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Abstract 18 

Variant interpretation in the era of next-generation sequencing (NGS) is challenging.  While 19 

many resources and guidelines are available to assist with this task, few integrated end-to-end 20 

tools exist.  Here we present “PeCanPIE” – the Pediatric Cancer Variant Pathogenicity 21 

Information Exchange, a web- and cloud-based platform for annotation, identification, and 22 

classification of variations in known or putative disease genes.  Starting from a set of variants in 23 

Variant Call Format (VCF), variants are annotated, ranked by putative pathogenicity, and 24 

presented for formal classification using a decision-support interface based on published 25 

guidelines from the American College of Medical Genetics and Genomics (ACMG). The system 26 

can accept files containing millions of variants and handle single-nucleotide variants (SNVs), 27 

simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex 28 

substitutions.  PeCanPIE has been applied to classify variant pathogenicity in cancer 29 

predisposition genes in two large-scale investigations involving >4,000 pediatric cancer patients, 30 

and serves as a repository for the expert-reviewed results. While PeCanPIE’s web-based 31 

interface was designed to be accessible to non-bioinformaticians, its back end pipelines may 32 

also be run independently on the cloud, facilitating direct integration and broader adoption. 33 

PeCanPIE is publicly available and free for research use. 34 
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Introduction 36 

Next-generation sequencing (NGS) has quickly become a mainstay for genetic variation studies 37 

in many research and clinical genomics laboratories. However, the sheer abundance of data 38 

produced for a single individual means that complex and often tedious data processing and 39 

curation are required to identify potentially disease-causing mutations. The process is 40 

simultaneously burdened by the volume of novel variants, many of which have scarce 41 

information available, and the diverse, distributed nature of existing variant information 42 

resources. Variant annotation tools have been developed to assist with several aspects of this 43 

work, which can add coding and noncoding prediction annotations and population-specific allele 44 

frequencies, as well as provide filtering options for variant prioritization (Wang et al. 2010; 45 

Cingolani et al. 2012; Ng et al. 2009; McLaren et al. 2016). Likewise, variant curation tools 46 

supporting classification for clinical pathogenicity following the ACMG guidelines (Richards et al. 47 

2015) have also been developed (Patel et al. 2017). While each resource offers valuable 48 

information to help researchers classify variant pathogenicity, integrated platforms are needed 49 

to provide support for all steps of the process, and streamline analysis of the thousands to 50 

millions of variants generated by NGS-based platforms.  With these goals in mind, we 51 

developed “PeCanPIE” – the Pediatric Cancer Variant Pathogenicity Information Exchange  – a 52 

cloud-based portal that provides an end-to-end workflow, beginning with a set of variants in VCF 53 

(Danecek et al. 2011) and ending with formal ACMG classification.  PeCanPIE offers three key 54 

functions: 1) automated annotation, classification, and triage via our MedalCeremony pipeline 55 

(Zhang et al. 2015); 2) an interactive variant page and visualization tools to support expert 56 

curation and committee review; and 3) a reference database of expert-reviewed germline 57 

cancer-predisposing mutations. 58 
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Results 60 

Process overview 61 

62 

Figure 1. Overview of variant classification using PeCanPIE.  (A) Overview of processing 63 

steps from VCF through ACMG-based classification.  Variant counts at each processing step for 64 

(B) whole-exome sequencing data generated from a germline sample of a patient with acute 65 

lymphoblastic leukemia (ALL),  SJNORM015857_G1 (Methods) and (C) whole-genome 66 

sequencing data generated from Genome in a Bottle normal sample NA12878_HG001 67 

(Methods).  68 

As outlined in Fig. 1A, PeCanPIE launches with an interface for uploading a VCF file, which is 69 

then filtered to a set of disease-related genes (Methods, Table S1); users may alternatively 70 
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specify their own list of genes of interest.  Variants are next assigned gene and protein 71 

annotations and filtered by functional class and population frequency derived from the Exome 72 

