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Abstract: Genetic studies of autism spectrum disorder (ASD) have revealed a complex, 

heterogeneous architecture, in which the contribution of rare inherited variation remains 

relatively un-explored. We performed whole-genome sequencing (WGS) in 2,308 

individuals from families containing multiple affected children, including analysis of 

single nucleotide variants (SNV) and structural variants (SV). We identified 16 new 

ASD-risk genes, including many supported by inherited variation, and provide statistical 

support for 69 genes in total, including previously implicated genes. These risk genes are 

enriched in pathways involving negative regulation of synaptic transmission and 

organelle organization. We identify a significant protein-protein interaction (PPI) 

network seeded by inherited, predicted damaging variants disrupting highly constrained 

genes, including members of the BAF complex and established ASD risk genes. Analysis 

of WGS also identified SVs effecting non-coding regulatory regions in developing 

human brain, implicating NR3C2 and a recurrent 2.5Kb deletion within the promoter of 

DLG2. These data lend support to studying multiplex families for identifying inherited 

risk for ASD. We provide these data through the Hartwell Autism Research and 

Technology Initiative (iHART), an open access cloud-computing repository for ASD 

genetics research. 

 

Main text: 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by early 

deficits in social communication and interaction, together with restricted and repetitive 

patterns of behavior, interest, or activity(1). Global prevalence is between 1-2%(2), and 

ASD has a strong genetic component, with heritability estimated between 60% to 90%(3-
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9). Considerable progress in gene discovery has come from studies in families with only 

one affected child (simplex families) identifying de novo (DN) copy number variants 

(CNV)(10-13) and de novo frameshift, splice-acceptor, splice-donor, or nonsense variants 

(collectively referred to as protein-truncating variants (PTVs))(14-18) that increase ASD-

risk and account for an estimated 3-5% of ASD cases(7, 8, 19-21). Despite having 

identified roughly 90 ASD-risk genes with high confidence(22, 23), it is estimated that 

between 260 and 1,250 genes confer risk for developing ASD(24), leaving substantial 

room for gene discovery, especially with regards to inherited variation. To date, several 

recurrent CNVs have also been associated with increased ASD risk(25-27). Evidence for 

inherited risk variants has been drawn primarily from families containing only one 

affected child(18, 28), which are depleted for inherited risk as compared to families with 

two or more affected children (multiplex families)(10, 24, 29). Here we used WGS to 

study the coding and non-coding regions of the genome in the largest cohort of multiplex 

families evaluated to date to identify de novo and inherited genetic risk factors for ASD.  

!

Results 

WGS was performed to an average depth of 35.9 ± 5.0 (Fig. S1; Methods) in 2,308 

individuals (n=493 families) from the Autism Genetic Resource Exchange (AGRE); 

purified DNA was sequenced from whole blood (n=285) or lymphoblastoid cell line 

(LCL) DNA (n=2,023) when whole blood DNA was not available. Our cohort consists of 

families with two or more children diagnosed with ASD and excludes families with 

known genetic causes or syndromes (Methods; Table S1, Table S2). Single nucleotide 

variants (SNV) and indels were identified following GATK’s best practices(30) 
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(Methods) and structural variants (SV) were identified using a combination of 

BreakDancer(31), GenomeSTRiP(32, 33), LUMPY(34), and Somatic MUtation FINder 

(SMuFin)(35) (Methods; Fig. 1, Fig. S2). We adapted SMuFin for family-based 

structural variant detection by performing de novo alignment of child reads to the 

parental reads (Fig. S2c) to provide high sensitivity and break point accuracy in the 

detection of SVs (Methods). After quality control (Methods), we categorized the 

inheritance of each variant in the children (e.g., de novo, paternally inherited, unknown 

phase) and annotated variant/gene properties to facilitate downstream analyses (Fig. 1).  

 

Inherited coding and promoter-disrupting variants highlight a syndromic form of 

ASD and a novel deletion associated with ASD 

Since multiplex ASD families are expected to be enriched for inherited risk variants(10, 

24, 29), we first assessed rare (allele frequency (AF) !0.1%) inherited variants, finding 

no excess of rare inherited missense or PTV variants in affected subjects (Fig. 2a, Fig. 

S3). Based on  previous analyses(28), we asked if there was an enrichment of inherited 

private PTVs in loss-of-function intolerant genes (pLI"0.9)(36) and found no significant 

excess in affected subjects (P=0.40, quasi-Poisson linear regression, Fig. S4a). We also 

observed no difference in the overall rate of rare inherited SVs between affected and 

unaffected individuals, even when restricting to gene-disrupting SVs (Fig. S4c-h). 

 

We next identified rare, damaging variants in loss-of-function intolerant genes 

(pLI"0.9)(36) transmitted to all affected individuals of a multiplex family, but not to the 

unaffected individuals (Methods). A total of 62 PTVs and 40 SVs disrupting a coding 
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exon or promoter were identified in 98 unique genes; including three genes, NR3C2, 

NRXN1, and ZMYM2, disrupted by both a PTV in one family and an SV in a second 

family. For example, the NR3C2 gene harbors a rare PTV and a ~850bp deletion (chr4: 

149363005 -149363852) in the promoter region of NR3C2 that are transmitted to both 

affected children in each family (Fig. 2c). The deleted promoter region of NR3C2 falls in 

a functional non-coding regulatory region in developing human brain(37) 

(chr4:149362706-149367485) (Fig. 2c). Expanding to include PolyPhen-2 damaging 

missense variants in NR3C2, we identify a third family with a rare missense variant 

transmitted from father to both affected children (Fig. 2c). The three families identified 

with a transmitted regulatory or protein-disrupting variant in NR3C2 share striking 

phenotypic similarities, defining a new syndromic form of ASD characterized by 

metacarpal hypoplasia, high arched palate, sensory hypersensitivity, and abnormal 

prosody (Table S3).  

 

Additionally, three families carry the same 2.5Kb deletion in the promoter region of 

DLG2 (chr11: 85339733 – 85342186); a gene that is associated with cognition and 

learning in mice and humans(38, 39) (Fig. S4b). This deletion falls in a previously-

defined functional non-coding regulatory region in developing human brain(37) (chr11: 

85338026 - 85340560) (Fig. S4b) and occurs on a different haplotype in each of the three 

families (Methods, Table S4). No deletions were observed to overlap the identified 

DLG2 promoter deletion in public databases or any controls (n = 26,353 controls, 

Methods). This rare regulatory mutation is significantly associated with ASD (3 of 484 

unrelated affected children versus 0 of 26,565 controls, two-sided Fisher's Exact Test, 
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P=5.7 x 10-6, OR=Inf, 95% CI=22.7-Inf, Methods); this association remains significant 

even when considering only WGS control samples (Methods, n=2,889 controls, two-

sided Fisher's Exact Test, P=0.003, OR=Inf, 95% CI=2.47-Inf).  

