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Abstract 20	

 21	

The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial 22	

metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent 23	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342006doi: bioRxiv preprint 

https://doi.org/10.1101/342006
http://creativecommons.org/licenses/by-nc/4.0/


	 2	

and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in 24	

this data set have at least one of 15 cobamide-dependent enzyme families, yet only 37% are 25	

predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis varies at 26	

the phylum level, with 57% of Actinobacteria, 45% of Proteobacteria, and 30% of Firmicutes, 27	

and less than 1% of Bacteroidetes containing the complete biosynthetic pathway. Cobamide 28	

structure could be predicted for 58% of cobamide-producing species, based on the presence of 29	

signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 30	

17% of bacteria that have partial biosynthetic pathways, yet have the potential to salvage 31	

cobamide precursors. These include a newly defined, experimentally verified category of 32	

bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the 33	

importance of cobamide and cobamide precursor crossfeeding as examples of nutritional 34	

dependencies in bacteria. 35	

 36	

 37	

-- 38	

 39	

40	
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Introduction 41	

 Microorganisms almost universally reside in complex communities where individual 42	

members interact with each other through physical and chemical networks. A major type of 43	

chemical interaction is nutrient crossfeeding, in which microbes that lack the ability to synthesize 44	

particular required nutrients (termed auxotrophs) obtain these nutrients from other organisms in 45	

their community (Seth and Taga, 2014). By understanding which organisms require nutrients and 46	

which can produce them, we can predict specific metabolic interactions between members of a 47	

microbial community (Abreu and Taga, 2016). With the development of next-generation 48	

sequencing, the genome sequences of tens of thousands of bacteria from diverse environments 49	

are now available, leading to the possibility of predicting community interactions based on the 50	

genomes of individual members. However, the power to predict the metabolism of an organism 51	

by analyzing its genome remains limited.  52	

 The critical roles of cobamides (the vitamin B12 family of enzyme cofactors) in the 53	

metabolism of humans and diverse microbes has long been appreciated. Only recently, however, 54	

has cobamide-dependent metabolism been recognized as a potential mediator of microbial 55	

interactions (Degnan et al., 2014b; Seth and Taga, 2014). Cobamides are used in a variety of 56	

enzymes in prokaryotes, including those involved in central metabolic processes such as carbon 57	

metabolism and the biosynthesis of methionine and deoxynucleotides (Fig. 1). Some of the 58	

functions carried out by cobamide-dependent pathways, such as acetogenesis via the Wood-59	

Ljungdahl pathway in anaerobic environments, can be vital in shaping microbial communities 60	

(Ragsdale and Pierce, 2008). Cobamides are also used for processes that are important for human 61	

use, such as reductive dehalogenation and natural product synthesis (Banerjee and Ragsdale, 62	

2003; Broderick et al., 2014). 63	
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De novo cobamide biosynthesis involves approximately 30 steps (Warren et al., 2002), 64	

and the pathway can be divided into several segments (Fig. 2). The first segment, tetrapyrrole 65	

precursor biosynthesis, contains the first five steps of the pathway, most of which are also 66	

common to the biosynthesis of heme, chlorophyll, and other tetrapyrroles. The next segment, 67	

corrin ring biosynthesis, is divided into oxygen-sensitive (anaerobic) and oxygen-dependent 68	

(aerobic) routes, depending on the organism. These two alternative pathways then converge at a 69	

late intermediate, which is further modified to form the cobamide (Fig. 2, nucleotide loop 70	

assembly). The latter portion of the pathway involves adenosylation of the central cobalt ion 71	

followed by the synthesis and attachment of the aminopropanol linker and lower axial ligand 72	

(Fig. 2). Investigation of cobamide crossfeeding must account for structural diversity in the 73	

lower ligand (Fig. 2B), as only a subset of cobamide cofactors can support growth of any 74	

individual organism (Yan et al., 2012; Mok and Taga, 2013; Degnan et al., 2014a; Helliwell et 75	

al., 2016; Keller et al., 2018). Recent work has identified many of the genetic determinants for 76	

the biosynthesis of the benzimidazole class of lower ligands (Campbell et al., 2006; Taga et al., 77	

2007; Gray and Escalante-Semerena, 2007; Hazra et al., 2015; Mehta et al., 2015) and 78	

attachment of phenolic lower ligands (Chan and Escalante-Semerena, 2011; Newmister et al., 79	

2012) (Fig. 2).  80	

 Previous analyses of bacterial genomes have found that less than half to three fourths of 81	

prokaryotes that require cobamides are predicted to make them (Rodionov et al., 2003; Zhang et 82	

al., 2009), suggesting that cobamide crossfeeding may be widespread in microbial communities. 83	

Analyses of cobamide biosynthesis in the human gut (Degnan et al., 2014a; Magnúsdóttir et al., 84	

2015) and in the phylum Cyanobacteria (Helliwell et al., 2016) further reinforce that cobamide-85	

producing and cobamide-dependent bacteria coexist in nature. These studies provide valuable 86	
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insights into the extent of cobamide use and biosynthesis in bacteria, but are limited in the 87	

diversity and number of organisms studied and have limited prediction of cobamide structure. 88	

 Here, we have analyzed the genomes of over 11,000 bacterial species and generated 89	

predictions of cobamide biosynthesis, dependence, and structure. We predict that 86% of 90	

sequenced bacteria are capable of using cobamides, yet only 37% produce cobamides de novo. 91	

We were able to predict cobamide structure for 58% of cobamide producers. Additionally, our 92	

predictions revealed that 17% of bacteria can salvage cobamide precursors, of which we have 93	

defined a new category of bacteria that require early tetrapyrrole precursors to produce 94	

cobamides.  95	

 96	

 97	

Materials and Methods 98	

Data set download and filtering 99	

The names, unique identifiers, and metadata for 44,802 publicly available bacterial 100	

genomes on the Joint Genome Institute’s Integrated Microbial Genomes with Expert Review 101	

database (JGI/IMGer, https://img.jgi.doe.gov/cgi-bin/mer/main.cgi) (Markowitz et al., 2012) 102	

classified as “finished” (accessed January 11, 2017) or “permanent draft” (accessed February 23, 103	

2017) were downloaded (Supplementary Table 1, Sheet 1). To assess genome completeness, we 104	

searched for 55 single copy gene annotations (Raes et al., 2007; Brown et al., 2015) using the 105	

“function profile: genomes vs functions” tool in each genome (Supplementary Table 1, Sheet 4). 106	

Completeness was measured first based on the unique number of single copy gene annotation 107	

hits (55/55 was best) and second, by the average copy number of the annotations (values closest 108	

to 1 were considered most complete) (Supplementary Table 3). We removed 2,776 genomes with 109	
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fewer than 45 out of 55 unique single copy genes (Supplementary Fig. 1). To filter the remaining 110	

genomes to one genome per species, we used name-based matching to create species categories, 111	

in which each unique binomial name was considered a single species. The genome with the 112	

highest unique single copy gene number and had an average single copy gene number closest to 113	