Aggregation Consortium (ExAC) database (Lek et al. 2016).  To ensure that pathogenic 73 

germline variants in cancer patients are retained, PeCanPIE uses the distribution of ExAC that 74 

excludes patient samples from The Cancer Genome Atlas (TCGA) (McLendon et al. 2008).  The 75 

remaining variants are stratified into three tiers (gold, silver, and bronze) as an indication of 76 

potential pathogenicity computed by our MedalCeremony pipeline. Finally, each “medaled” 77 

variant is linked to a standalone page featuring an interface to support semi-automated 78 

pathogenicity classification using ACMG guidelines. Two examples in Fig. 1 demonstrate the 79 

classification process using VCF files generated from whole-exome sequencing (WES) of an 80 

acute lymphoblastic leukemia (ALL) patient (Moriyama et al. 2015) (Fig. 1B) and whole-genome 81 

sequencing (WGS) from the Genome in a Bottle (GiaB) project (Zook et al. 2014) (Fig. 1C), 82 

respectively. Only 14 of the 63,109 variants from the WES data and 17 of the approximately 4 83 

million variants from the WGS data required expert review, which resulted in 1 and 0 84 

pathogenic/likely pathogenic (P/LP) variants, respectively. 85 

Automated classification by the MedalCeremony pipeline 86 

Automated classification of variant pathogenicity implemented in the MedalCeremony pipeline 87 

classifies variants having a population frequency no higher than 0.001 (or a user-defined cutoff) 88 

in the ExAC database.   Additional annotations are incorporated to aid with the classification 89 

process: 1) COSMIC (Forbes et al. 2008) hits; 2) functional annotations from dbNSFP (Liu et al. 90 

2013) (protein domain and damage prediction algorithm calls); and 3) allele frequencies in the 91 

NHLBI GO Exome Sequencing Project (ESP), the Thousand Genomes Project (Auton et al. 92 

2015), ExAC, and the Pediatric Cancer Genome Project (PCGP) (Downing et al. 2012). 93 

An overview of the gold, silver, and bronze classification scheme implemented in 94 

MedalCeremony is shown in Fig. 2.  Gold medals are assigned to truncating variants (including 95 
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splice variants) in tumor suppressor genes (Zhao et al. 2016; Chakravarty et al. 2017), matches 96 

to highly-curated databases (IARC TP53 (Bouaoun et al. 2016), ClinVar expert-panel-reviewed 97 

pathogenic (P) or likely pathogenic (LP) variants, ASU TERT (Podlevsky et al. 2007), ARUP 98 

RET (Margraf et al. 2009), NHGRI Breast Cancer Information Core (Szabo et al. 2000), somatic 99 

mutation hotspots in COSMIC (observed in ≥10 tumors after removal of hypermutators) and 100 

PCGP, and St. Jude committee-reviewed germline P/LP variants.  Silver medals are assigned to 101 

in-frame indels, truncation events in non-tumor-suppressor genes, variants predicted damaging 102 

by in silico algorithms, and matches to additional databases (ClinVar non-expert-panel P/LP, 103 

BRCA Share (Béroud et al. 2016), LOVD (Fokkema et al. 2011) locus-specific databases for 104 

APC and MSH2, and RB1 (Lohmann and Gallie 1993)).  Unless otherwise medaled, variants 105 

predicted to be tolerated by in silico algorithms are assigned a bronze medal.  Imperfect 106 

database matches (e.g., a different allele at the same genomic position or at the same codon 107 

but with a different amino acid change) are typically assigned a lower grade medal, e.g. silver 108 

rather than gold. Variants not meeting any of the previous criteria, e.g. most silent variants and 109 

those without any functional annotations, will not receive a medal. Amino acid and pathogenicity 110 

codes from the diverse variant databases used in this process are standardized to improve the 111 

reliability of annotations and utility of information (Methods). A summary of resources is shown 112 

in Table 1.  MedalCeremony may also be run as a stand-alone pipeline on the St. Jude Cloud 113 

platform (Methods). 114 
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115 