 

No association signal is observed in promoters of established ASD risk genes 

To further assess the role of rare regulatory variation in ASD in addition to SVs, we also 

assessed the impact of non-coding SNVs or indels in promoters (Methods), observing no 

enrichment for RDNVs in affected vs. unaffected iHART children when looking globally 

(Methods; P=0.33, quasi-Poisson linear regression), or when restricting the analysis to 

known ASD-risk genes (Methods; P=0.42, quasi-Poisson linear regression). Similarly, 

we see no signal for private inherited variants in promoters (Methods; All genes P=0.07 

and ASD-risk genes P=0.26, quasi-Poisson linear regression), nor when our cohort is 

combined with 517 affected and 518 unaffected children with WGS data from the Simons 

Simplex Cohort (SSC) (Methods; RDNVs: All genes P=0.25 and ASD-risk 

genes P=0.31, quasi-Poisson linear regression; Private inherited: All genes P=0.14 and 

ASD-risk genes P=0.12). These data are consistent with recent results in simplex 

families(40).  

 

Genes hit by high-risk inherited variants show biological convergence  

We next determined whether the 98 genes harboring PTVs and SVs transmitted to all 

affected individuals represented a random or broadly acting collection of genes, or had 

evidence for biological convergence, reasoning that the latter would provide orthogonal 

support. Indeed, the protein products of these genes formed a significant direct protein–
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protein interaction (PPI) network (Methods, 1000 permutations, P < 0.008; Fig. 2d). 

This network is enriched for members of the BAF (SWI/SNF) complex (two-sided 

Fisher's Exact Test, P=0.02, OR=5.9, 95% confidence interval 1.1 – 20.7), including 

ARID1B, SMARCC2, and SMARCA4, which are involved in chromatin remodeling during 

cortical neurogenesis and have previously been associated with ASD(41, 42). Given that 

PPI databases are incomplete and biased against typically less well-studied neuronal 

interactions(43), we expanded the network to include indirect interactions among the seed 

genes. This indirect interaction network was also significant (P < 0.002) and seven 

proteins in this network were found to be significantly connected hubs (corrected seed 

score P < 0.05) (Fig. 2d). Gene set enrichment (Methods) identified slight enrichment 

for targets of RBFOX1(44) (P=0.034, uncorrected), which regulates neuronal alternative 

splicing and previously has been implicated in ASD(10, 45).  

 

Identification of high-quality de novo variants by machine learning 

De novo missense and PTVs have been identified as significant risk factors for ASD in 

simplex families(17, 18, 46). To investigate the role of these variant classes in patients 

with ASD from multiplex families, we developed a supervised random forest model, 

Artifact Removal by Classifier (ARC), to distinguish true rare de novo variants (RDNVs) 

from LCL-specific genetic aberrations or other types of artifacts, such as sequencing and 

mapping errors. We trained ARC on RDNVs identified in 76 pairs of fully phase-able 

monozygotic (MZ) twins with WGS data derived from LCL DNA, using 48 features 

representing intrinsic genomic properties, (e.g., GC content and properties associated 

with de novo hotspots(47)), sample specific properties (e.g., genome-wide number of de 
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novo SNVs), signatures of transformation of peripheral B lymphocytes by Epstein-Barr 

virus (e.g., number of de novo SNVs in immunoglobulin genes), or variant properties 

(e.g., GATK variant metrics) (Fig. 3c; Table S5). We subsequently tested ARC on 

RDNVs identified in 17 fully phase-able whole blood (WB) and matched LCL samples 

with WGS data (Fig. S5). The resulting random forest classifier achieved an area under 

the receiver operating characteristic (ROC) curve of 0.99 and 0.98 in the training and test 

set, respectively (Fig. 3a, 3b). We selected a conservative ARC score threshold (0.4) that 

achieved a minimum precision and recall rate of >0.9 and ~0.8, respectively, across all 

10-folds of the training set cross validation (Fig. S7c, S7d); and achieved a precision and 

recall rate of >0.9 and >0.8, respectively, in the test set (Fig. S7h). 

 

We applied ARC to all raw RDNVs identified in the 1,177 children for whom both 

biological parents were also sequenced (fully phase-able samples) from 422 iHART 

families, observing that ARC eliminated many more raw RDNVs in LCL samples than in 

WB samples (Fig. S8a) and resulted in the elimination of a significant difference in 

RDNV rates between biological sequencing sources (before ARC: FET P = <2.2x10-16; 

after ARC: FET P = 0.527; Fig. 3d, 3e and Fig. S8b). Use of ARC yielded a mean 

genome-wide de novo mutation rate of 60.3 RDNVs per child in LCL-derived samples 

and 59.4 RDNVs per child in WB-derived samples (Fig. 3e), on the lower end of reported 

genome-wide de novo mutation rates (mean=64.4; range 54.8-81)(23, 47-51), consistent 

with our conservative approach. Further support for ARC's performance comes from the 

observation that the effect of paternal age on the number of de novo mutations per 

affected ASD child is seen only after running ARC (P=3.6 x 10-13). After application of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 9!

ARC our observed rate of 1.46 RDNVs per year of paternal age (95% CI = 1.37-1.55) 

matches previously published rates(47, 52-54) (Methods; Fig. S8c).  

 

Evidence for depletion of rare de novo ASD risk variants in multiplex families 

Neither de novo missense (P=0.561, quasi-Poisson linear regression) nor PTVs (P=0.873, 

quasi-Poisson linear regression) showed a significant association in iHART/AGRE 

multiplex families (Fig. 3f). Our finding is consistent with a previous well-powered study 

of rare de novo copy number variants (CNVs) which showed significant enrichment in 

affected children as compared to unaffected siblings in simplex families from the SSC, 

but not in multiplex families from AGRE(27). The rate of rare de novo PTVs in affected 

children from multiplex families in our study (AffiHART=0.07) was approximately half of 

that in simplex families (AffKosmicki=0.13)(17, 55) (Table S6). Furthermore, the rate of 

rare de novo PTVs in unaffected children from multiplex families (UnaffiHART=0.07) was 

identical to that of affected children; by Monte Carlo integration, we estimated that our 

current cohort had >70% power to detect a rate difference for de novo PTVs in affected 

and unaffected children (Methods). In contrast, comparable rates of rare de novo 

synonymous and missense variants in both affected and unaffected children were 

observed regardless of family structure (Table S6).  