1 was chosen to represent a species. If both scores were identical the representative genome was 114	

chosen at random. For strains with genus assignments, but without species name assignments, we 115	

considered each genome to be a species. The list of species was manually curated for species 116	

duplicates caused by data entry errors (Supplementary Table 2). 117	

 118	

Detection of cobamide biosynthesis and dependence genes in genomes 119	

Annotations from Enzyme Commission (EC) numbers 120	

(http://www.sbcs.qmul.ac.uk/iubmb/enzyme/), Pfam, TIGRFAM, Clusters of Orthologous 121	

Groups (COG), and IMG Terms (Cornish-Bowden, 2014; Finn et al., 2016; Haft et al., 2012; 122	

Galperin et al., 2015; Markowitz et al., 2012) for cobamide biosynthesis, cobamide-dependent 123	

enzymes, and cobamide-independent alternative functions were chosen. These included 124	

annotations used by Degnan et al. (2014a), but in other cases alternative annotations were chosen 125	

to improve specificity of the identified genes (Supplementary Table 4). For example, EC: 126	

4.2.1.30 for glycerol dehydratase identifies both cobamide-dependent and -independent 127	

isozymes, so pfam annotations specific to the cobamide-dependent version were used instead. 128	

These genes were identified in each genome using the “function profile: genomes vs functions” 129	

tool (Jan-May 2017) (Supplementary Table 1, 2 sheet 2). The gene hits were downloaded as a list 130	

of gene unique identifiers, gene locus ID, function hit, and genome name (data available upon 131	

request). 132	
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 For genes without functional annotations in the IMGer database, we chose sequences that 133	

were genetically or biochemically characterized to use as the query genes in one-way BLASTP 134	

(Altschul et al., 1997) against the filtered genomes using the IMGer “gene profile: genomes vs 135	

genes” tool, accessed Jan-May 2017 (Supplementary Table 4).  136	

 Output files for the cobamide genes were combined into a master file in Microsoft Excel 137	

(Supplementary Table 1, 2 sheet 2). This master file was used as input for custom python 2.7 138	

code that interpreted the presence or absence of genes as predicted phenotypes. We used 139	

Microsoft Excel and python for further analysis. Genomes were scored for the presence or 140	

absence of cobamide-dependent enzymes and alternatives (Supplementary Table 5) based on the 141	

annotations in Supplementary Table 4. We then created criteria for seven cobamide biosynthesis 142	

phenotypes: very likely cobamide producer, likely cobamide producer, possible cobamide 143	

producer, tetrapyrrole precursor salvager, cobinamide (Cbi) salvager, likely non-producer, and 144	

very likely non-producer (Supplementary Table 7) and classified genomes accordingly 145	

(Supplementary Table 5). 146	

 To distinguish putative phenolic lower ligand attachment arsAB homologs from other 147	

cobT homologs that are not known to produce phenolyl cobamides, IMGer entries for all genes 148	

that were annotated as cobT homologs were downloaded. Tandem cobT homologs were defined 149	

as those with sequential IMG gene IDs. This list of tandem cobT genes was then filtered by size 150	

to eliminate genes encoding less than 300 or more than 800 amino acid residues, indicating 151	

annotation errors (cobT is approximately 350 AA residues) (Supplementary Table 9). The 152	

remaining tandem cobT homologs were assigned as putative arsAB homologs. 153	

 To identify the anaerobic benzimidazole biosynthesis genes bzaABCDEF, four new 154	

hidden Markov model profiles (HMMs) were created and two preexisting ones (TIGR04386 and 155	
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TIGR04385) were refined. Generally, the process for generating the new HMMs involved 156	

performing a Position-Specific Iterated (PSI) BLAST search using previously classified 157	

instances of the Bza proteins aligned in Jalview (Altschul et al., 1997; Waterhouse et al., 2009). 158	

Due to their similarity, BzaA, BzaB, and BzaF were examined together, as were BzaD and BzaE. 159	

To help classify these sequences, Training Set Builder (TSB) was used (Haft and Haft, 2017). 160	

All six HMMs have not been assigned TIGRFAM accessions at the time of publication, but will 161	

be included in the next TIGRFAM release, and are included as Supplementary Files. Details for 162	

each protein are listed in the Supplementary Materials and Methods. 163	

 These protein sequences for 10591 of the filtered genomes were queried for each bza 164	

HMM using hmm3search (HMMER3.1). Hits are only reported above the trusted cutoff defined 165	

for each HMM (Supplementary Table 8). A hit for bzaA and bzaB or bzaF indicated that the 166	

genome had the potential to produce benzimidazole lower ligands. The specific lower ligand was 167	

predicted based on the bza genes present (Hazra et al., 2015). 168	

 We used BLASTP on IMGer to search for tetrapyrrole precursor biosynthesis genes that 169	

appeared to be absent in the 201 species identified as tetrapyrrole precursor salvagers. Query 170	

sequences used were the following: Rhodobacter sphaeroides HemA (GenPept C49845); 171	

Clostridium saccharobutylicum DSM 13864 HemA, HemL, HemB, HemC, and HemD 172	

(GenBank: AGX44136.1, AGX44131.1, AGX44132.1, AGX44134.1, AGX4133.4, 173	

respectively). Since the C. saccharobutylicum HemD is a fusion protein with both the UroIII 174	

synthase and UroIII methyltransferases domains, we additionally searched for the Bacillus 175	

subtilis HemD, which only has the UroIII synthase activity (UniProtKB P21248.2). We visually 176	

inspected the ORFs near any BLASTP hits in the IMGer genome browser. 180 species remained 177	
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after this analysis (Supplementary Table 10). Genomes were classified as a particular type of 178	

tetrapyrrole precursor salvager only if they were missing all genes upstream of a precursor.  179	

 180	

Strains and growth conditions 181	

Clostridium scindens ATCC 35704, Clostridium sporogenes ATCC 15579, and 182	

Treponema primitia ZAS-2 (gift from Jared Leadbetter) were grown anaerobically with and 183	

without added 5-aminolevulinic acid (1 mM for C. sporogenes and T. primitia, 0.5 mM for C. 184	

scindens). 185	

Desulfotomaculum reducens MI-1 (gift from Rizlan Bernier-Latmani), Listeria 186	

monocytogenes (gift from Daniel Portnoy), Blautia hydrogenotrophica DSM 10507, Clostridium 187	

kluyveri DSM 555 (gift from Rolf Thauer), and Clostridium phytofermentans ISDg (gift from 188	

Susan Leschine) were grown anaerobically. Details of the growth conditions are listed in the 189	

Supplementary Materials and Methods. 190	

 191	

Corrinoid extraction and analysis 192	

Corrinoid extractions were performed as described (Yi et al., 2012). For corrinoids 193	

extracted from 1 L cultures of C. sporogenes, C. scindens, and T. primitia, high performance 194	

liquid chromatrography (HPLC) analysis was performed with an Agilent Series 1200 system 195	

(Agilent Technologies, Santa Clara, CA) equipped with a diode array detector with detection 196	

wavelengths set at 362 and 525 nm. 50 to 100 µl samples were injected onto an Agilent Eclipse 197	

XDB C18 column (5 µm, 4.6 x 150 mm) at 35 °C, with 0.5 ml min-1 flow rate. Samples were 198	

separated using acidified water and methanol (0.1% formic acid) with a linear gradient of 18% to 199	

