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Abstract 75 

Osteoporosis is a common debilitating chronic disease diagnosed primarily using bone mineral 76 

density (BMD). We undertook a comprehensive assessment of human genetic determinants of 77 

bone density in 426,824 individuals, identifying a total of 518 genome-wide significant loci, (301 78 

novel), explaining 20% of the total variance in BMD—as estimated by heel quantitative 79 

ultrasound (eBMD). Next, meta-analysis identified 13 bone fracture loci in ~1.2M individuals, 80 

which were also associated with BMD. We then developed “STARLinG”, a method to identify 81 

Target Genes from cell-specific genomic landscape features, including chromatin conformation 82 

and accessible chromatin sites. STARLinG identified Target Genes that were strongly enriched 83 

for genes known to influence bone density and strength (maximum odds ratio = 58, P = 10-75). 84 

We next performed rapid throughput skeletal phenotyping of 126 knockout mice lacking eBMD 85 

Target Genes and showed that these mice had an increased frequency of abnormal skeletal 86 

phenotypes compared to 526 unselected lines (P < 0.0001). In-depth analysis of one such 87 

Target Gene, DAAM2, showed a disproportionate decrease in bone strength relative to 88 

mineralization, indicating impaired bone quality. This comprehensive human and murine genetic 89 

atlas provides empirical evidence testing how to link associated SNPs to causal genes, offers 90 

new insights into osteoporosis pathophysiology and highlights opportunities for drug 91 

development.   92 
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Introduction 93 

Osteoporosis is a common, aging-related disease characterized by decreased bone strength 94 

and consequent increased risk of fracture.1 Bone mineral density (BMD), the most clinically 95 

relevant risk factor when diagnosing osteoporosis, is highly heritable2 and is a strong risk factor 96 

for fracture.3 While there have been no large-scale genome-wide association studies (GWAS) 97 

for fracture to date, previous GWAS for BMD have demonstrated that BMD is a highly polygenic 98 

trait.2 Recently, we identified 203 loci associated with estimated BMD by measuring quantitative 99 

heel ultrasound (eBMD), explaining 12% of its variance, demonstrating this polygenicity.4  100 

 101 

eBMD is predictive of fracture and is highly heritable (50-80%).5–9 While BMD measured from 102 

dual-energy X-ray absorptiometry (DXA)-scanning is most often used in clinical settings, our 103 

recent GWAS for eBMD identified 84% of all currently known genome-wide significant loci for 104 

DXA-BMD4 and effect sizes were concordant between the two traits (Pearson’s r = 0.69 for 105 

lumbar spine and 0.64 for femoral neck).4 The largest GWAS to date for DXA-derived BMD 106 

measures contained only 66,628 individuals.10 Both ultrasound and DXA-derived BMD are 107 

strongly associated with fracture risk where a standard deviation decrease in either metric is 108 

associated with approximately a ~1.5-fold increase in the risk of osteoporotic fracture,3,11 and 109 

both traits are highly polygenic. 110 

 111 

Little is known about how to reliably map associated genomic loci to their causal genes. 112 

However, highly polygenic traits such as bone density offer the opportunity to empirically test 113 

which methods link associated SNPs to genes enriched for causal proteins. Causal proteins can 114 

be identified in human clinical trials when their manipulation by medications leads to changes in 115 

BMD.2 Another source of causal proteins is Mendelian genetic conditions, which may constitute 116 

human knockouts and can also strongly implicate key genes that underlie bone physiology.12 117 

Given a sufficient number of associated loci, the different genomic characteristics that link a 118 

SNP to these causal proteins can be tested. These include genomic landscape characteristics 119 

such as cell-specific 3-dimensional (3D) contact domains, cell-specific open chromatin states, 120 

physical proximity and the presence of coding variation. Furthermore, samples from knockout 121 

mice generated by large-scale programs, such as the International Knockout Mouse Consortium 122 