 

Identification of 16 novel ASD risk genes enriched for inherited variation 

We next used the Transmitted And De novo Association (TADA) test(56) to increase 

power for gene discovery by combining evidence from rare de novo (DN) or transmitted 

(inherited) protein-truncating variants (PTVs) and de novo missense variants predicted to 
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damage the encoded protein (Mis3, a probably damaging prediction by PolyPhen-2(57)) 

(Methods). Since the distribution of the TADA statistic (under the null) is not known for 

multiplex families, we estimated the distribution of the null TADA statistic by simulating 

Mendelian transmission and de novo mutation across family structures (Methods). To 

further improve power, we combined qualifying variants found in ASD samples from the 

current (iHART) cohort (Table S7) with the most recent ASD TADA mega-analysis(22) 

(Table S8), identifying 69 genes reaching the threshold of FDR<0.1, (Table 1, Fig. 4a, 

Table S9-S11), of which 16 had not previously been identified as ASD-risk genes (Table 

1, Fig. 4a). These 16 new risk genes are enriched for those in which a higher proportion 

of risk variants are inherited (Methods). For six of the 16 novel genes (UIMC1, 

C16orf13, MLANA, CCSER1, PCM1, FAM98C) and five of the 53 previously associated 

(RANBP17, ZNF559, P2RX5, CTTNBP2, CAPN12) ASD-risk genes, "70% of the 

qualifying variants are inherited PTV (Fisher's Exact Test, P = 0.015, OR=5.57, 95% 

CI:1.17-28.35). Remarkably, for PCM1, the Bayes Factor contribution from inherited 

PTVs was greater than the Bayes Factor for de novo variants (Methods), indicating that 

the association signal is mainly driven by inherited PTVs. To ensure that we were not 

obtaining type I errors due to family structure alone, we also performed simulations of 

the distribution of the null TADA statistic using the observed variant counts (Methods). 

Genes with the lowest FDR in the TADA-mega analysis showed the largest simulated 

Bayes factors and lowest p-values (Fig. S9). All 69 genes with an FDR<0.1 in the 

TADA-mega analysis obtained a simulated p-value of less than 0.006 (median P=1x10-3), 

with CHD8 obtaining a p-value of 9x10-7 (Fig. 4b).  
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Given the lower relative risk estimated for inherited PTVs(18), we relaxed the statistical 

threshold to an FDR <0.2 (n=119), confirming 84 genes previously identified at this 

threshold(22).  Additionally, we identify 35 genes that had not reached this threshold 

(FDR<0.2) in the previous study(22), 15 of which had the majority ("70%) of their 

qualifying risk variants represented by inherited PTVs compared to only 8 of the 84 

genes previously identified at this threshold (Fisher's Exact Test, P=7.45x10-5, OR=6.98, 

95% CI: 2.39-21.96). Consistently, for these 35 genes, the current study obtains higher 

inherited PTV Bayes Factors as compared to those obtained in the previous TADA mega-

analysis in largely simplex families(22) (Kruskal–Wallis test, P=0.0003, Fig. S11a). For 

five of these 35 genes (PCM1, STARD9, GRM6, RHPN1, and SLC10A1) and two of the 

remaining 84 genes (CTTNBP2 and ZNF559) that were previously observed with 

FDR<0.2, the largest association signal is from inherited PTVs. Thus these 35 genes are 

enriched for genes whose association signal is primarily driven by inherited PTVs 

(Fisher’s Exact Test, P=0.02, OR=6.70, 95% CI: 1.03-73.81) (Methods), further 

indicating that there is a substantial, previously under-represented signal from rare 

inherited variants. 

 

Comparison of the iHART TADA-mega analysis to the previously published findings(22) 

identified 16 newly significant (FDR<0.1) ASD risk genes plus CACNA2D3 which was 

previously reported as an ASD risk gene(18) (Table 1, Fig. S10). However, we also 

failed to replicate 13 of the genes previously published with an FDR<0.1(22) (Fig. S10). 

The q-values for these 13 genes were borderline significant in iHART (Fig. S10a), and 

their simulation p-values were greater (min p-value=0.01, max p-value=0.06, Fig. S10c) 
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than those of the securely implicated 69 ASD risk genes, including the 16 newly 

significant genes (min p-value=0.001, max p-value=0.006) (Fig. S10d, Fig. 4b).  

 

Biological insights from known and novel ASD genes 

Gene-set enrichment (Methods) of the 69 high-confidence ASD risk genes identified 

enrichment in a highly co-expressed group of transcriptionally co-regulated genes active 

during human cerebral cortical neurogenesis (Module 2)(42), FMRP targets(58), 

RBFOX1 targets(44), and genes enriched for expression in the brain vs. other tissues 

(Methods; Fig. 4d). Analysis of single cell sequencing data from human brain reveals 

enrichment in mid-gestation and adult glutamatergic projection neurons for both the high 

confidence and newly identified ASD risk genes (Methods; Fig. S12). Many of the 16 

new ASD risk genes from this study fall into gene sets of interest. Pathway analysis 

revealed three biological pathways containing these genes, including negative regulation 

of synaptic transmission (RAPGEF4), learning and memory (GRIA1 and PRKAR1B) and 

organelle organization (PCM1 and MYO5A) (Fig. S11b). Other examples include 

PRKAR1B (q-value=0.026), which is in a gene co-expression module (Module 16) 

comprised of structural synaptic proteins that are highly co-expressed during human 

cerebral cortical neurogenesis and in which SFARI ASD risk genes are 

overrepresented(42); and three genes that are found in the post synaptic density (PSD) of 

the human neocortex(59): GRIA1 (q-value=0.031), RAPGEF4 (q-value=0.033), and 

DDX3X (q-value=0.038). RAPGEF4 is also a known FMRP target(58) and was 

previously identified as an ASD candidate gene based on five families with segregating 

PTVs(60). DDX3X was recently reported to account for 1%-3% of unexplained 
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intellectual disability in females(61). Finally, 9 of these 16 new ASD risk genes form a 

significant indirect PPI network (Methods; seed indirect degrees mean permutation 

P=0.016, and CI degrees mean P=0.024) (Fig. 4c).  

 

Candidate genes harboring high-risk inherited variation form a significant network 

We then asked if the proteins encoded by the 98 candidate genes harboring PTVs and 

SVs transmitted to all affected individuals interact with the 69 ASD-risk genes identified 

in the TADA mega-analysis (FDR<0.1). The resulting PPI network formed by these 165 

unique genes is significant for the direct edges count (P=0.036), the seed direct degrees 

mean (P=0.046), and the CI degrees mean (P=0.005) (Fig. 5a, Fig. S11c). This network 

reveals interactions between genes with different levels of statistical support, ranging 

from high-risk inherited candidate genes, established ASD risk genes, and new ASD-risk 

genes, which provides evidence that at least some of these 98 candidate genes are true 

ASD risk genes.  

 

Given that a large number of predicted ASD-risk genes remain unidentified(24), we next 

applied NetSig(62), a newly developed method that identifies high probability candidate 

genes by integrating PPI and association statistics. We identified 596 genes that were 

significantly directly connected to ASD-risk genes (Methods; Table S12), 38 of which 

are enriched in a developmental co-expression module previously shown to be enriched 

for ASD-risk genes harboring de novo variants (module M2(42), P = 0.0003, OR = 1.98; 

95% confidence interval = 1.37-2.81). Proteins in both the direct and indirect PPI 

networks seeded by high-risk inherited PTVs directly bind ASD-risk genes more than 
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expected by chance (P = 0.02; OR=12.80; 95% confidence interval = 1.07-111.92) and 

are also enriched in indirect PPI networks (P = 4.24x10-16; OR=4.90; 95% confidence 

interval = 3.45-6.85) (Fig. 5b; Methods; Extended results).  