30% methanol over 20 min.  200	
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 For all other bacteria excluding B. hydrogenotrophica, extracted corrinoids were 201	

analyzed as above, except with a 1.5 ml/min flow rate and a 40°C column. Corrinoids were 202	

eluted with the following method: 2% acidified methanol for 2 min, 2%-10% acidified methanol 203	

in 0.1 min, and 10-40% acidified methanol over 9 min. 204	

For B. hydrogenotrophica, corrinoids were analyzed as above with the following 205	

changes. 10 µl samples were injected onto an Agilent Zorbax SB-Aq column (5 µm, 4.6 x 150) 206	

with 1 ml/min flow rate at 30ºC. The samples were separated with a gradient of 25-34% acidified 207	

methanol over 11 minutes, followed by 34-50% over 2 min and 50-75% over 9 minutes.  208	

 209	

Results 210	

Most bacteria are predicted to have at least one cobamide-dependent enzyme 211	

We surveyed publicly available bacterial genomes for 51 functions involved in cobamide 212	

biosynthesis, modification and salvage, as well as 15 cobamide-dependent enzyme families and 213	

five cobamide-independent alternative enzymes and pathways. Because most of these genes have 214	

been characterized and annotated, we used annotations from existing databases including 215	

Enzyme Commission (EC) numbers, Pfam, TIGRFAM, Clusters of Orthologous Groups (COG), 216	

and IMG Terms to identify most of these functions and used homology-based methods to 217	

identify those for which annotations were unavailable. After filtering 44,802 publicly available 218	

bacterial genomes to one genome per species and removing incomplete genomes, we had a 219	

working data set of 11,436 species (for details, see Materials and Methods). 220	

Our results indicate that the capability to use cobamides is widespread in bacteria. 86% of 221	

species in the filtered data set have at least one of the 15 cobamide-dependent enzyme families 222	

shown in Fig. 1 and Supplementary Table 4, and 88% of these species have more than one 223	
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family (Fig. 3A). This is consistent with previous analyses of smaller data sets (Rodionov et al., 224	

2003; Zhang et al., 2009; Degnan et al., 2014a). The four major phyla in the data set have 225	

different distributions of the number of cobamide-dependent enzyme families per genome, with 226	

the Proteobacteria and Bacteroidetes having higher mean numbers of enzyme families than the 227	

Firmicutes and Actinobacteria (Fig. 3A). The most abundant cobamide-dependent enzymes are 228	

involved in core metabolic processes such as methionine synthesis and nucleotide metabolism, 229	

whereas processes such as reductive dehalogenation and mercury methylation are less abundant 230	

(Fig. 3B, Supplementary Table 5). We also observe phylum-level differences in the relative 231	

abundance of cobamide-dependent enzyme families (Fig. 3B), most notably the nearly complete 232	

absence of epoxyqueuosine reductase in Actinobacteria. Nonetheless, the cobamide-dependent 233	

methionine synthase (MetH) and, to a lesser extent, methylmalonyl-CoA mutase (MCM) and the 234	

cobamide-dependent ribonucleotide reductase (RNR), are the most abundant cobamide-235	

dependent enzyme families in all of the four phyla (Fig. 3B). 236	

For some cobamide-dependent processes, cobamide-independent alternative enzymes or 237	

pathways also exist (Fig. 1, right side of arrows). For example, we find that the occurrence of 238	

MetH is more common than the cobamide-independent methionine synthase, MetE, but that most 239	

bacteria have both enzymes (Fig. 3C). In contrast, cobamide-independent RNRs are found more 240	

commonly than the cobamide-dependent versions, and 30% of genomes have both cobamide-241	

dependent and -independent RNRs (Fig. 3C). The cobamide-dependent propionate (which uses 242	

MCM), ethanolamine, and glycerol/propanediol metabolisms appear more abundant than the 243	

cobamide-independent alternatives (Fig. 3C). However, the abundance of the cobamide-244	

dependent propionate function is overestimated because the MCM category includes mutases for 245	

which cobamide-independent versions have not been found. The abundance of the latter two 246	
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cobamide-independent functions may be underestimated, as they were identified based on 247	

similarity to a limited number of sequences. We did not observe dramatic phylum-level 248	

differences in the relative abundances of cobamide-dependent and –independent processes 249	

(Supplementary Figure 2). 250	

 251	

37% of bacterial species are predicted to produce cobamides de novo 252	

We analyzed the filtered data set to make informed predictions of cobamide biosynthesis 253	

to determine the extent of cobamide biosynthesis in bacteria and to identify marker genes 254	

predictive of cobamide biosynthesis. A search for genomes containing the complete pathways for 255	

anaerobic or aerobic cobamide biosynthesis, as defined in the model bacteria Salmonella 256	

enterica serovar Typhimurium and Pseudomonas denitrificans, respectively (Warren et al., 257	

2002), revealed that few genomes contain all annotations for the complete pathway, but many 258	

contain nearly all. Some bacteria that appear to have an incomplete pathway might nonetheless 259	

be capable of cobamide biosynthesis because of poor annotation, non-homologous replacement 260	

of certain genes (McGoldrick et al., 2005; Gray and Escalante-Semerena, 2010), or functional 261	

overlap of some of the enzymes. We therefore relied on experimental data on cobamide 262	

biosynthesis in diverse bacteria to inform our predictions, using 63 bacteria that are known to 263	

produce cobamides (Table 1, Supplementary Table 6), including 5 tested in this study (Table 1, 264	

bold names, Supplementary Figure 3). We identified a core set of eight functions shared by all or 265	

all except one of the genomes of cobamide-producing bacteria (Table 1, gray highlight). These 266	

core functions include three required for corrin ring biosynthesis: cbiL, cbiF and cbiC in the 267	

anaerobic pathway, which are orthologous to cobI, cobM and cobH, respectively, in the aerobic 268	
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pathway (Table 1, Fig. 2A). An additional five nucleotide loop assembly functions were also 269	

highly abundant in these genomes (Table 1).  270	

Our analysis additionally showed that the anaerobic and aerobic corrin ring biosynthesis 271	

pathways cannot be distinguished based on their annotated gene content, presumably because 272	

portions of the two pathways share orthologous genes (Table 1; Fig. 2A, dashed lines). Even the 273	

cobalt chelatases, cobNST and cbiX/cbiK, are not exclusive to genomes with the aerobic or 274	

anaerobic pathways, respectively (Table 1). Cobalt chelatase annotations are also found in some 275	

bacteria that lack most of the corrin ring and nucleotide loop assembly genes, suggesting that 276	

there is overlap in annotations with other metal chelatases (Schubert et al., 1999). 277	

We next sought to predict cobamide biosynthesis capability across bacteria by analyzing 278	

the filtered genome data set by defining different levels of confidence for predicting cobamide 279	

biosynthesis (Supplementary Table 7). Annotations that are absent from the majority of genomes 280	

of experimentally verified cobamide producers (cobR, pduX, and cobD) (Table 1, Fig. 2A), as 281	

well as one whose role in cobamide biosynthesis has not been determined (cobW) (Haas et al., 282	