(IKMC), can be used to identify genes whose deletion results in an abnormal skeletal 123 

phenotype. This rapid-throughput phenotyping data can then be used to determine whether 124 

outlier bone phenotypes are enriched in mice harboring deletions of genes identified by GWAS 125 

in humans. 126 

 127 

Here, we present the most comprehensive investigation of human and murine genetic 128 

influences on bone density and fracture to date. We not only undertook a GWAS of 426,824 129 

individuals for eBMD in the UK Biobank, explaining 20% of its variance and identifying 301 130 

novel loci, but also identified the genetic determinants of fracture in up to 1.2 million individuals 131 

combining the UK Biobank and 23andMe cohorts. We then assessed the SNP-level and 132 

genomic landscape characteristics that mapped associated SNPs to genes that were enriched 133 

for known bone density proteins. We call this approach STARLinG (SNPs to Target Genes), 134 

which identified Target Genes that are enriched up to 58-fold for known causal genes. We next 135 

showed that STARLinG also strongly enriched for genes differentially expressed in in vivo 136 

osteocytes compared to bone marrow cell models. Finally, we investigated whether deletion of 137 

GWAS-identified genes resulted in skeletal abnormalities in vivo by undertaking rapid-138 

throughput phenotyping of knockout mice, which included 126 Target Genes identified by 139 

STARLinG. Mice harboring deletions of these 126 Target Genes were strongly enriched for 140 

outlier skeletal phenotypes.  A convergence of human genetic, murine genetic, in vivo bone-cell 141 

expression and in vitro cell culture data all pointed to a role for DAAM2 in osteoporosis. This 142 

was further investigated by detailed analysis of mice with a hypomorphic allele of Daam2. 143 
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Daam2 knockdown resulted in a marked decrease in bone strength and increase in cortical 144 

bone porosity. CRISPR/Cas9-mediated edits of DAAM2 in osteoblast cell lines demonstrated a 145 

reduction in mineralization, compared to un-edited cells. 146 

 147 

These newly discovered loci will empower future clinical and pharmacological research on 148 

osteoporosis, spanning from a better understanding of its genetic susceptibility to, potentially, 149 

biomarker discovery and drug targets. Moreover, to maximize the utility of these results to the 150 

community, all data are made freely available via web resources (see URLs). Below we 151 

summarize the key results from our investigations.  152 

 153 

Results 154 

GWAS for eBMD and Fracture 155 

We selected 426,824 White-British individuals (55% female) for the eBMD GWAS from the UK 156 

Biobank full release (Online Methods, Table S1 and Figure S1). We analyzed 13,737,936 157 

autosomal and X-chromosomal SNPs for their association with eBMD. Although there was 158 

substantial inflation of the test statistics relative to the null for eBMD (λGC = 2.36, Figure S2), 159 

linkage disequilibrium (LD) score regression indicated that the majority of inflation was due to 160 

polygenicity rather than population stratification (LD score regression intercept = 1.05 [0.074], 161 

ratio = 0.014 [0.021]). 162 

 163 

We identified 1,103 conditionally independent signals (423 novel) at a genome-wide significant 164 

threshold (P < 6.6x10-9 see Online Methods) mapping to 515 loci (301 novel) (Table S2 and 165 

Figure 1). Of the conditionally independent lead SNPs at each locus, 4.6% were rare, having a 166 

minor allele frequency (MAF) ≤ 1%, whereas 9.3% were low-frequency (MAF ≤ 5% but > 1%) 167 

and 86.1% were common (MAF > 5%) (Figure S3 shows the relationship between MAF and 168 

absolute effect size). The average absolute conditional effect sizes for these three categories of 169 

SNPs were 0.14, 0.04 and 0.02 standard deviations, respectively. The total variance explained 170 

by conditionally independent genome-wide significant lead SNPs for eBMD was 20.3%. When 171 

partitioning the variance explained by genome-wide significant lead SNPs into the three MAF 172 

categories, we found that rare variants explained 0.8% of the variance, whereas low-frequency 173 

and common variants explained 1.7% and 17.8% of the variance in eBMD, respectively. We 174 

found strong correlations between effect sizes for eBMD when compared to effect sizes from 175 

the interim release of UK Biobank data (r = 0.93, Figure S4, Table S3). 176 

 177 

We identified 53,184 fracture cases (60% female) and 373,611 controls (54% female), totalling 178 