 

Discussion 

To date, de novo variants have provided compelling evidence for dozens of ASD-risk 

genes. Here we used WGS to identify more than a dozen new genes that are significantly 

associated with ASD-risk, the majority of which are due to a contribution from rare 

inherited mutations. The identification of 16 novel ASD-risk genes was facilitated by 

exploiting a cohort ascertained for families containing two or more children with ASD 

where inherited risk variants are likely to contribute to the observed ASD recurrence(10, 

24, 29). We also identified genes (pLI"0.9) harboring inherited damaging variants 

transmitted to all affected children and not transmitted to any unaffected children that 

form a PPI network. This PPI network is seeded by known ASD-risk genes and members 

of the BAF complex, and also enriched for proteins that interact with additional ASD-risk 

genes, many of which are involved in cortical neurogenesis(42). This is supported by the 

single cell sequencing data which reveals expression of many of these ASD risk genes in 

developing glutamatergic neurons (Fig. S12). Further, the observation that the high-

confidence novel ASD-risk genes (FDR<0.1) and additional candidate ASD-risk genes 

(FDR<0.2) are enriched for inherited variation is logically consistent with the fact that 

previous ASD studies have primarily focused on simplex ASD families, where de novo 

variants are known to have a critical contribution to ASD risk.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 15!

We employed WGS to enable the detection of non-coding variants and structural 

variation at high resolution. We identified one AGRE/iHART family with a likely 

pathogenic SNV in the NR3C2 gene and a second family with a structural variant 

(deletion) disrupting the promoter region for this gene. The shared phenotypic features 

amongst the variant carriers is consistent with a new syndromic form of ASD (Table S3). 

We were able to infer biological importance of this NR3C2 putative regulatory deletion 

given its open chromatin state in human developing brain (ATAC-seq(37)) and 

phenotypic concordance to the family harboring the coding PTV. Otherwise, more 

broadly, we found no global enrichment for non-coding variation in promoters – 

structural variant or otherwise – in affected vs. unaffected children. Consistently, a 

previously published genome-wide investigation of 53 simplex families found a small 

enrichment (P=0.03) for private and DN disruptive variants in fetal brain DNase I 

hypersensitive sites in probands. However, this signal was limited to DNase I 

hypersensitive sites within 50Kb of genes that have been previously associated with 

ASD-risk(48). Advances in methods for analysis of the non-coding genome, similar to 

what has been done to identify functional PTVs (e.g., constraint metrics such as pLI), are 

necessary to improve power for identifying non-coding risk variants.  

As previous studies have shown(27), inherited variation alone does not explain all 

instances of ASD within multiplex families. Despite finding no global excess of 

damaging RDNVs in ASD cases in the study, we do identify PTV and Mis3 RDNVs in 

previously established ASD risk genes, including: CHD8, SHANK3, and PTEN (Table 

S10). Given our success in uncovering many ASD risk genes whose signal is derived at 

least partially from inherited variation, it is clear that even modest increases in sample 
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sizes from families with multiple affected children will confirm many new genes. Our 

machine learning classifier, Artifact Removal by Classifier (ARC), will also allow 

increases in sample sizes when only LCL-derived DNA is available by distinguishing 

next-generation sequencing and cell line artifacts from true de novo variation. As sample 

sizes grow, we can confirm whether our observed differences between simplex vs. 

multiplex families are generalizable, but our data suggest substantial differences in their 

genetic architecture. Furthermore, with larger cohorts, we may be able to classify risk 

genes based on inheritance – (1) de novo (2) inherited or (3) de novo + inherited – to 

establish if these distinct gene classes are associated with phenotypic severity or specific 

biological pathways. The iHART portal (http://www.ihart.org/home) provides researchers 

access to these data, facilitating additional analyses of these samples and integration with 

future cohorts. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 17!

References and Notes: 

1. American Psychiatric Association, Diagnostic and Statistical Manual of Mental 
Disorders.  (Arlington, Virginia, USA, ed. 5th, 2013). 

2. Prevalence of autism spectrum disorder among children aged 8 years - autism and 
developmental disabilities monitoring network, 11 sites, United States, 2010. 
Morbidity and mortality weekly report. Surveillance summaries (Washington, 
D.C. : 2002) 63, 1-21 (2014). 

3. L. Klei et al., Common genetic variants, acting additively, are a major source of 
risk for autism. Molecular autism 3, 9 (2012). 

4. D. H. Geschwind, J. Flint, Genetics and genomics of psychiatric disease. Science 
(New York, N.Y.) 349, 1489-1494 (2015). 

5. D. H. Skuse, W. P. Mandy, J. Scourfield, Measuring autistic traits: heritability, 
reliability and validity of the Social and Communication Disorders Checklist. The 
British journal of psychiatry : the journal of mental science 187, 568-572 (2005). 

6. R. A. Hoekstra, M. Bartels, C. J. Verweij, D. I. Boomsma, Heritability of autistic 
traits in the general population. Archives of pediatrics & adolescent medicine 161, 
372-377 (2007). 

7. S. Sandin et al., The familial risk of autism. Jama 311, 1770-1777 (2014). 
8. T. Gaugler et al., Most genetic risk for autism resides with common variation. 

Nature genetics 46, 881-885 (2014). 
9. E. Colvert et al., Heritability of Autism Spectrum Disorder in a UK Population-

Based Twin Sample. JAMA psychiatry 72, 415-423 (2015). 
10. J. Sebat et al., Strong association of de novo copy number mutations with autism. 

Science (New York, N.Y.) 316, 445-449 (2007). 
11. C. R. Marshall et al., Structural variation of chromosomes in autism spectrum 

disorder. American journal of human genetics 82, 477-488 (2008). 
12. D. Levy et al., Rare de novo and transmitted copy-number variation in autistic 

spectrum disorders. Neuron 70, 886-897 (2011). 
13. S. J. Sanders et al., Multiple recurrent de novo CNVs, including duplications of 

the 7q11.23 Williams syndrome region, are strongly associated with autism. 
Neuron 70, 863-885 (2011). 

14. S. J. Sanders et al., De novo mutations revealed by whole-exome sequencing are 
strongly associated with autism. Nature 485, 237-241 (2012). 

15. B. J. O'Roak et al., Sporadic autism exomes reveal a highly interconnected 
protein network of de novo mutations. Nature 485, 246-250 (2012). 

16. I. Iossifov et al., De novo gene disruptions in children on the autistic spectrum. 
Neuron 74, 285-299 (2012). 

17. I. Iossifov et al., The contribution of de novo coding mutations to autism 
spectrum disorder. Nature 515, 216-221 (2014). 

18. S. De Rubeis et al., Synaptic, transcriptional and chromatin genes disrupted in 
autism. Nature 515, 209-215 (2014). 

19. S. Ozonoff et al., Recurrence risk for autism spectrum disorders: a Baby Siblings 
Research Consortium study. Pediatrics 128, e488-495 (2011). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 18!