2009) were excluded from these threshold-based definitions. We did not exclusively use the 283	

small set of core functions identified in Table 1 because a correlation between the absence of 284	

these genes and lack of cobamide biosynthesis ability has not been established. Using these 285	

threshold-based definitions, we predict that 37% of bacteria in the data set have the potential to 286	

produce cobamides (Fig. 4, black bars). 49% of species in the data set have at least one 287	

cobamide-dependent enzyme but lack a complete cobamide biosynthetic pathway. Genomes in 288	

the latter category can be further divided into non-producers, which contain fewer than five 289	

corrin ring biosynthesis genes, and precursor salvagers, which contain distinct portions of the 290	

pathway (described in a later section). The distribution of cobamide-dependent enzyme families 291	
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also varies based on predicted cobamide biosynthesis, with predicted cobamide producers having 292	

more cobamide-dependent enzyme families per genome than non-producers (Supplementary 293	

Figure 4). 294	

To assess whether the core functions could be used as markers, the threshold-based 295	

assignments of cobamide biosynthesis were compared to the frequency of the three core corrin 296	

ring functions. The presence of each core function alone is largely consistent with the threshold-297	

based assignments, as each is present in 99% of genomes in the producer categories and in less 298	

than 1% of the non-producers (Table 2). The presence of two or all three marker functions 299	

matches the threshold-based predictions even more closely (Table 2). The corrin ring markers 300	

chosen in Table 1 are slightly more predictive of our threshold-based cobamide biosynthesis 301	

classifications than cbiA/cobB (EC:6.3.5.11/EC:6.3.5.9), a previously selected marker used in 302	

environmental DNA analysis (Bertrand et al., 2011); although cbiA/cobB was found in 99% of 303	

predicted cobamide producers, is it also present in 2.6% of predicted non-producers and 46% of 304	

precursor salvagers (Supplementary Table 5). 305	

As with the cobamide-dependent enzyme families, the four major phyla in the data set 306	

have major differences in their predicted cobamide biosynthesis phenotypes (Fig. 4). Around half 307	

of Actinobacteria (57%) and Proteobacteria (45%) and 30% of Firmicutes are predicted to be 308	

cobamide producers. In contrast, only 0.6% of Bacteroidetes are predicted to produce cobamides 309	

de novo, yet 96% have at least one cobamide-dependent enzyme, suggesting that most members 310	

of this phylum must acquire cobamides from other organisms in their environment. In addition, 311	

Bacteroidetes have the highest relative proportion of species predicted to salvage Cbi via a 312	

partial cobamide biosynthesis pathway, and most of the tetrapyrrole precursor salvagers are 313	

Firmicutes (see later section; Supplementary Table 10), whereas very few Actinobacterial 314	
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species are predicted to salvage precursors (Fig. 4). These divisions reveal potential cobamide 315	

and cobamide precursor crossfeeding requirements across phyla. 316	

 317	

Predicting cobamide structure 318	

Lower ligand structure is determined by the intracellular production of lower ligand bases 319	

as well as specific features of the lower ligand attachment genes cobT or arsAB (Campbell et al., 320	

2006; Taga et al., 2007; Gray and Escalante-Semerena, 2007; Hazra et al., 2013; Crofts et al., 321	

2014a; Hazra et al., 2015; Yan et al., 2018; Chan and Escalante-Semerena, 2011). We first 322	

defined predictions for the biosynthesis of cobamides containing benzimidazole lower ligands 323	

(benzimidazolyl cobamides), based on the presence of genes for the biosynthesis of 324	

benzimidazoles. We used the presence of bluB, the aerobic synthase for the lower ligand of 325	

cobalamin, 5,6-dimethylbenzimidazole (DMB), as a marker for cobalamin production (Campbell 326	

et al., 2006; Taga et al., 2007; Hazra et al., 2018) and found it in 25% of genomes in the data set, 327	

including those without complete cobamide biosynthesis pathways. bluB is most abundant in 328	

predicted cobamide-producing bacteria (Fig. 5A), particularly in Proteobacteria (Fig. 5B). 329	

Anaerobic biosynthesis of DMB and three other benzimidazoles requires different 330	

combinations of the bza genes as shown in Figures 2A and 5C (Hazra et al., 2015; Mehta et al., 331	

2015). Because annotations for the majority of the bza genes were not available, we developed 332	

profile HMMs to search for them (see Supplementary Materials and Methods, Supplementary 333	

Files). 96 genomes contain one or more bza genes, and 88 of these contain either bzaF or both 334	

bzaA and bzaB, the first step necessary for the anaerobic biosynthesis of all four benzimidazoles 335	

(Fig. 5C, Supplementary Table 8). As seen with bluB, anaerobic benzimidazole biosynthesis 336	

genes are highly enriched in cobamide producers (Fig. 5A). Examining the set of bza genes in 337	
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each genome allowed us to predict the structures of cobamides produced in 86 out of the 96 338	

genomes (Fig. 5C). Based on the frequency of bluB and the bza genes, 24% of bacteria are 339	

predicted to produce cobalamin, the cobamide required by humans. 340	

To predict the biosynthesis of phenolyl cobamides, we searched for genomes containing 341	

two adjacent cobT annotations, since the cobT homologs arsA and arsB, which together are 342	

necessary for activation of phenolic compounds for incorporation into a cobamide, are encoded 343	

in tandem (Chan and Escalante-Semerena, 2011). Using this definition, arsAB was found in only 344	

27 species, and is almost entirely restricted to the class Negativicutes in the phylum Firmicutes, 345	

which are the only bacteria reported to produce phenolyl cobamides (Stupperich and Eisinger, 346	

1989; Men et al., 2014b) (Fig. 5A, B, Supplementary Table 9).  347	

42% of predicted cobamide producers in the data set do not have any of the 348	

benzimidazole biosynthesis or phenolic attachment genes (Fig. 5A). However, bacteria that have 349	

the α-ribazole kinase CblS (Fig. 5A, B, inner rings) and the transporter CblT (not included) are 350	

predicted to use activated forms of lower ligand bases found in the environment (Fig. 2A, α-351	

ribazole salvaging); we found CblS in 363 species (3.2%), mostly in the Firmicutes phylum (Fig. 352	

5 A, B, inner rings) (Gray and Escalante-Semerena, 2010; Mattes and Escalante-Semerena, 353	

2017). A higher proportion of bacteria, 1,041 species (9.1%), have a CbiZ annotation (Fig. 5A, 354	

B, outer rings), an amidohydrolase that cleaves the nucleotide loop, allowing cells to rebuild a 355	

cobamide with a different lower ligand (Woodson and Escalante-Semerena, 2004) (Fig. 2A, 356	

corrinoid remodeling). CbiZ is found in genomes of predicted cobamide producers and Cbi 357	

auxotrophs (see following section) (Fig. 5A), as expected based on experimental studies (Gray 358	

and Escalante-Semerena, 2009a, 2009b; Men et al., 2014a; Yi et al., 2012). The reliance of some 359	
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bacteria on exogenous lower ligands or α-ribazoles produced by other organisms precludes 360	

prediction of cobamide structure in all cases.  361	

 362	

17% of bacteria have partial cobamide biosynthetic pathways 363	

Our analysis of the cobamide biosynthesis pathway revealed two categories of genomes 364	

that lack some or most genes in the pathway, but retain contiguous portions of the pathway. 365	