Figure 2. Design of the MedalCeremony pipeline for automated germline variant 116 

classification.  Truncating variants in loss-of-function genes (e.g. tumor suppressors) and those 117 

matching highly-curated databases receive gold medals.  Truncations in non-loss-of-function 118 

genes, in-frame indels, predicted damaging variants, and matches to additional databases 119 

receive silver medals.  Otherwise variants predicted to be tolerated by damage-prediction 120 

algorithms receive bronze.  Imperfect database matches receive a lower-grade medal than exact 121 

matches.  Variants not meeting any of the prior criteria receive a result of “unknown”.   122 

Table 1. Databases used in classification 123 

Source URL 
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ClinVar http://www.ncbi.nlm.nih.gov/clinvar/ 

dbNSFP https://sites.google.com/site/jpopgen/dbNSFP 

ExAC http://exac.broadinstitute.org/ 

COSMIC https://cancer.sanger.ac.uk/cosmic/ 

IARC TP53 http://tp53.iarc.fr/ 

St. Jude PCGP https://pecan.stjude.cloud/pcgp-explore 

NHGRI BIC http://research.nhgri.nih.gov/bic/ 

RB1 http://rb1-lovd.d-lohmann.de/ 

BRCA Share  http://www.umd.be/BRCA1/ 

ASU TERT http://telomerase.asu.edu/diseases.html#tert 

University of Utah RET http://www.arup.utah.edu/database/MEN2/MEN2_display.php 

LOVD APC, MSH2 http://chromium.liacs.nl/LOVD2/colon_cancer/ 

 124 

Variant review interface 125 

After MedalCeremony classification, the results are presented in a table that can be searched or 126 

filtered by gene, variant class, medal status, or classification by expert review (Fig. 3A).  If a 127 

variant has been previously classified by the user or the St. Jude germline variant review 128 

committee, that information will be pre-populated.  Each row links to a variant page containing 129 

extensive annotations, including gene information from NCBI and OMIM (Amberger et al. 2015), 130 

ClinVar match details, population frequency, and in silico predictions of deleteriousness (Fig. 131 

3B).  The page also includes an embedded ProteinPaint view (Zhou et al. 2015), which overlays 132 

the current variant with aggregated somatic mutations and expert-classified P/LP germline 133 

variants on the protein product.  This enables visual inspection of variant recurrence, hotspots, 134 

and enrichment of loss-of-function mutations. 135 
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Figure 3.  Annotation interface.  Excerpts of PeCanPIE annotation interface.  (A) Results for 137 

Genome in a Bottle WGS dataset.  Variant page details for NOTCH1 R1350L: (B) functional 138 

predictions, and (C) variant population frequency detail from ExAC ex-TCGA database. 139 

140  
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Figure 4.  ACMG classification on ETV6.  Top, ProteinPaint display of somatic ETV6 variants 141 

across 11 subtypes of pediatric leukemia, showing enrichment of loss-of-function mutations 142 

(frameshifts in red, nonsense variants in orange).  Arrow indicates position of germline R359* 143 

variant. Bottom, detail of PeCanPIE ACMG classification interface for R359* variant. 144 

ACMG classification interface 145 

A powerful feature of the variant detail page is an interactive graphical interface that allows a 146 

reviewer to enter a series of pathogenicity criteria evidence tags (e.g., population frequency, 147 

segregation, functional significance, and in silico prediction), along with supporting information 148 

such as PubMed IDs, to automatically calculate a 5-tier classification: Pathogenic (P), Likely 149 

Pathogenic (LP), Unknown Significance (VUS), Likely Benign (LB), and Benign (B) based on the 150 

ACMG algorithm. MedalCeremony can automatically generate ACMG classification tags for 151 

variants, which are prepopulated into PeCanPIE’s classification interface.  The following 152 

automatic tags are implemented: PVS1 (truncating variant in a tumor suppressor or other loss-153 

of-function gene), PM1 (somatic hotspot in COSMIC), PM2 (absent from ExAC or appearing at 154 

a frequency of no greater than 0.0001) and the companion BA1 tag (>5% population frequency 155 

in ExAC), PM4 (in-frame protein insertions and deletions), PS1 and PM5 (amino acid 156 

comparisons made vs. pathogenic variants in ClinVar or those identified by the St. Jude 157 