20. J. N. Constantino, Y. Zhang, T. Frazier, A. M. Abbacchi, P. Law, Sibling 
recurrence and the genetic epidemiology of autism. The American journal of 
psychiatry 167, 1349-1356 (2010). 

21. D. M. Werling, D. H. Geschwind, Recurrence rates provide evidence for sex-
differential, familial genetic liability for autism spectrum disorders in multiplex 
families and twins. Molecular autism 6, 27 (2015). 

22. S. J. Sanders et al., Insights into Autism Spectrum Disorder Genomic 
Architecture and Biology from 71 Risk Loci. Neuron 87, 1215-1233 (2015). 

23. C. Y. RK et al., Whole genome sequencing resource identifies 18 new candidate 
genes for autism spectrum disorder. Nature neuroscience,  (2017). 

24. M. Ronemus, I. Iossifov, D. Levy, M. Wigler, The role of de novo mutations in 
the genetics of autism spectrum disorders. Nature reviews. Genetics 15, 133-141 
(2014). 

25. H. C. Mefford et al., Recurrent rearrangements of chromosome 1q21.1 and 
variable pediatric phenotypes. The New England journal of medicine 359, 1685-
1699 (2008). 

26. J. T. Glessner et al., Autism genome-wide copy number variation reveals 
ubiquitin and neuronal genes. Nature 459, 569-573 (2009). 

27. V. M. Leppa et al., Rare Inherited and De Novo CNVs Reveal Complex 
Contributions to ASD Risk in Multiplex Families. American journal of human 
genetics 99, 540-554 (2016). 

28. N. Krumm et al., Excess of rare, inherited truncating mutations in autism. Nature 
genetics 47, 582-588 (2015). 

29. Y. V. Virkud, R. D. Todd, A. M. Abbacchi, Y. Zhang, J. N. Constantino, Familial 
aggregation of quantitative autistic traits in multiplex versus simplex autism. 
American journal of medical genetics. Part B, Neuropsychiatric genetics : the 
official publication of the International Society of Psychiatric Genetics 150b, 
328-334 (2009). 

30. A. McKenna et al., The Genome Analysis Toolkit: a MapReduce framework for 
analyzing next-generation DNA sequencing data. Genome research 20, 1297-
1303 (2010). 

31. K. Chen et al., BreakDancer: an algorithm for high-resolution mapping of 
genomic structural variation. Nature methods 6, 677-681 (2009). 

32. R. E. Handsaker, J. M. Korn, J. Nemesh, S. A. McCarroll, Discovery and 
genotyping of genome structural polymorphism by sequencing on a population 
scale. Nature genetics 43, 269-276 (2011). 

33. R. E. Handsaker et al., Large multiallelic copy number variations in humans. 
Nature genetics 47, 296-303 (2015). 

34. R. M. Layer, C. Chiang, A. R. Quinlan, I. M. Hall, LUMPY: a probabilistic 
framework for structural variant discovery. Genome biology 15, R84 (2014). 

35. V. Moncunill et al., Comprehensive characterization of complex structural 
variations in cancer by directly comparing genome sequence reads. Nature 
biotechnology 32, 1106-1112 (2014). 

36. M. Lek et al., Analysis of protein-coding genetic variation in 60,706 humans. 
Nature 536, 285-291 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 19!

37. L. de la Torre-Ubieta et al., The Dynamic Landscape of Open Chromatin during 
Human Cortical Neurogenesis. Cell 172, 289-304.e218 (2018). 

38. T. G. Belgard, D. H. Geschwind, Retooling spare parts: gene duplication and 
cognition. Nature neuroscience 16, 6-8 (2013). 

39. S. G. Grant, The molecular evolution of the vertebrate behavioural repertoire. 
Philosophical transactions of the Royal Society of London. Series B, Biological 
sciences 371, 20150051 (2016). 

40. D. M. Werling et al., An analytical framework for whole-genome sequence 
association studies and its implications for autism spectrum disorder. Nature 
genetics 50, 727-736 (2018). 

41. G. Vandeweyer et al., The transcriptional regulator ADNP links the BAF 
(SWI/SNF) complexes with autism. American journal of medical genetics. Part 
C, Seminars in medical genetics 166c, 315-326 (2014). 

42. N. N. Parikshak et al., Integrative functional genomic analyses implicate specific 
molecular pathways and circuits in autism. Cell 155, 1008-1021 (2013). 

43. N. N. Parikshak, M. J. Gandal, D. H. Geschwind, Systems biology and gene 
networks in neurodevelopmental and neurodegenerative disorders. Nature 
reviews. Genetics 16, 441-458 (2015). 

44. S. M. Weyn-Vanhentenryck et al., HITS-CLIP and integrative modeling define 
the Rbfox splicing-regulatory network linked to brain development and autism. 
Cell reports 6, 1139-1152 (2014). 

45. C. L. Martin et al., Cytogenetic and molecular characterization of A2BP1/FOX1 
as a candidate gene for autism. American journal of medical genetics. Part B, 
Neuropsychiatric genetics : the official publication of the International Society of 
Psychiatric Genetics 144b, 869-876 (2007). 

46. K. E. Samocha et al., A framework for the interpretation of de novo mutation in 
human disease. Nature genetics 46, 944-950 (2014). 

47. J. J. Michaelson et al., Whole-genome sequencing in autism identifies hot spots 
for de novo germline mutation. Cell 151, 1431-1442 (2012). 

48. T. N. Turner et al., Genome Sequencing of Autism-Affected Families Reveals 
Disruption of Putative Noncoding Regulatory DNA. American journal of human 
genetics 98, 58-74 (2016). 

49. D. F. Conrad et al., Variation in genome-wide mutation rates within and between 
human families. Nature genetics 43, 712-714 (2011). 

50. A. Kong et al., Rate of de novo mutations and the importance of father's age to 
disease risk. Nature 488, 471-475 (2012). 

51. S. Besenbacher et al., Multi-nucleotide de novo Mutations in Humans. PLoS 
genetics 12, e1006315 (2016). 

52. Prevalence and architecture of de novo mutations in developmental disorders. 
Nature 542, 433-438 (2017). 

53. J. M. Goldmann et al., Parent-of-origin-specific signatures of de novo mutations. 
Nature genetics 48, 935-939 (2016). 

54. L. C. Francioli et al., Genome-wide patterns and properties of de novo mutations 
in humans. Nature genetics 47, 822-826 (2015). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 20!

55. J. A. Kosmicki et al., Refining the role of de novo protein-truncating variants in 
neurodevelopmental disorders by using population reference samples. Nature 
genetics 49, 504-510 (2017). 

56. X. He et al., Integrated model of de novo and inherited genetic variants yields 
greater power to identify risk genes. PLoS genetics 9, e1003671 (2013). 

57. I. A. Adzhubei et al., A method and server for predicting damaging missense 
mutations. Nature methods 7, 248-249 (2010). 