426,795 individuals in UK Biobank (Table S1). We assessed 13,977,204 autosomal and X-179 

chromosomal SNPs for their effects on fracture and identified 14 conditionally independent 180 

signals associated with fracture mapping to 13 loci (Table S4 and Figure S5). Once again, we 181 

observed inflation of the test statistics, (λGC = 1.2). However, this was also likely due to 182 

polygenicity, rather than population stratification (LD score regression intercept = 1.025 [0.013], 183 

ratio = 0.103 [0.053]). Conditionally independent genome-wide significant lead SNPs were 184 

tested for replication in a cohort of research participants from 23andMe, Inc., a personal 185 

genetics company (N = 367,900 cases and 363, 919 controls). All SNPs showed strong 186 

evidence of replication (Table S4). All genome-wide significant fracture SNPs were also found 187 

to be genome-wide significant in their association with eBMD in the expected direction of effect 188 

(i.e. alleles lowering eBMD were related to higher risk of fracture). Further, there was a high 189 

correlation between the effect sizes of eBMD associated variants and their effects on fracture 190 

were highly negatively correlated (r = −0.77 [−0.79, −0.74], Figure S4).  191 

 192 

Sex Heterogeneity 193 
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To investigate whether the genetic aetiology of eBMD differed between the sexes, we 194 

performed tests of sex heterogeneity across the genome. We identified 45 variants at 7 loci that 195 

displayed strong evidence of a sex difference (P < 6.6×10-9, Table S5). Variants at two of these 196 

7 loci did not reach genome-wide significance in males, females or the main eBMD GWAS, and 197 

were therefore not followed up further (Figure S6 and Table S5). Of the five remaining loci 198 

(Table S5), we detected evidence of a sex difference at FAM9B, a known male-only eBMD 199 

associated locus that may mediate its effect on bone through both serum testosterone levels 200 

and estradiol levels in men.13,14 Alleles at this locus associated with increased testosterone 201 

levels were also associated with increased eBMD in males only. For the remaining loci, male-202 

only effects were detected at FKBP4 and RNU6ATAC. FKBP4 codes for a tetratricopeptide 203 

repeat protein found in steroid receptor complexes that has been implicated in androgen 204 

receptor mediated signalling and function.15 Variants at the LOC105370177 (upstream of the 205 

OPG gene) and ABO loci were associated with eBMD in both sexes, but were more strongly 206 

related in males. Finally, variants within MCM8 were associated with eBMD in females only 207 

(Table S6). The same variants are known to be associated with onset of menopause16 in the 208 

predicted direction (i.e. alleles which increase age at menopause associate with increased 209 

eBMD). Interestingly, 164 loci that reached genome-wide significance in the main analysis 210 

showed evidence of sex-heterogeneity in effect size far above expectation (164 out of 1106 211 

SNPs had P < 0.05, Table S7). Despite these differences in men and women, LD score 212 

regression analyses suggested that on average the genetic architecture influencing male and 213 

female eBMD was largely shared (rG = 0.98, SE=0.02).17 The total number of genome-wide 214 

significant conditionally independent lead SNPs becomes 1,106 mapping to 518 loci when 215 

including our sex heterogeneity analyses, however, we focus on results from the main GWAS 216 

for the rest of our study. 217 

 218 

Coding Variants 219 

Most genome-wide significant associations to date have arisen from non-coding variants, which 220 

has made the identification of causal genes difficult.12 Genetic association signals at coding 221 

variation can more directly highlight a potentially causal gene. We identified 1,237 coding 222 

variants, based on the Variant Effect Predictor18, meeting genome-wide levels of significance in 223 

their association with eBMD, prior to conditioning on other the lead SNPs in LD at each locus. 224 