Germline Review Committee).  Automatically-assigned tags may be removed by the analyst if 158 

desired. This automation provides improved support versus manual curation interfaces, while 159 

still retaining analyst control over the ultimate classification decisions.  As shown on the variant 160 

page for ETV6 Arg359Ter, the single gold-medal variant detected in the patient with ALL was 161 

expert-classified as likely pathogenic because the mutation is present in a disease-related gene 162 

(i.e., ETV6 is a pediatric ALL driver gene), is a loss-of-function null variant, and is not present in 163 

the ExAC database (Fig. 4).  164 
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Comparison of a germline variant with aggregated somatic variants can help inform germline 165 

classification for cancer predisposition genes. For example, family studies have identified a 166 

PAX5 G183S germline mutation conferring susceptibility to B-ALL, which corresponds to 167 

somatic mutations detected in pediatric B-ALL and lymphoma (Shah et al. 2013). A similar 168 

profile was observed in the example WES data from an ALL patient presented in Fig. 1B: 169 

MedalCeremony assigned a single gold medal—a novel ETV6 nonsense variant within the ETS 170 

domain (NM_001987.4:c.1075C>T, NP_001978.1:p.Arg359Ter)—based on the criteria of 171 

truncation in a tumor suppressor gene. The ProteinPaint view embedded in the variant page 172 

confirmed that in ETV6, somatic mutations are dominated by loss-of-function mutations across 173 

pediatric leukemia (Fig. 4), consistent with the tumor-suppressor gene model.  Reviewers may 174 

enter custom evidence such as this into the interface for use during final classification. 175 

Pathogenicity classification of cancer predisposition genes in 4,000 pediatric 176 

cancer patients 177 

PeCanPIE was designed in support of large-scale germline variation analysis projects, and was 178 

iteratively improved based on the feedback of an interdisciplinary group of researchers. 179 

Germline variants from the following studies have been analyzed thus far: 1) a study of germline 180 

variations in predisposition genes in 1,120 children with cancer (Zhang et al. 2015) classified 181 

890 variants, identifying 109 as pathogenic (P) and 25 as likely-pathogenic (LP); 2) the St. Jude 182 

LIFE project, a follow-up study of 3,006 long-term survivors of pediatric cancer (Wang et al. 183 

2018), classified 3,417 variants, including 188 P and 160 LP; and 3) Genomes for Kids 184 

(manuscript in preparation), a clinical research study of 310 pediatric cancer patients 185 

(https://clinicaltrials.gov/ct2/show/NCT02530658), clinically reported 25 P and 6 LP variants.  186 

PeCanPIE also serves as a repository for expert-curated decisions for the first two studies, 187 

whose resulting annotations are reapplied to incoming variant classification requests. 188 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/340901doi: bioRxiv preprint 

https://doi.org/10.1101/340901
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 189 

Discussion 190 

Although PeCanPIE’s features partially overlap those of other available tools (Li and Wang 191 

2017; Masica et al. 2017), it provides several new capabilities. Specifically, variant classification 192 

is tightly integrated with the rich resource of somatic mutation data in pediatric cancer, which 193 

can be explored online via the embedded ProteinPaint view. Users can also analyze indels, 194 

MNVs, and complex substitutions, whereas web-based implementations of similar tools may be 195 

limited to SNVs alone (Li and Wang 2017). Another key feature is the cloud-based 196 

implementation of PeCanPIE, which obviates the need for complex software installation and 197 

command-line workflows. This design also allows back end analysis pipelines to be invoked 198 

independently from PeCanPIE, for users who prefer direct or programmatic access over a 199 

graphical interface.  In comparison with web-based systems (Masica et al. 2017) which provide 200 

batch annotation of variants based on machine-learning scores (Carter et al. 2013, 2009), 201 

PeCanPIE provides more granular annotations and individual ACMG-recommended evidence 202 

tags to facilitate interpretation of pathogenicity classifications. Via dbNSFP, PeCanPIE also 203 

provides access to REVEL (Ioannidis et al. 2016) pathogenicity scores, which fared well in a 204 

recent comparison of algorithms for use with ACMG clinical variant interpretation guidelines 205 