58. J. C. Darnell et al., FMRP stalls ribosomal translocation on mRNAs linked to 
synaptic function and autism. Cell 146, 247-261 (2011). 

59. A. Bayes et al., Characterization of the proteome, diseases and evolution of the 
human postsynaptic density. Nature neuroscience 14, 19-21 (2011). 

60. E. Bacchelli et al., Screening of nine candidate genes for autism on chromosome 
2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Molecular 
psychiatry 8, 916-924 (2003). 

61. L. Snijders Blok et al., Mutations in DDX3X Are a Common Cause of 
Unexplained Intellectual Disability with Gender-Specific Effects on Wnt 
Signaling. American journal of human genetics 97, 343-352 (2015). 

62. H. Horn et al., NetSig: network-based discovery from cancer genomes. Nature 
methods 15, 61-66 (2018). 

63. C. M. Lajonchere, Changing the landscape of autism research: the autism genetic 
resource exchange. Neuron 68, 187-191 (2010). 

64. S. Purcell et al., PLINK: a tool set for whole-genome association and population-
based linkage analyses. American journal of human genetics 81, 559-575 (2007). 

65. G. Jun et al., Detecting and estimating contamination of human DNA samples in 
sequencing and array-based genotype data. American journal of human genetics 
91, 839-848 (2012). 

66. M. A. DePristo et al., A framework for variation discovery and genotyping using 
next-generation DNA sequencing data. Nature genetics 43, 491-498 (2011). 

67. G. A. Van der Auwera et al., From FastQ data to high confidence variant calls: 
the Genome Analysis Toolkit best practices pipeline. Current protocols in 
bioinformatics 43, 11.10.11-33 (2013). 

68. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics (Oxford, England) 25, 1754-1760 (2009). 

69. D. W. Barnett, E. K. Garrison, A. R. Quinlan, M. P. Stromberg, G. T. Marth, 
BamTools: a C++ API and toolkit for analyzing and managing BAM files. 
Bioinformatics (Oxford, England) 27, 1691-1692 (2011). 

70. K. Wang, M. Li, H. Hakonarson, ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic acids research 38, e164 
(2010). 

71. W. McLaren et al., The Ensembl Variant Effect Predictor. Genome biology 17, 
122 (2016). 

72. H. Li et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics 
(Oxford, England) 25, 2078-2079 (2009). 

73. W. M. Brandler et al., Frequency and Complexity of De Novo Structural 
Mutation in Autism. American journal of human genetics 98, 667-679 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 21!

74. A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics (Oxford, England) 26, 841-842 (2010). 

75. D. T. Miller et al., Consensus statement: chromosomal microarray is a first-tier 
clinical diagnostic test for individuals with developmental disabilities or 
congenital anomalies. American journal of human genetics 86, 749-764 (2010). 

76. A. Auton et al., A global reference for human genetic variation. Nature 526, 68-
74 (2015). 

77. J. R. MacDonald, R. Ziman, R. K. Yuen, L. Feuk, S. W. Scherer, The Database of 
Genomic Variants: a curated collection of structural variation in the human 
genome. Nucleic acids research 42, D986-992 (2014). 

78. B. P. Coe et al., Refining analyses of copy number variation identifies specific 
genes associated with developmental delay. Nature genetics 46, 1063-1071 
(2014). 

79. G. M. Cooper et al., A copy number variation morbidity map of developmental 
delay. Nature genetics 43, 838-846 (2011). 

80. E. J. Rossin et al., Proteins encoded in genomic regions associated with immune-
mediated disease physically interact and suggest underlying biology. PLoS 
genetics 7, e1001273 (2011). 

81. K. Lage et al., A human phenome-interactome network of protein complexes 
implicated in genetic disorders. Nature biotechnology 25, 309-316 (2007). 

82. P. Scheet, M. Stephens, A fast and flexible statistical model for large-scale 
population genotype data: applications to inferring missing genotypes and 
haplotypic phase. American journal of human genetics 78, 629-644 (2006). 

83. I. Voineagu et al., Transcriptomic analysis of autistic brain reveals convergent 
molecular pathology. Nature 474, 380-384 (2011). 

84. N. N. Parikshak et al., Genome-wide changes in lncRNA, splicing, and regional 
gene expression patterns in autism. Nature 540, 423-427 (2016). 

85. A. J. Willsey et al., Coexpression networks implicate human midfetal deep 
cortical projection neurons in the pathogenesis of autism. Cell 155, 997-1007 
(2013). 

86. A. Sugathan et al., CHD8 regulates neurodevelopmental pathways associated with 
autism spectrum disorder in neural progenitors. Proceedings of the National 
Academy of Sciences of the United States of America 111, E4468-4477 (2014). 

87. A. Battle, C. D. Brown, B. E. Engelhardt, S. B. Montgomery, Genetic effects on 
gene expression across human tissues. Nature 550, 204-213 (2017). 

88. J. M. Zook et al., Integrating human sequence data sets provides a resource of 
benchmark SNP and indel genotype calls. Nature biotechnology 32, 246-251 
(2014). 

89. D. Pinto et al., Convergence of genes and cellular pathways dysregulated in 
autism spectrum disorders. American journal of human genetics 94, 677-694 
(2014). 

90. T. J. Nowakowski et al., Spatiotemporal gene expression trajectories reveal 
developmental hierarchies of the human cortex. Science (New York, N.Y.) 358, 
1318-1323 (2017). 

91. B. B. Lake et al., Integrative single-cell analysis of transcriptional and epigenetic 
states in the human adult brain. Nature biotechnology 36, 70-80 (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 22!

Supplementary Materials:!

Materials and Methods 

Figures S1-S13 

Tables S1-S16 

 

Acknowledgements: We thank Stephanie N. Kravitz, Cheyenne L. Schloffman, Min 

Sun, Tor Solli-Nowlan, Virpi Leppa, Hyejung Won, Sasha Sharma, Marlena Duda, Greg 

Madden McInnes, and Ravina Jain for additional technical support for this research and 

we thank the New York Genome Center for conducting sequencing and initial quality 

control. Funding: We acknowledge the Hartwell Foundation for supporting the creation 

of the iHART database. The Simons Foundation provided additional support for the 

genome sequencing. The Autism Genetic Resource Exchange is a program of Autism 

Speaks and was supported by grants NIMH U24, MH081810, and R01MH064547. 

Research reported in this publication was also partially supported by the Office of the 

Director of the National Institutes of Health under award number S10OD011939. The 

content is solely the responsibility of the authors and does not necessarily represent the 

official views of the National Institutes of Health. We acknowledge that the results of this 

research have been achieved using the PRACE Research Infrastructure resource 

MareNostrum III based in Spain at the Barcelona Supercomputing Center (BSC-CNS). 

We are grateful to all of the families at the participating Simons Simplex Collection 

(SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, 

E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, A. Klin, D. 

Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 23!

Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. 