This represents 1.0% of the total count of genome-wide significant variants (Table S8). The 225 

average absolute effect size for coding variants was 0.025 standard deviations (interquartile 226 

range: 0.014 – 0.027), which was approximately equal to the absolute effect size for genome-227 

wide significant common variants. These coding variants do not necessarily directly implicate a 228 

gene but may reflect non-causal associations through linkage disequilibrium with other common 229 

non-coding causal variants. 230 

 231 

STARLinG: Fine-Mapping Associated Loci 232 

In order to map SNPs to potentially causal genes, we first refined the set of associated SNPs at 233 

each locus to a smaller set using two statistical fine-mapping methods, GCTA-COJO19 and 234 

FINEMAP20. These methods identify sets of SNPs based on their conditional independence and 235 

posterior probability for causality, respectively. We generated such sets for each genome-wide 236 

significant autosomal locus by identifying conditionally independent lead SNPs, or those SNPs 237 

having a high posterior probability of causality, as determined by log10 Bayes factor > 3 (Figure 238 

2a). Here we refer to the set of “fine-mapped SNPs” as those SNPs achieving either conditional 239 

independence or a high posterior probability for causality. 240 

 241 

Prior to fine-mapping, we identified on average 235 genome-wide significant SNPs per locus. 242 

After this fine-mapping exercise, an average of two conditionally independent SNPs and five 243 

SNPs with a log10 Bayes factor > 3 remained per locus (Tables S9 and S10). The number of 244 
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fine-mapped SNPs per locus ranged between 1 to 81. As a sensitivity test, we also considered a 245 

more lenient inclusion criterion for inclusion of SNPs based on a log10 Bayes factor > 2, which 246 

resulted in a sharp increase in the average number of SNPs per locus to 27, which in total 247 

comprised 13,742 unique SNPs (Table S11).  248 

 249 

STARLinG: Comparing Fine-Mapped SNPs for Biological Activity 250 

Given the large number of associated SNPs per locus, downstream analyses should focus on 251 

those SNPs most likely to have a biological function. We used accessible chromatin sites 252 

surveyed in a relevant cellular context as a proxy for biological activity. We generated ATAC-253 

seq maps in the human osteosarcoma cell line SaOS-2. SaOS-2 cells possess osteoblastic 254 

features and can be fully differentiated into osteoblast-like cells. We also analyzed DNase I 255 

hypersensitive site (DHS) maps from human primary osteoblasts generated by the ENCODE 256 

project.21 Both ATAC-seq and DHS data were analyzed using a uniform mapping and peak-257 

calling algorithm (Online Methods). 258 

 259 

We then analyzed the fine-mapped SNPs for enrichment of these functional signatures relative 260 

to all SNPs in the 1 Mbp surrounding each genome-wide significant association locus. Fine-261 

mapped SNPs, including the set of conditionally independent SNPs and SNPs with log10 Bayes 262 

factors > 3, were strongly enriched for both missense variants in protein coding regions and 263 

osteoblast accessible chromatin sites (Figure 3a). As the log10 Bayes factor threshold 264 

increased, fold-enrichment increased as well (Figure 3b). This indicates that the fine-mapped 265 

set of SNPs is highly enriched for genomic signatures of function, which can inform the choice 266 

of statistical cut-off for selection of SNPs for follow-up functional studies. 267 

 268 

STARLinG: Mapping Fine-Mapped SNPs to Target Genes & Enrichment for Positive 269 

Control Genes 270 

Human genetic associations have rarely been translated to improved clinical care, primarily 271 

because causal genes at associated loci have not been indisputably identified. We therefore 272 

sought to test which genomic features link associated SNPs to genes known to influence bone 273 

biology in humans. We identified a set of proteins whose perturbation through 274 

pharmacotherapy2 or Mendelian disease leads to changes in bone density or strength. 275 