(Ghosh et al. 2017). Lastly, PeCanPIE’s workflow offers advantages over CIVIC’s crowdsourced 206 

clinical interpretation of variants (Ta 2017), which relies on completely manual classification and 207 

data entry, i.e., VCF upload, annotation, and prioritization are not provided. 208 

A limitation of the existing method is that damage-prediction algorithm scores are taken from the 209 

dbNSFP database, which only contains data for non-silent SNVs.  While these annotations are 210 

unavailable for indels, because protein class annotations are taken into account by the scoring 211 

algorithm, high-impact events such as truncating variations will still be highly ranked. For variant 212 

population frequency filtering, we are currently using the TCGA-subtracted release of ExAC 213 
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instead of gnomAD (Lek et al. 2016) because the gnomAD database contains TCGA samples; 214 

we plan to migrate to gnomAD once a TCGA-subtracted version becomes publicly available. 215 

In conclusion, the PeCanPIE platform significantly accelerates the variant classification process 216 

by automating many prerequisite steps, helping to prioritize potentially pathogenic variants in 217 

NGS data, and providing a robust platform for investigating variant pathogenicity in disease-218 

related genes. While PeCanPIE was developed and tested with pediatric cancer susceptibility 219 

as a primary focus, we are in the process of expanding its scope to other pediatric and adult 220 

diseases. Users are now able to specify custom gene lists to analyze appropriate to their 221 

diseases of interest, enabling disease-specific variant curation and facilitating gene discovery.  222 

 223 
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Methods 225 

Disease-related gene list 226 

The disease-related gene list comprises both cancer-related and non-cancer genes (Table S1). 227 

The cancer gene list was compiled from public resources and cancer genetic studies including: 228 

1) studies of germline mutations in predisposition genes in cancer patients (Zhang et al. 2015; 229 

Huang et al. 2018; Wang et al. 2018); 2) cancer predisposition genes compiled by Rahman 230 

(Rahman 2014); 3) the Cancer Gene Census (Futreal et al. 2004); and 4) driver genes identified 231 

in pediatric and adult pan-cancer studies (Ma et al. 2018; Gröbner et al. 2018). Publications 232 

were reviewed to confirm the presence of either loss-of-function or gain-of-function mutations in 233 

cancer driver genes, excluding those previously identified as having elevated mutation rates 234 

(e.g. LRP1B (Lawrence et al. 2013)) and those reported only as fusion partners.  Other disease-235 

related genes include non-malignant hematological, immunodeficiency, and amyotrophic lateral 236 

sclerosis (ALS)-related genes (Taylor et al. 2016), and genes from ACMG and Ambry Genetics 237 

incidental finding gene lists (Kalia et al. 2017). Filtering the variants to disease-related genes 238 

helps focus on areas with relevant research interest and reduce the downstream processing 239 

burden, which is especially helpful for WGS data which may contain 4-5 million variants per 240 

sample.  A user may choose to focus on one or more of these pre-defined disease categories 241 

for expert review or provide their own gene lists for custom analysis. 242 

Gene annotation and splice calling enhancement 243 

Gene annotations are performed using the Ensembl Variant Effect Predictor (VEP) pipeline 244 

(McLaren et al. 2016), which provides information on a variant basis for the affected gene and 245 

transcript, functional class (e.g., silent, missense, and nonsense), and effect on protein coding.  246 

We enhanced splice variant annotation by reclassifying silent or missense variants at exon 247 

boundaries, which may impact splicing (e.g., TP53 NM_000546.5:c.375G>A, 248 
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NP_000537.3:p.Thr125Thr (Soudon et al. 1991)). While certainly not all of these variants will 249 

ultimately prove to be splice-related, these adjustments ensure additional scrutiny during expert 250 

review.  A subsequent filtering step retains only variants in coding and splice-related regions.  251 