Wijsman). We appreciate obtaining access to genetic data on SFARI Base. Approved 

researchers can obtain the SSC population dataset described in this study 

(https://www.sfari.org/2015/12/11/whole-genome-analysis-of-the-simons-simplex-

collection-ssc-2/#chapter-wgs-of-500-additional-ssc-families) by applying at 

https://base.sfari.org. Author contributions: E.K.R and L.P.C designed the analytical 

plans, implemented the analysis pipelines, and interpreted results. J.K.L was responsible 

for selecting and submitting samples for sequencing. E.K.R, J.J, L.W, and J.K.L 

performed quality control checks. L.W wrote scripts for data processing and helped 

interpret results. L.P.C, D.K, J.J, and E.K.R developed ARC. C.H interpreted results and 

ran TADA-simulations. J.J. and D.P.W designed the access systems. J.J performed joint 

genotyping, VCF annotation, and data transfers. L.P.C and D.K processed SVs and L.P.C 

wrote the SV cross-algorithm comparison pipeline. D.P.W initially conceived of the idea 

for the study and identified funding. E.K.R and D.H.G took the lead in writing the 

manuscript, and all authors reviewed and approved the manuscript. D.H.G and D.P.W 

supervised the experimental design and analysis and interpreted results. Data and 

materials availability: The whole-genome sequencing data generated during this study 

are available from the Hartwell Foundation’s Autism Research and Technology Initiative 

(iHART) following request and approval of the data use agreement available at 

http://www.ihart.org/home. Details about the format of the data, access options, and 

access instructions are included in the Supplemental material of this manuscript. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/338855doi: bioRxiv preprint 

https://doi.org/10.1101/338855


! 24!

Table 1. 
 

dnPTV 
count FDR ≤ 0.01 0.01< FDR ≤ 0.05 0.05< FDR ≤ 0.1 

≥2 CHD8, SCN2A, 
ARID1B, SYNGAP1, 
DYRK1A, CHD2, 
ANK2, KDM5B, 
ADNP, POGZ, 
KMT5B, TBR1, 
GRIN2B, DSCAM, 
KMT2C, TCF7L2, 
TRIP12, ASH1L, 
CUL3, KATNAL2, 
GIGYF1 

TNRC6B, WAC, 
NCKAP1, RANBP17, 
KDM6B, ILF2, 
SPAST, FOXP1, 
AKAP9, CMPK2, 
DDX3X 

WDFY3, PHF2, 
BCL11A, KMT2E, 
CACNA2D3* 

1 NRXN1, SHANK2, 
PTEN, SHANK3, 
SETD5 

DNMT3A, MYT1L, 
RAPGEF4, 
PRKAR1B 

MFRP, GABRB3, 
P2RX5, ETFB, 
CTTNBP2, INTS6, 
USP45, ERBIN, 
TMEM39B, TSPAN4, 
MLANA, SMURF1, 
C16orf13, BTRC, 
CCSER1, FAM98C 

0 - SLC6A1, ZNF559, 
CAPN12, GRIA1 

PCM1, MYO5A, 
UIMC1 

 
 
Table 1. 69 ASD-risk genes, including 16 novel genes, identified in the iHART 

TADA mega-analysis. All 69 genes significantly associated with ASD-risk (with an 

FDR < 0.1) by the iHART TADA mega-analysis are displayed by the number of de novo 

PTVs identified in the gene. The 16 newly ASD-associated genes are in bold. *The 

CACNA2D3 gene was significantly associated with ASD in the iHART mega-analysis 

but not the previous TADA mega-analysis(22); however, it was previously reported in De 

Rubeis et al.(18) and thus is not considered as a novel ASD-risk gene. 
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Whole-genome sequence data (~30x )

Quality control
Sample identity and sequence coverage

Reference genome (hg19)

GATK v3.2

Single Nucleotide Variants (SNVs)
ATCGTCATGCCCTAGTATCGTCATGCCCTAGTGG

ATCGTCATGCCCTAGTATCTTCATGCCCTAGTGG

Small insertions/deletions (Indels)
ATCGTCATGCCCTAGTATCGTCATGCCCTAGTGG

ATCGTCATGCCCTAGTA- - -TCATGCCCTAGTGG

SMuFin, GenomeStrip, LUMPY, BreakDancer

Deletions

Duplications

Inversions

Large Structural Variants (SVs):

Analyses

Integrative genomic analyses
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Gene-set, cell type, and pathway analysesProtein-protein interaction (PPI) networks
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Fig. 1. Overview of the Analysis Pipeline. High-coverage (30x) whole-genome sequence data 

was generated at the NYGC on the Illumina HiSeq X. Reads were aligned to the human reference 

genome (hg19) and single nucleotide variants and indels were called following GATK’s best 

practices. Quality control checks were applied to insure both sequencing/variant quality and 

sample identity (Methods, Fig. S1). SNVs and indels were annotated using both VEP(71) and 

ANNOVAR(70) and subsequently filtered for mildly stringent quality thresholds. All de novo 

variants were subjected to our machine learning classifier – Artifact Removal by Classifier (ARC; 

Methods, Fig. 3, Fig. S5-S8). Large structural variants were identified by four different SV-

detection algorithms (Methods) – three of which used aligned sequence reads and one that 

performed de novo alignment (SMuFin). Large SVs were annotated using Bamotate and then 

filtered for high quality variants by using our multi-algorithm consensus pipeline (Methods). The 

resulting variants were then analyzed to identify ASD-risk factors and perform integrative 

genomic analyses.  
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Fig. 2. Inherited ASD-risk genes. (a) The rate of rare inherited coding variants per fully phase-

able child is displayed for 960 affected (red) and 217 unaffected children (light blue) by variant 

consequence. Rare inherited variants (SNVs and indels) were defined as those with an AF≤ 0.1% 

in public databases (1000g, ESP6500, ExACv3.0, cg46), internal controls, and iHART HNP 

samples and were restricted to those not missing in more than 25% of controls and that were not 

flagged as low-confidence by the GIAB consortium (Methods). Rates are displayed as bar plots 

of the mean number of variants in a sample and error bars represent the standard error. (b) The 

rate of rare inherited SVs per fully phase-able child is displayed for 960 affected (red) and 217 

unaffected children (light blue) by inheritance type; this includes newly hemizygous variants in 

563 affected (red) and 100 unaffected male children (light blue). Rare SVs (DELs, DUPs, INVs) 

were defined as those with an AF < 0.001 in cDGV and an AF < 0.01 in iHART HNP samples. 

(c) Pedigrees are displayed for five ASD families identified as harboring coding or regulatory 

variants for NR3C2. Both SSC families harbor de novo variants in the proband which are absent 

in the unaffected sibling (a probably damaging missense (Mis3) in SSC12937 and a PTV in 

SSC13197). AGRE/iHART families A-C harbor rare inherited variants transmitted to both 

affected children (a promoter-disrupting deletion in family A, a PTV in family B, and a probably 

damaging missense (Mis3) in family C).  The NR3C2 promoter-disrupting ~850bp deletion 

(orange rectangle) transmitted to all affected members of family A. Shown below are the average 

ATAC-seq peak read depth from the cortical plate (CP) and ventricular zone (VZ) of developing 

human brain samples (n=3); (d) The direct and indirect protein-protein interaction networks 

(identified by DAPPLE) formed by intolerant genes harboring PTVs or damaging SVs (promoter 

or exon disrupting) transmitted to all affected (and no unaffected) members of an AGRE family. 