Mendelian disease genes were defined as monogenic disorders characterized with altered bone 276 

mass or abnormal skeletal mineralization, osteolysis and/or skeletal fragility or osteogenesis 277 

imperfecta (Table S12) and constitute an informative human knockout resource.22 We 278 

considered such proteins to be products of “positive control” genes influencing bone density and 279 

likely critical to bone biology. 280 

 281 

Next, we investigated which genomic features linked the fine-mapped set of SNPs to positive 282 

control genes for bone density. We tested whether positive control genes were enriched among 283 

six types of genomic characteristics that can link a SNP to a gene: 1) Genes that were most 284 

proximal to the fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs overlapping 285 

their gene bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 4) Genes 286 

identified to be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through 287 

high-throughput chromatin conformation capture (Hi-C) experiments; 5) The closest gene to 288 

fine-mapped SNPs, which also mapped to ATAC-seq peaks in human osteoblast SaOS-2 cell 289 

lines; and 6) Those genes within 100 kbp of fine-mapped SNPs (Figure 2b emphasizes the 290 

target gene selection and Figure 4 details this entire pipeline). Coding annotations, ATAC-seq 291 

peaks, and Hi-C interaction peaks were not combined but kept separate to enable different 292 

sources of data to provide converging and confirmatory evidence. Distance from a fine-mapped 293 

SNP to a gene was considering the closer of the 3’ and 5’ ends, not the transcription start site. 294 
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We named these genes “Target Genes” and tested which of the above 6 methods to define 295 

Target Genes was most strongly enriched for positive control genes.  296 

 297 

The set of Target Genes that were most strongly enriched for positive control genes, arose from 298 

genes targeted by SNPs that were conditionally independent and by SNPs identified to be 299 

plausibly causal with a log10 Bayes factor > 3 (Table 1 and Table S13). All six different methods 300 

for linking these fine-mapped set of SNPs to Target Genes yielded strong enrichment for 301 

positive control genes. The odds ratios ranged from 5.1 (95% CI: 3.0-8.6, P = 10-11) for Target 302 

Genes within 100 kbp of the fine-mapped SNPs to an odds ratio of 58.5 (95% CI: 26.4-129.31, 303 

P = 10-75) for Target Genes closest to fine-mapped SNPs that were in an osteoblast-derived 304 

ATAC-seq peak (Table 1). In addition, we used FUMA23 to assess which pathways from the 305 

WikiPathways24 database were identified by the set of Target Genes most strongly enriched for 306 

positive control genes. We observed that well known pathways such as Wnt signalling, 307 

endochondral ossification, osteoclast and osteoblast signalling, as well as novel pathways were 308 

highlighted by this approach (Figure S7). 309 

 310 

These results suggest that STARLinG leads to strong enrichment for positive control genes 311 

known to be central to bone biology. Such methods may help to prioritize genes at associated 312 

loci for functional testing, which are more likely to influence bone biology and therefore, have 313 

clinical relevance. The full list of mapped Target Genes and the method through which they 314 

were identified is presented in Table S14.  315 

 316 

Mapping Fine-Mapped SNPs to Osteocyte-Signature Genes 317 

An alternative method to assess the biological plausibility of Target Genes is to test whether 318 

their expression is enriched in bone cells. Osteocytes are the most abundant cell type in bone 319 

and are key regulators of bone mass, bone formation and bone resorption.25 We therefore 320 

assessed the transcriptome of primary murine osteocytes derived from three bone types in 321 

vivo.26 Genes enriched for expression in osteocytes and expressed in all bone types defined an 322 

osteocyte transcriptome signature.26 We then tested which of the methods used to identify 323 

eBMD Target Genes resulted in the greatest enrichment for osteocyte-signature genes. 324 

 325 

Again, we found that STARLinG-identified Target Genes were strongly enriched for osteocyte 326 

signature genes, with odds ratios for enrichment ranging from 2.1 (95% CI: 1.7-2.5, P = 2x10-17) 327 

for Target Genes within 100 kbp of the fine mapped set of SNPs, to 7.4 (95% CI: 3.8-14.5, P = 328 

5x10-12) for Target Genes mapped through fine-mapped coding SNPs (Table 2 and Table S15 329 

and S16). This again suggests STARLinG results in enrichment for biologically relevant genes. 330 