Genomes in one category, the Cbi (cobinamide) auxotrophs (15% of genomes), contain the 366	

nucleotide loop assembly steps but lack all or most of the corrin ring biosynthesis functions. As 367	

demonstrated in Escherichia coli (Di Girolamo and Bradbeer, 1976), Thermotoga lettingae 368	

(Butzin et al., 2013), and Dehalococcoides mccartyi (Yi et al., 2012), and predicted in human 369	

gut microbes (Degnan et al., 2014a), Cbi auxotrophs can take up the late intermediate Cbi, 370	

assemble the nucleotide loop and attach a lower ligand in a process called Cbi salvaging.  371	

We observed an additional 201 genomes (1.7%) that lack one or more initial steps in 372	

tetrapyrrole precursor biosynthesis but have complete corrin ring biosynthesis and nucleotide 373	

loop assembly pathways, primarily in the Firmicutes (Supplementary Table 7). After searching 374	

these genomes manually for genes missing from the pathway, we designated 180 of these species 375	

as tetrapyrrole precursor salvagers, a new classification of cobamide intermediate auxotrophs 376	

(Fig. 6A, Supplementary Table 10). These organisms are predicted to produce cobamides only 377	

when provided with a tetrapyrrole precursor or a later intermediate in the pathway. 378	

  379	

Experimental validation of ALA dependence 380	

 The identification of putative tetrapyrrole precursor salvagers suggests either that these 381	

bacteria are capable of taking up a tetrapyrrole precursor from the environment to produce a 382	
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cobamide or that they synthesize the precursors through a novel pathway. We therefore tested 383	

three putative tetrapyrrole precursor salvagers for their ability to produce corrinoids (cobamides 384	

and other corrin ring-containing compounds) in the presence and absence of a tetrapyrrole 385	

precursor. Clostridium scindens and Clostridium sporogenes, which are predicted to require 5-386	

aminolevulinic acid (ALA), produced corrinoids in defined media only when ALA was supplied, 387	

suggesting that they do not have a novel ALA biosynthesis pathway (Fig. 6B). We tested an 388	

additional predicted ALA salvager, the termite gut bacterium Treponema primitia ZAS-2, for 389	

which a defined medium has not been developed. When cultured in medium containing yeast 390	

autolysate, T. primitia produced trace amounts of corrinoids, and corrinoid production was 391	

increased by supplementing this medium with ALA (Fig. 6B). The ability of T. primitia to use 392	

externally supplied ALA was further shown by its increased growth rate and cell density at 393	

stationary phase when either cobalamin or ALA was added (Fig. 6C). Together, these results 394	

support the hypothesis that predicted ALA salvagers synthesize cobamides by taking up ALA 395	

from the environment. 396	

 397	

Discussion 398	

Vitamin B12 and other cobamides have long been appreciated as a required nutrient for 399	

humans, bacteria, and other organisms due to their critical function as enzyme cofactors. Prior to 400	

this work, the extent of cobamide biosynthesis and dependence across different bacterial taxa had 401	

not been investigated. The availability of tens of thousands of genome sequences afforded us the 402	

opportunity to conduct a comprehensive analysis of cobamide metabolism across over 11,000 403	

bacterial genomes. This analysis gives an overview of cobamide dependence and cobamide 404	

biosynthesis across bacteria, allowing for the generation of hypotheses for cobamide and 405	
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cobamide precursor crossfeeding in bacterial communities. Our work shows that cobamide use is 406	

much more widespread than cobamide biosynthesis, consistent with the majority of previous 407	

studies of smaller data sets (Rodionov et al., 2003; Zhang et al., 2009; Degnan et al., 2014a). 408	

The prevalence of cobamide-dependent enzymes in bacteria, coupled with the relative paucity of 409	

de novo cobamide producers, underscores the ubiquity of both cobamide-dependent metabolism 410	

and cobamide crossfeeding in microbial communities. Here, we additionally find that cobamide 411	

production and use are unevenly distributed across the major phyla represented in the data set, 412	

identify bacteria dependent on cobamide precursors, and predict cobamide structure. These 413	

results underscore the widespread nutritional dependence of bacteria. 414	

The most abundant types of cobamide-dependent enzymes in our data set are methionine 415	

synthase, epoxyqueuosine reductase, RNR, and MCM. For all of these enzymes, cobamide-416	

independent alternative enzymes or pathways exist. (Note that the newly discovered alternative 417	

to epoxyqueuosine reductase, QueH (Zallot et al., 2017), was not included in our analysis.) The 418	

prevalence of cobamide-dependent enzymes for which cobamide-independent counterparts exist, 419	

particularly in the same genome, suggests that cobamide-dependent enzymes confer distinct 420	

advantages. This view is supported by the observations that MetE is sensitive to stress and has a 421	

100-fold lower turnover number than MetH (Hondorp and Matthews, 2004; Xie et al., 2013; 422	

Gonzalez et al., 1992) and that cobamide-independent RNRs are limited in the oxygen 423	

concentrations in which they are active (Taga and Walker, 2010; Fontecave, 1998) 424	

In our analysis of cobamide biosynthesis, it was not possible to use a single definition of 425	

the complete de novo cobamide biosynthesis pathway across all bacterial genomes because of 426	

divergence in sequence and function. The use of experimental data gives confidence to our 427	

predictions and allowed identification of marker genes for cobamide biosynthesis. Nevertheless, 428	
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our predictions likely overestimate the extent of cobamide biosynthesis in situ, as genome 429	

predictions do not account for differences in gene expression. For example, cobamide production 430	

in S. typhimurium is repressed in environments containing oxygen or lacking propanediol (Roth 431	

et al., 1996), and cobamide biosynthesis operons are commonly subjected to negative regulation 432	

by riboswitches (Nahvi, 2004; Rodionov et al., 2003). The abundance of cobamide importers 433	

(Rodionov et al., 2003; Zhang et al., 2009; Degnan et al., 2014a), even in bacteria capable of 434	

cobamide biosynthesis, reinforces the possibility that many bacteria may repress expression of 435	

cobamide biosynthesis genes in favor of cobamide uptake in some environments.  436	

 A comparison of genomes containing one or more cobamide-dependent functions to 437	

those with none revealed an absence of bacteria that produce cobamides but do not use them. 438	

This finding suggests that altruistic bacteria that produce cobamides exclusively for others do not 439	

exist. Metabolically coupled organisms that crossfeed cobalamin in exchange for another nutrient 440	

have been described in the mutualistic relationships between algae and cobalamin-producing 441	

bacteria (Croft et al., 2005; Kazamia et al., 2012), yet it remains unclear if such intimate 442	

partnerships are widespread. Notably, our results show that cobamide biosynthesis is unevenly 443	

distributed across bacteria, with Actinobacteria enriched in and Bacteroidetes lacking in de novo 444	

cobamide biosynthesis. Such phylogenetic comparisons can be used to make crude predictions of 445	

cobamide crossfeeding relationships among different taxa. 446	

The reliance of many bacteria on cobamide crossfeeding, coupled with the fact that 447	

structurally different cobamides are not functionally equivalent in bacteria (Yan et al., 2012; 448	