Silent variants are also kept because, in rare cases, they may cause aberrant splicing and thus 252 

be pathogenic. For example, ClinVar (Landrum et al. 2018) ID 90407 is a “silent” variant in the 253 

colon cancer predisposition gene MLH1 (NM_000249.3:c.882C>T, NP_000240.1:p.Leu294=) 254 

that has been determined by an expert panel to be a pathogenic splice variant (Auclair et al. 255 

2006).  We refer to this enhanced pipeline as VEP+, which may also be run separately on the 256 

St. Jude Cloud platform. 257 

St. Jude Cloud platform 258 

While PeCanPIE was designed as a web portal to maximize ease of use for non-259 

bioinformaticians, two component pipelines are also publicly accessible.  On its back end, St. 260 

Jude Cloud (https://stjude.cloud) uses DNAnexus (https://www.dnanexus.com/), a platform 261 

where user-created software pipelines can be installed and run on cloud computing instances.  262 

A DNAnexus account is required to use PeCanPIE for secure storage and to send notifications 263 

when submitted jobs are complete.  Once a pipeline has been installed on DNAnexus, it is 264 

straightforward for non-expert users to run it, either from a standardized web interface or a 265 

command-line client.  We have created two DNAnexus pipelines that are used by PeCanPIE, 266 

VEP+ for variant annotation (app-stjude_vep_plus) and MedalCeremony for automated 267 

classification (app-stjude_medal_ceremony).  The availability of these component pipelines on 268 

the cloud provides users and institutions straightforward, scalable access to the software, and 269 

our centralized maintenance allows all users to immediately benefit from updates and new 270 

features as they become available.  PeCanPIE is free for non-commercial use.   271 

Nomenclature standardization 272 
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We have observed that various variant databases which form the foundation of 273 

annotations for PeCanPIE vary in the structure and quality of variant specification. For 274 

example, databases may provide only protein-level annotations, only genomic 275 

annotations, or both.  Likewise, there are many variations on the HGVS-like protein 276 

annotation nomenclature in circulation. The PeCanPIE code attempts to be flexible in 277 

parsing, standardizing, and formatting where possible, e.g. protein annotations may use 278 

either 3-character or 1-character protein codes (e.g. “Ser” or “S”), and a number of 279 

variations on stop codon formatting have been observed (“Ter”, “Term”, “*”, “X”, and 280 

“Stop”). In some cases partial information such as codon numbers were extracted from 281 

an otherwise incomplete annotation.  Some databases also provide variations on the 5-282 

tier ACMG pathogenicity calls which PeCanPIE attempts to standardize into 283 

B/LB/VUS/LP/P for easier comparison. We believe these standardizations further 284 

improve the reliability of annotations and utility of information provided by the PeCanPIE 285 

platform. 286 

Example data 287 

The ALL variants in Figure 1b were called from St. Jude sample SJNORM015857_G1.  Variant 288 

calling was performed with Bambino using the “high 20” profile which consists of the following 289 

command-line parameters: “-min-quality 20 -min-flanking-quality 20 -min-alt-allele-count 3 -min-290 

minor-frequency 0 -broad-min-quality 10 -mmf-max-hq-mismatches 4 -mmf-max-hq-291 

mismatches-xt-u 10 -mmf-min-quality 15 -mmf-max-any-mismatches 6 -unique-filter-coverage 2 292 

-no-strand-skew-filter”.  The results were subsequently filtered to variants having a variant allele 293 

frequency of at least 20%, an average mapping quality of 20 for variant reads, at least 5 reads 294 

of coverage for the variant allele, bi-directional confirmation of the variant allele, and at least 20 295 

reads of total coverage.  The results were converted to VCF by an in-house script and uploaded 296 
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to PeCanPIE.  The Genome-in-a-Bottle VCF used for Figure 1c is available from ftp://ftp-297 

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh37/HG001_GRCh37298 

_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-299 

X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz.  This bgzip-compressed VCF file may be 300 

used directly with PeCanPIE. 301 

Software Availability 302 

PeCanPIE is available at https://platform.stjude.cloud/tools/pecan_pie and is one component of 303 

the St. Jude Cloud platform (https://stjude.cloud/).   304 

  305 
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