 331 

A Large-Scale High Throughput Murine Knockout Screening Program 332 

The Origins of Bone and Cartilage Disease (OBCD) program (www.boneandcartilage.com) is 333 

determining 19 structural and functional parameters in all unselected knockout mouse lines 334 

generated at the Wellcome Trust Sanger Institute for the IKMC and IMPC. These parameters 335 

evaluate bone mineral content (BMC), 3D trabecular and cortical bone structure, bone 336 

mineralization and femoral and vertebral bone strength. To date, the OBCD program has 337 

included the analysis of 126 knockout lines with mutations of Target Genes (Table S17). Outlier 338 

phenotypes were defined as structural or strength parameters > 2 standard deviations away 339 

from the reference mean, determined from over 300 age-matched, sex-matched and genetically 340 

identical C57BL/6N wild-type controls (Online Methods). We investigated whether deletion of 341 

these 126 Target Genes resulted in enrichment of outlier skeletal phenotypes. Outlier cortical 342 

and trabecular bone phenotypes were more frequent in mice with disruptions of the 126 Target 343 

Genes compared against 526 unselected knockout lines (Tables S17 and S18, OR 3.2 [95% 344 

CI: 1.9-5.6], P < 0.0001). Therefore, enrichment of abnormal skeletal phenotypes in mice with 345 
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disruption of Target Genes provides clear functional validation that our fine-mapping approach 346 

identifies critical and biologically-relevant skeletal genes. Our fine-mapping in vivo and in vitro 347 

data converged to identify DAAM2 as a highly credible and novel osteoporosis gene, therefore 348 

we undertook detailed analyses of mice with a hypomorphic Daam2 allele to illustrate the 349 

potential of this approach. 350 

 351 

In-Depth Characterization of DAAM2 352 

Numerous lines of evidence identified DAAM2 as an important gene for further functional 353 

investigation. First, a conditionally independent lead SNP, rs2504101, mapped directly to 354 

DAAM2 (Pconditional = 4.3 x 10-10) and second, fine-mapping revealed two coding missense 355 

variants with high posterior probabilities for causality, rs201229313 in its 19th exon (log10 BF = 356 

3.7), and rs61748650 in its 21st exon (log10 BF = 2.5). Third, a rare variant, rs772843886, near 357 

DAAM2 was suggestively associated with risk of fracture (P = 2x10-3). Fourth, the Daam2tm1a/tm1a 358 

mouse was identified to have an outlier skeletal phenotype in our rapid throughput murine 359 

knockout screening program (Table S17). Fifth, although DAAM2 has not previously been 360 

implicated in osteoporosis, it has been predicted to have a role in canonical Wnt signaling.27,28  361 

 362 

To investigate the role of DAAM2 in bone biology, we first tested its expression in bone cells. 363 

We performed RNA-seq and ATAC-seq experiments in four different human osteoblast cell lines 364 

and found it was expressed in all cell lines (Online Methods, Figure S8). Staining experiments 365 

in the SaOS-2 cell line revealed DAAM2 localized specifically in the cell nuclei (Figures S9 and 366 

S10). This functional evidence from human bone cells also led us to characterize Daam2 in 367 

mouse bone cells. Daam2 was identified as an osteocyte signature gene (Table S16) and was 368 

expressed in mouse calvarial osteoblasts and bone marrow-derived osteoclasts (Table S19).  369 

 370 

Next using CRISPR/Cas9, we tested the effect on bone mineralization of double-stranded 371 

breaks (DSBs) in the second exon of DAAM2 in SaOS-2 osteoblast cell lines (Online 372 

Methods). We found that after 14 days of treatment with osteogenic factors, control cells 373 

transfected with the intact plasmid, but not undergoing an DSB of the DAAM2 gene, had a 9-fold 374 

increase in mineralization. After the introduction of a DSB in the second exon of DAAM2, 375 

induced mineralization was severely impaired (Figure 5). These CRISPR/Cas9-based findings 376 

suggest that DAAM2 influences mineralization capacity in human osteoblasts. 377 

 378 

We next analyzed the skeletal phenotypes of Daam2tm1a/tm1a, Daam2+/tm1a and wild-type 379 

littermate mice in detail. Adult male Daam2tm1a/tm1a mice had reduced femur and vertebral bone 380 

mineral content (BMC), while male Daam2+/tm1a and female Daam2tm1a/tm1a mice also had 381 

reduced vertebral BMC. These changes were accompanied by a small reduction in femur length 382 

in Daam2tm1a/tm1a mice (males, 2.7%; females, 3.5%). Despite otherwise normal trabecular and 383 

cortical bone structural parameters, cortical porosity was increased in both male and female 384 