Mok and Taga, 2013; Degnan et al., 2014a; Helliwell et al., 2016; Keller et al., 2018), 449	

underscores the importance of cobamide structure in microbial interactions. The structural 450	

differences in cobamides are almost exclusively limited to variations in the lower ligand (Fig. 451	
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2B). Additional variation in the nucleotide loop was not considered here because of the absence 452	

of genes specific to norcobamide biosynthesis (Kräutler et al., 2003; Keller et al., 2016). We 453	

were able to predict lower ligand structure for 58% of predicted cobamide producers. The 454	

remaining bacteria may produce purinyl cobamides, which are abundant in some bacterial taxa 455	

and microbial communities (Helliwell et al., 2016; Allen and Stabler, 2008). Further analysis of 456	

substrate specificity in CobT and other lower ligand attachment enzymes could lead to improved 457	

strategies for predicting purinyl cobamide production, as some CobT homologs appear to 458	

segregate into different clades based on lower ligand structure (Hazra et al., 2013; Crofts et al., 459	

2013; Yan et al., 2018). The presence of free benzimidazoles and α-ribazoles in microbial 460	

communities (Crofts et al., 2014b; Johnson et al., 2016; Wienhausen et al., 2017) and the ability 461	

of bacteria to take up and incorporate these compounds into cobamides (Anderson et al., 2008; 462	

Mok and Taga, 2013; Keller et al., 2013; Crofts et al., 2013) suggest that it will not be possible 463	

to predict the structures of cobamides produced by all bacteria in situ solely from genomic 464	

analysis. 465	

We predict that 32% of cobamide-dependent bacteria are unable to synthesize cobamides, 466	

attach a preferred lower ligand to Cbi, or remodel corrinoids. This group of bacteria must take up 467	

cobamides from their environment for use in their cobamide-dependent metabolisms. Given the 468	

variable use of structurally different cobamides by different bacteria, the availability of specific 469	

cobamides is likely critical to bacteria that are unable to synthesize cobamides or alter their 470	

structure. The availability of preferred cobamides may limit the range of environments that these 471	

organisms can inhabit. Variation in the abundance of different cobamides has been observed in 472	

different environments. For example, in a TCE-contaminated groundwater enrichment culture, 5-473	

hydroxybenzimidazolyl cobamide and p-cresolyl cobamide were the most abundant cobamides 474	
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(Men et al., 2014b), compared to cobalamin in bovine rumen (Girard et al., 2009) and 2-475	

methyladeninyl cobamide in human stool (Allen and Stabler, 2008). One strategy for acquiring 476	

preferred cobamides could be selective cobamide import, as suggested by the ability of two 477	

cobamide transporters in Bacteroides thetaiotaomicron to distinguish between different 478	

cobamides (Degnan et al., 2014a).  479	

Dependence on biosynthetic precursors has been observed or predicted for amino acids, 480	

nucleotides, and the cofactors thiamin and folate (Sloan and Moran, 2012; Kilstrup et al., 2005; 481	

Paerl et al., 2016; de Crécy-Lagard et al., 2007). Here, we describe genomic evidence for 482	

dependence on cobamide precursors, namely Cbi or tetrapyrrole precursors. The prevalence of 483	

Cbi-salvaging bacteria suggests that it is common for bacteria to fulfill their cobamide 484	

requirements by importing Cbi from the environment and assembling the nucleotide loop 485	

intracellularly. Consistent with this, Cbi represented up to 9% of total corrinoids in TCE-486	

contaminated groundwater enrichments (Men et al., 2014b), and represented up to 12.8% of the 487	

total corrinoids detected in human stool samples (Allen and Stabler, 2008).  488	

Our analysis defined five types of tetrapyrrole precursor salvagers and experimentally 489	

verified the ALA salvager phenotype in three species. Bacteria that lack tetrapyrrole precursor 490	

biosynthesis genes but contain the remainder of the cobamide biosynthetic pathway were 491	

overlooked in previous genomic studies of cobamide biosynthesis that considered only the corrin 492	

ring biosynthesis and nucleotide loop assembly the portions of the pathway (Rodionov et al., 493	

2003; Zhang et al., 2009; Magnúsdóttir et al., 2015; Helliwell et al., 2016). Tetrapyrrole 494	

precursors have been detected in biological samples, suggesting that they are available for uptake 495	

in some environments. For example, UroIII was detected in human stool (Dobriner, 1937; 496	

Watson et al., 1945) and ALA has been found in swine manure extract (Kanto et al., 2013). 497	
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Although we confirmed experimentally the ALA dependence phenotype, we were unable to 498	

detect ALA in several biological samples using a standard chemical assay or bioassay, 499	

suggesting either that ALA is not freely available in these environments or is present at 500	

concentrations lower than the 100 nM detection limit of these assays (data not shown). Based on 501	

the ecosystem assignment information available for 48% of the genomes, 78% of tetrapyrrole 502	

precursor salvagers are categorized as host-associated bacteria compared to 41% in the complete 503	

filtered dataset. One interpretation of this finding is that tetrapyrrole precursors are provided by 504	

the host, either from host cells that produce them as intermediates in heme biosynthesis 505	

(Sangwan and O’Brian, 1991; Lyell et al., 2017) or, for gut-associated microbes, as part of the 506	

host’s diet. Alternatively, these precursors may be provided by other microbes, as was observed 507	

in a coculture of Fibrobacter species (Qi et al., 2008). Genome analysis suggests that Candidatus 508	

Hodgkina cicadicola, a predicted Uroporphyrinogen III (UroIII) salvager (McCutcheon et al., 509	

2009), may acquire a tetrapyrrole precursor from its insect host or other endosymbionts to be 510	

able to provide methionine for itself and its host via the cobamide-dependent methionine 511	

synthase. 17% of cobamide-requiring human gut bacteria lacked genes to make UroIII de novo 512	

from glutamate, suggesting they could be UroIII salvagers (Degnan et al., 2014a).  513	

Nutritional dependence is nearly universal in bacteria. Auxotrophy for B vitamins, amino 514	

acids, and nucleic acids is so common that these nutrients are standard components of bacterial 515	

growth media. We speculate that the availability of cobamides in the environment, coupled with 516	

the relative metabolic cost of cobamide biosynthesis, has driven selection for loss of the 517	

cobamide biosynthesis pathway (Morris et al., 2012). The large number of genomes with partial 518	

cobamide biosynthesis pathways, namely in the “possible cobamide biosynthesis”, “likely non-519	

producer”, and “Cbi salvager” classifications, suggests that some of these genomes are in the 520	
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process of losing the cobamide biosynthesis pathway. At the same time, evidence for horizontal 521	

acquisition of the cobamide biosynthesis pathway suggests an adaptive advantage for nutritional 522	

independence for some bacteria (Morita et al., 2008; Lawrence and Roth, 1996). Such 523	

advantages could include early colonization of an environmental niche, ability to synthesize 524	

cobamides with lower ligands that are not commonly available, or association with hosts that do 525	

not produce cobamides. The analysis of the genomic potential of bacteria for cobamide use and 526	

production presented here could provide a foundation for future studies of the evolution and 527	

ecology of cobamide interdependence. 528	
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Figure Legends 778	

