences accounted for by508

the variance of the epistatic energy. For the importance of the epistatic effect, we use the measure509

E(∆Gadd|∆G < 0), the mean of additive energies of viable sequences. If this mean is far above the510

viability threshold 0 it indicates that on average epistasis makes a substantial contribution to the ability511

of viable sequences to fold.512

Now, we analytically approximate the conditional expectation E(∆Gadd|∆G < 0). We use a
classical result that is refered to as the regression towards the mean formula for a pair of normally
distributed random variables. If (X, Y) has normal distribution with mean (µX, µY) and covariance
matrix (

σ2
X ρXYσXσY

ρXYσXσY σ2
Y

)
,

then the regression towards the mean formula describes how the means change if we condition on one
of the variables being below some cutoff value c:

E(X|Y < c)− E(X) = ρXY
σX
σY

(
E(Y|Y < c)− E(Y)

)
. (A55)

Applying this formula to ∆G and ∆Gadd and the condition that a sequence is viable, i.e. ∆G < 0, we
obtain

E(∆Gadd|∆G < 0)− µ1 = R2
(

E(∆G|∆G < 0)− µ
)

, (A56)

where

R2 :=
Cov(∆Gadd, ∆G)

σ1σ

σ1

σ
=

σ2
1

σ2

is calculated using the fact that ∆G = ∆Gadd + ∆Gepi and that the additive and epistatic energies are
uncorrelated by (A54). Also by (A54), µ = µ1, hence we can express the mean additive folding energy
of viable sequences from (A56) as

E(∆Gadd|∆G < 0) =
(

1− R2
)

µ1 + R2E(∆G|∆G < 0). (A57)

The conditional mean on the right hand side of the equation above can be calculated as

E(∆G|∆G < 0) = µ− σ
ψ
(
− µ

σ

)
Ψ
(
− µ

σ

) , (A58)

where ψ and Ψ are the PDF and CDF, respectively, of the standard normal distribution, and as µ513

becomes large compared to σ, E(∆G|∆G < 0) approaches 0.514

Returning to (A57), we obtain the estimate

E(∆Gadd|∆G < 0) ≈
(

1− R2
)

µ1 =
σ2

2
σ2

1 + σ2
2

µ1. (A59)

This means that no matter how small the epistatic effect is, measured by σ2
2 /(σ2

1 + σ2
2 ), if the mean515

of the additive energy µ1 is large enough in comparison, the role of the epistatic energy is crucial for516

protein folding.517

Plugging in our model parameters as given in (A53) and (A54), and using the approximations
α− 1 ≈ α and l − 1 ≈ l, the estimate in (A59) becomes

l2µaddσ2
epi

lσ2
epi + 2σ2

add
.
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The choice of parameters µadd = 1, σadd = 1, and σepi = 0.0003 then yield 22.59, which is very close to518

22.45, the mean additive energy of sequences observed in the simulation.519
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