Daam2tm1a/tm1a mice (Figure S11).   385 

 386 

Consistent with their increased cortical porosity, Daam2tm1a/tm1a mice had markedly reduced 387 

bone strength (Figure 6) even though all other cortical bone parameters, including BMD, were 388 

normal (Figure S11). Bone quality is the term used to describe properties of bone composition 389 

and structure that contribute to strength independently of BMD. Bone quality was thus 390 

investigated in Daam2tm1a/tm1a mice by comparing Daam2tm1a/tm1a mineralization and 391 

biomechanical parameters with values predicted by linear regression analysis of over 300 wild-392 

type age, sex and genetic background matched wild-type controls. Measures of bone quality in 393 

Daam2tm1a/tm1a mice were reduced compared to wild-type mice, and vertebral stiffness was > 2 394 

standard deviations below that predicted even after accounting for reduced BMC (Figure 6c 395 

and Table S20). To investigate the role of Daam2 on bone turnover, we measured markers of 396 
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bone resorption (TRAP) and formation (P1NP) in 10-week-old Daam2tm1a/tm1a and Daam2+/tm1a 397 

mice, and these did not differ from wild-type (Figure S12). Furthermore, primary cultures of 398 

bone marrow mononuclear cells from Daam2tm1a/tm1a mice showed no difference in 399 

osteoclastogenesis, and primary osteoblast mineralization was also similar to wild-type (Figure 400 

S12). 401 

 402 

Male Daam2tm1a/tm1a mice had decreased mineral content per unit matrix protein and increased 403 

carbonate substitution (Figure S13). This decrease in mineral to matrix ratio explains the overall 404 

decrease in bone mineral content observed in the absence of a decrease in cortical bone size. 405 

While bone size and geometry play a major role in controlling bone strength, decreases in 406 

mineral to matrix ratio are associated with decreased bone stiffness and decreased bending 407 

moment.29 These decreases in bone composition likely contributed to the poor bone quality 408 

observed in the Daam2tm1a/tm1a mice. 409 

 410 

Taken together, these data suggest the decreased bone strength in Daam2tm1a/tm1a mice is not 411 

simply a result of abnormal bone turnover, but also a consequence of increased porosity and 412 

impaired bone quality. If DAAM2 proves to be a tractable drug target, such an agent would 413 

represent a complementary therapeutic strategy for prevention and treatment of osteoporosis 414 

and fragility fracture.  415 

 416 

Additional Novel Candidate Bone Genes 417 

While DAAM2 represents the detailed validation of a novel Target Gene and the rapid-418 

throughput knockout mouse skeletal phenotyping pipeline, we also highlight five additional 419 

eBMD Target Genes that result in contrasting abnormalities of bone structure and strength 420 

when deleted in mice, thus emphasising their functional role in skeletal physiology and 421 

importance for further study. 422 

 423 

CBX1 encodes Chromobox 1, a highly conserved non-histone member of the heterochromatin 424 

protein family that mediates gene silencing but has no reported role in the skeleton30. 425 

Homozygous deletion of Cbx1 resulted in embryonic lethality whereas adult heterozygous mice 426 

had increased bone mineral content and trabecular thickness resulting in increased stiffness 427 

and strength (Table S17, Figure S14). CBX1 was identified by five SNPs with log10 BFs > 2 428 

mapping directly to its gene body (Table S11) and rs208016 (70 kbp upstream) suggested an 429 

association with fracture (P = 1.5x10-5). 430 

 431 

WAC encodes WW Domain Containing Adaptor with Coiled-Coil, a protein of unknown function 432 

that is associated with global developmental delay and dysmorphic features in Desanto-Shinawi 433 

syndrome31. Homozygous deletion of Wac resulted in prenatal lethality whereas adult 434 

heterozygous mice had increased bone length, mass and strength (Table S17, Figure S15). 435 