Each encoded protein is colored according to the type of variant class identified. Proteins encoded 

by an ASD risk gene identified in the TADA mega analysis in Sanders et al. (22) are shown in 

purple. Any protein falling in more than one category is colored with all categorical colors that 

apply. The gene labels for significant seed genes are bold and orange.   
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Fig. 3. Rare de novo variants in iHART/AGRE. (a) The ROC curves for the 10-fold cross 

validation for the ARC training set; AUC=0.99. (b) The ROC curve for the ARC test set; 

AUC=0.98. (c) The relative importance of each random forest feature was obtained from the 

RFECV module from scikit-learn. This heat map reflects the rank of all 48 ARC features (binned 

for heat map coloring but listed on the x-axis in order of rank) and displays features by relevant 

categories (y-axis). (d) The number of rare de novo variants identified in LCL (pink) and WB 

(blue) fully phase-able (non-MZ twin) samples before ARC (N=1,019 samples). The difference in 

DN rates between the biological sequencing source (LCL vs. WB) was evaluated using Wilcoxon 

rank sum test. (e) The number of rare de novo variants identified in LCL (pink) and WB (blue) 

fully phase-able (non-MZ twin) samples after ARC (variants with an ARC score <0.4 are filtered 

out) and after excluding ARC outlier samples (samples with >90% DNs removed by ARC) 

(N=716). No significant difference in the rate of rare de novo variants based on the biological 

sequencing source (LCLmedian=57 and WBmedian=57) using the Wilcoxon rank sum test. (f) The 

rate of rare de novo coding variants per child is displayed for 575 affected (red) and 141 

unaffected children (light blue) (716 fully phase-able samples after excluding MZ twins and ARC 

outliers) by variant consequence. Rare de novo variants (absent in all controls) were restricted to 

those with an ARC score ≥0.4 that were not flagged as low-confidence by the GIAB consortium 

(Methods). Rates are displayed as bar plots of the mean number of rare de novo variants in a 

sample and error bars represent the standard error.  
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Fig. 4. 69 ASD-risk genes identified by the TADA mega-analysis. (a) The 69 genes with an 

FDR<0.1 are displayed in order of increasing mutability and the 16 novel genes identified in the 

iHART mega-analysis are in bold. The per-gene TADA FDR is displayed as a bar reaching the -

log10(q-value), so higher bars have a lower FDR; the dashed horizontal line marks the FDR=0.1 

threshold; and the proportion of inherited PTVs for each gene (inherited PTVs/(inherited PTVs 

+ de novo PTVs +  de novo missense-3 + de novo small deletions)) is displayed. (b) The 69 genes 

with an FDR<0.1 are displayed in order of increasing mutability and the 16 novel genes identified 

in the iHART mega-analysis are in bold. Violin plots of the simulated Bayes Factors (displayed 

as log(simulated Bayes Factor), 111 quantiles from the 1.1 million simulations) for each gene. 

The grey x indicates the median of the simulated Bayes Factors for that gene and the blue dot is 

the Bayes Factor obtained in the iHART TADA-mega analysis. The violin plots are filled 

according to their simulation p-value (max p-value=0.006). Genes with a very large distance 

between the median simulated Bayes Factor and the observed TADA-mega analysis Bayes Factor 

(e.g., CHD8) are highly secure genes with a very low probability of having achieved the observed 

Bayes Factor by chance alone given the input family structures.  (c) The indirect PPI network 

formed by the 69 ASD-risk genes identified by TADA with an FDR<0.1 with proteins encoded 

by previously known ASD-risk genes (by the TADA mega analysis in Sanders et al. (22)) shown 

in purple and proteins encoded by newly identified ASD-risk genes in the iHART TADA mega 

analysis shown in red. This network includes 9 of the 16 novel ASD-risk genes. The gene labels 

for the six significant seed genes are bold and blue. The resulting indirect PPI was significant for 

two connectivity metrics – seed indirect degrees mean P=0.016 and the CI degrees mean 

P=0.024. (d) Gene-set enrichment results for the 69 ASD-risk genes displayed by the log2(odds 

ratio), with p-values listed for gene sets surviving multiple test correction (Bonferroni correction 

for the 22 gene sets tested or P<0.002); the SSC DN PTV recurrent gene set was included as a 

positive control. In addition to the gene set "genes enriched for expression in the brain vs. other 

tissues" which contains almost all of the 16 novel ASD-risk genes, six additional gene-sets 
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contain one or more of the 16 novel ASD-risk genes: (1) TMEM39B and PCM1, (2) CCSER1 and 

UIMC1, (3) BTRC, PRKAR1B, and MYO5A, (4) RAPGEF4 and MYO5A, (5) BTRC, (6) DDX3X, 

GRIA1, RAPGEF4, and MYO5A.  
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Fig. 5. Direct protein-protein interaction network formed by ASD-risk genes. (a) The direct 

protein-protein interaction network (identified by DAPPLE) formed by intolerant genes harboring 

PTVs or SVs transmitted to all affected (and no unaffected) members of an AGRE family (98 

genes) and ASD-risk genes identified in the TADA mega-analysis (69 genes, FDR<0.1). The 

direct protein-protein interaction network formed by these 165 genes (2 genes in both categories), 

is significant for three connectivity metrics: the direct edges count (P=0.036), the seed direct 

degrees mean (P=0.046), and the CI degrees mean (P=0.005). Each encoded protein is colored 

according to the type of variant class identified; proteins encoded by a gene with a high-risk 

inherited SV are shown in gold and PTVs are shown in teal. Proteins encoded by an ASD risk 

gene by the TADA mega analysis in Sanders et al. (22) are shown in purple, proteins encoded by 

a newly identified ASD-risk gene by the iHART TADA mega analysis are shown in red, proteins 

belonging to the BAF complex are shown in blue, and any protein falling in more than one 

category is colored with all categorical colors that apply (e.g., ARID1B). The gene labels for 

significant seed genes are bold and orange. (b) The indirect protein-protein interaction networks 

(identified by DAPPLE) formed by intolerant genes harboring PTVs or damaging SVs (promoter 

or exon disrupting) transmitted to all affected (and no unaffected) members of an AGRE family. 

Each encoded protein is colored according to the type of variant class identified. Proteins encoded 

by an ASD risk gene identified in the TADA mega analysis in Sanders et al. (22) are shown in 

purple. For visualization, protein symbols for some NetSig significant genes (P < 0.05) are 

displayed in a smaller font in the upper right hand corner of the network. Any protein falling in 

more than one category is colored with all categorical colors that apply. The gene labels for 

significant seed genes are bold and orange. 
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