Figure 1: Functions carried out by cobamide-dependent processes. Reactions carried out by 779	

cobamide-dependent enzymes are shown on the left side of the arrows and cobamide-780	

independent alternative processes, if known, on the right. Annotations or query genes used for 781	

searching for each function are listed in Supplementary Table 4. 782	

 783	

Figure 2: Cobamide biosynthesis and structure. A. The cobamide biosynthesis pathway is 784	

shown with each enzymatic step indicated by a white box labeled with the gene names and 785	

functional annotation. Subsections of the pathway and salvaging and remodeling pathways are 786	

bracketed or boxed with labels in bold. Orthologous enzymes that carry out similar reactions in 787	

aerobic and anaerobic corrin ring biosynthesis are indicated by dashed lines. B. Structure of 788	

cobalamin. The upper ligand R can be an adenosyl or methyl group. Classes of possible lower 789	

ligand structures are also shown. Benzimidazoles: R1=H, OH, CH3, OCH3; R2=H, OH, CH3, 790	

OCH3. Purines: R1=H, CH3, NH2; R2=H, NH2, OH, O. Phenolics: R=H, CH3. 791	

 792	

Figure 3: Cobamide dependence in bacteria. A. Histogram of the number of cobamide-793	

dependent enzyme families (shown in Fig. 1, Supplementary table 4) per genome in the complete 794	

filtered data set and the four most abundant phyla in the data set. The numbers are given for bars 795	

with values less than 1%. The inset lists the mean, standard deviation, median, and mode of 796	

cobamide-dependent enzyme families for each phylum. B. Rank abundance of cobamide-797	

dependent enzyme families in the filtered data set and the four most abundant phyla. The inset 798	

shows an expanded view of the nine less abundant functions. C. Abundance of five cobamide-799	

dependent processes and cobamide-independent alternatives in the complete filtered data set. 800	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342006doi: bioRxiv preprint 

https://doi.org/10.1101/342006
http://creativecommons.org/licenses/by-nc/4.0/


	 37	

Genomes with only the cobamide-dependent, only the cobamide-independent, or both pathways 801	

are shown for each process.  802	

 803	

Figure 4: Predicted cobamide biosynthesis phenotypes in the complete filtered data set and 804	

the four most abundant phyla in the data set. Genomes were classified into predicted 805	

corrinoid biosynthesis phenotypes based on the criteria listed in Supplementary Table 7. The 806	

“Partial biosynthesis” category includes cobinamide salvagers and tetrapyrrole precursor 807	

auxotrophs. The “Uses cobamides” category is defined as having one or more of the cobamide-808	

dependent enzyme families shown in Figure 1. The numbers are given for bars that are not 809	

visible. 810	

 811	

Figure 5: Lower ligand structure predictions. A, B. Proportion of genomes containing the 812	

indicated lower ligand structure determinants (inner circle), α-ribazole salvaging gene (inner 813	

ring), and corrinoid remodeling gene (outer ring) in the complete filtered data set separated by 814	

cobamide producer category (A) and in cobamide producers separated by phylum (B). C. The 815	

anaerobic benzimidazole biosynthesis pathway is shown with the functions that catalyze each 816	

step above the arrows. The genes required to produce each benzimidazole are shown below each 817	

structure, with the number of genomes in the complete filtered data set containing each 818	

combination of genes in parentheses. Abbreviations: AIR, aminoimidazole ribotide; 5-OHBza, 5-819	

hydroxybenzimidazole; 5-OMeBza, 5-methoxybenzimidazole; 5-OMe-6-MeBza, 5-methoxy-6-820	

methylbenzimidazole.  821	

 822	
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Figure 6: Characterization of putative tetrapyrrole precursor salvagers A. Early steps in 823	

cobamide biosynthesis. The functions that catalyze each step are indicated to the right of each 824	

arrow. The number of genomes in the complete filtered data set in each tetrapyrrole precursor 825	

salvage category is on the left. Two genomes had cobamide biosynthesis pathways inconsistent 826	

with simple auxotrophy. Specific genomes are listed in Supplementary Table 10. B. HPLC 827	

analysis of corrinoid extracts from Clostridium scindens, Clostridium sporogenes, and 828	

Treponema primitia grown with and without added ALA. A cyanocobalamin standard (10 µM) 829	

is shown for comparison. Asterisks denote peaks with UV-Vis spectra consistent with that of a 830	

corrinoid. C. T. primitia ZAS-2 growth in 4YACo medium with and without added 831	

cyanocobalamin or ALA. 832	

 833	

Tables 834	

Table 1. Experimentally-verified cobamide producers and their cobamide biosynthesis 835	

annotation content. 836	
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 837	

*Methylophilus methylotrophus was also reported to be an aerobic corrinoid producer, but its 838	

genome only has 1 corrin ring biosynthesis annotation (CobH). The reported concentration of 839	

corrinoid it produced is 6-fold less than other strains in the study by Ivanova et al. (2006). We do 840	

not think this strain can actually produce corrinoids. 841	
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Synechococcus sp. WH7805 # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Synechococcus sp. WH8102 # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Synechocystis sp. PCC6803 # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
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Desulfotomaculum reducens # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #
Moorella thermoacetica # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #
Sporomusa ovata # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #
Veillonella parvula # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #
Desulfobacterium autotrophicum # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Desulfobulbus propionicus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Desulfovibrio desulfuricans # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Desulfovibrio vulgaris # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Geobacter lovleyi # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Geobacter sulfurreducens # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Pelobacter propionicus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Sulfurospirillum multivorans # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Salmonella typhimurium # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #
Yersinia enterocolitica # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 2 1 # # # # # # #
Thermosipho africanus H1760334 # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Thermosipho africanus TCF52B # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Streptomyces coelicolor # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Streptomyces griseus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Agrobacterium tumefaciens # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Methylobacterium dichloromethanicum # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Methylobacterium extorquens # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Methylosinus trichosporium # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Sinorhizobium meliloti # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 # 0 0 # # # # # # #
Dinoroseobacter shibae # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Rhodobacter capsulatus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Rhodobacter sphaeroides # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Ruegeria pomeryoi # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Rhodospirillum rubrum # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Methylobacter luteus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 1 # # # # # # #
Methylococcus capsulatus # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Pseudomonas denitrificans # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Pseudomonas putida # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
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Crocosphaera watsonii # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 0 0 # # # # # # #
Clostridium tetanomorphum # # # # # # # # # # # # # # # # # # # # # # # # # # # 0 # 1 1 # # # # # # #U
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Bold species names were identified as cobamide producers in this study (Fig. S3). 842	

 843	

Table 2. Presence of corrin ring marker annotations in predicted cobamide biosynthesis 844	

categories 845	

 846	

*Numbers represent the percent of genomes containing each marker annotation and 847	

combinations of annotations within each cobamide biosynthesis category. 848	

 849	

Very likely 
n=1016 Likely n=2361

Possible 
n=832

All cobamide 
producers 
n=4209

Tetrapyrrole 
precursor salvager 
n=201

Cbi salvage 
n=1734 Likely n=29

Very likely 
n=5263

All non-
producers 
n=5292

CbiL/CobI 100.0* 99.2 98.0 99.2 87.1 8.9 62.1 0.1 0.5
CbiF/CobM 100.0 99.8 96.8 99.2 93.5 4.7 65.5 0.4 0.6
CbiC/CobH 100.0 99.7 96.4 99.1 99.5 5.0 69.0 0.5 0.9
CbiL/CobI and CbiF/CobM 100.0 99.0 94.9 98.4 80.6 1.3 37.9 0.0 0.2
CbiL/CobI and CbiC/CobH 100.0 98.9 94.5 98.3 89.6 4.5 41.4 0.0 0.2
CbiF/CobM and CbiC/CobH 100.0 99.4 93.4 98.4 89.6 8.2 41.4 0.0 0.3
CbiL/CobI and CbiF/CobM and CbiC/CobH 100.0 98.6 91.6 97.6 76.6 0.5 24.1 0.0 0.1

Partial biosynthesisCobamide producers Non-producers
Cobamide biosynthesis category
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ethanolamine ammonia 
lyase (B12-dependent)

ethanolamine

acetaldehyde + ammonia glycine

ethanolamine nitrogen 
utilization pathway
(B12-independent)

Methionine synthesis

B12-dependent
methionine synthase

(MetH)

B12-independent
methionine synthase
(MetE)

homocysteine

methionine

Mercury methylation

mercury 
methylation

proteins

mercury

methylmercury

Carbon and nitrogen catabolism

glycerol/diol dehydratase 
(B12-dependent)

glycerol or 1,2-propanediol

3-hydroxypropanal or propanal

GRE-type glycerol/diol dehydratase 
(B12-independent)

methylmalonyl-CoA 
mutase (MCM) family

(B12-dependent)

propionyl-CoA

succinyl-CoA

methylmalonyl-CoA
methylcitrate pathway 
(B12-independent)

propionate metabolism

beta-lysine

3-5-diaminohexanoate

beta-lysine 
5,6-aminomutase

D-ornithine 
4,5-aminomutase

D-ornithine

2,4-diaminopentanoate

glutamate
mutase

glutamate

3-methylaspartic acid

B12-dependent
RNR (NrdJ)

NDP or NTP

dNDP or dNTP

B12-independent
RNRs

epoxyqueosine
reductase

epoxyqueosine

queosine

DNA synthesis tRNA synthesis

One-carbon metabolism

Wood-Ljungdahl
corrinoid protein

Methyl-THF

acetyl-CoA

carbon dioxide and hydrogen
corrinoid 
methyltransferase
families

methylated substrates

central metabolism

Natural product synthesis

rSAM-B12 proteins

natural products

various substrates

bacteriochlorophyll
cyclase

Mg Protoporphyrin IX 
monomethylester

divinyl-protochlorophyllide

Bacteriochlorophyll synthesis

reductive 
dehalogenases

halogenated substrates

various products

Reductive dehalogenation
ribonucleotide reductase (RNR)

Nucleotide Metabolism
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HemB, EC:4.2.1.24
HemC, EC:2.5.1.61
HemD, EC:4.2.1.75

precorrin-2 dehydrogenase,
 EC:1.3.1.76

CbiK/CbiX, EC:4.99.1.3
CbiL, EC:2.1.1.151
CbiH, EC:2.1.1.131
CbiF, EC:2.1.1.271
CbiG, EC:3.7.1.12

CbiD, EC:2.1.1.195
CbiJ, EC:1.3.1.106
CbiT, EC2.1.1.196

CbiE, EC:2.1.1.289
CbiC, EC:5.4.99.60

CbiA, EC:6.3.5.11

CobI, EC:2.1.1.130

CobJ, EC:2.1.1.131
CobM, EC:2.1.1.133
CobF, EC:2.1.1.152
CobK, EC:1.3.1.54
CobL, EC:2.1.1.132
CobH, EC:5.4.99.61
CobB, EC:6.3.5.9
CobNST, EC:6.6.1.2

BtuR/CobA/CobO/PduO
EC:2.5.1.17
BtuR/CobA/CobO/PduO
EC:2.5.1.17

CbiP/CobQ, EC:6.3.5.10

CobU/CobP, EC:2.7.1.156
CobT/CobU/ArsAB, 
EC:2.4.2.21

CobC/CobZ (cbl phosphatase), 
EC:3.1.3.73/TIGR03161

CobC/CobZ (cbl phosphatase), 
EC:3.1.3.73/TIGR03161

BzaAB/BzaF, 
HMMs this work

BzaC, 
HMM this work

BzaD, 
HMM this work

BzaE, 
HMM this work

aminopropanol phosphate

HemA, EC:2.3.1.37HemA, EC:2.3.1.37
HemA, EC:1.2.1.70
HemL, EC:5.4.3.8

glycine + succinyl-CoA glutamate

flavin + O2 5-aminoimidazole ribotide

Lower ligand biosynthesis

Anaerobic 
corrin ring 
biosynthesis

Anaerobic 
corrin ring 
biosynthesis

cobamide
(complete corrinoid)

AdenosylationAdenosylation

Cbi
(cobinamide)

CblS, ITERM:7338

CbiZ, pfam01955CbiZ, pfam01955

cobyric acid

alpha-ribazole phosphate

alpha-ribazole

CobS/CobV, EC:2.7.8.26

precorrin-2

5-aminolevulinic acid

alpha-ribazole salvage

Corrinoid 
remodeling
Corrinoid 
remodeling

5-hydroxybenzimidazole

5-methoxybenzimidazole

5-methoxy-6-
methylbenzimidazole

phenolics

PduX, EC:2.7.1.177
CobD, EC:4.1.1.81

5,6-dimethylbenzimidazole5,6-dimethylbenzimidazole

BluB, 
EC:1.13.11.79

BluB, 
EC:1.13.11.79

adenine,
other purines

CobU/CobP/CobY (cobinamide activation), 
EC:2.7.7.62/TIGR00454/COG2266

CobU/CobP/CobY (cobinamide activation), 
EC:2.7.7.62/TIGR00454/COG2266

NN

N N

H2N

O NH2

O

NH2

NH2O
O

O
Co

O

H

H2N
O

NH

O
P

OO

-O
O

N

N

HO H

H

NH2

H

H

OH

R

Cobalamin (Vitamin B12)

CobG, EC:1.14.13.83

Nucleotide loop assemblyNucleotide loop assembly

Lower ligandNucleotide loop

Upper ligand

Aerobic 
corrin ring 
biosynthesis

Aerobic 
corrin ring 
biosynthesis

Tetrapyrrole 
precursor 
biosynthesis

Tetrapyrrole 
precursor 
biosynthesis

A B

CysG/CobA, EC:2.1.1.107CysG/CobA, EC:2.1.1.107

CobR, EC:1.16.8.1

N

N R1

R2
N

N

R2

N

N

R1
O

R

phenolicspurinesbenzimidazoles

Lower ligand structure classes

Corrin ring

CbiB/CobC/CobD, EC:6.3.1.10CbiB/CobC/CobD, EC:6.3.1.10

Aminopropanol linkerAminopropanol linker
threonine
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