Seven fine-mapped SNPs mapped proximally or directly to WAC (Table S11), with two fine-436 

mapped SNPs, rs17686203 (log10 BF = 3.1) and rs61848479 (log10 BF = 3.9) mapping to 437 

WAC promoter Hi-C interaction peaks in primary human osteoblasts, and for the latter SNP in 438 

primary human osteocytes (Table S14). We also identified rs17753457 (60 kbp downstream) 439 

that had a suggestive association with fracture (P = 4.3x10-5). 440 

 441 

DSCC1 encodes DNA Replication and Sister Chromatid Cohesion 1, a component of an 442 

alternative replication factor that facilitates binding of proliferating cell nuclear antigen to DNA 443 

during S phase but has no known role in bone32. Homozygous knockout mice had reduced 444 

viability and adult Dscc1+/- heterozygotes had increased bone mineral content and strength 445 

(Table S17, Figure S16). DSCC1 was identified by rs62526622 (log10 BF = 2.0) mapping to an 446 

intronic DSCC1 Hi-C promoter interaction peak in primary human osteoblasts. rs546691328 447 
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(180 kbp downstream) was also found to have a suggestive association with fracture (P = 448 

2.9x10-4). 449 

 450 

RGCC encodes Regulator of Cell Cycle, a p53 Target Gene that interacts with polo-like kinase 451 

1, which regulates cell proliferation and apoptosis but has no documented role in the skeleton33. 452 

Nevertheless, Rgcc-/- knockout mice displayed increased bone mineral content and strength 453 

(Table S17, Figure S17). RGCC was identified by rs145922919 (log10 BF = 3.3) mapping 454 

approximately 30 kbp upstream of RGCC to a Hi-C promoter interaction peak in primary human 455 

osteoblasts and rs545753481 (32 kbp upstream) also had a suggestive association with fracture 456 

(P = 3.4x10-3). 457 

 458 

YWHAE encodes Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, 459 

Epsilon Isoform, a pro-inflammatory cytokine that mediates signal transduction by binding to 460 

phosphoserine-containing proteins. YWHAE (14-3-3ε) binds to aminopeptidase N (CD13) to 461 

regulate chondrocyte homeostasis and has been implicated as a novel therapeutic target in 462 

osteoarthritis34. Rare YWHAE deletions have been reported in Miller-Dieker Lissencephaly 463 

syndrome which includes craniofacial abnormalities and growth retardation together with diverse 464 

neurodevelopmental abnormalities35. Consistent with this, homozygous deletion of Ywhae 465 

resulted in reduced bone length, and increased bone mass and mineral content resulting in 466 

brittle bones (Table S17, Figure S18). YWHAE was identified in our target gene approach by 467 

22 SNPs with log10 BFs > 2 (Table S11) all mapping directly to YWHAE introns and an 468 

additional SNP, rs181451348 (1 kbp downstream) showed suggestive association with fracture 469 

(P = 7.1x10-5). 470 

 471 

CBX1, DSCC1, RGCC, WAC, and YWHAE represent strong candidates for further in-depth 472 

functional characterization as we have performed for DAAM2. Bone quality screens identified 473 

WAC and DSCC1 as femur bone quality outliers due to Wac+/- and Dscc1+/- knockout mice being 474 

at least two standard deviations from the expected range (Figure S19). Our data also support 475 

functional experiments in human cells as all five genes were expressed in all four human 476 

osteoblast cell lines we profiled with RNA-seq and ATAC-seq (Online Methods), except for 477 

RGCC which was highly expressed in SaOS-2 with low expression levels in U2OS, MG63, and 478 

HOS. In addition, we observed suggestive association at each locus with fracture (Table S21), 479 

further supporting evidence for these five genes having roles in human bone biology. 480 

 481 

Discussion 482 

In this, the most comprehensive human and murine study on the genetic determinants of bone 483 

density and fracture performed to date, we have identified a total of 518 genome-wide 484 

significant loci, of which 301 are novel and together explain 20% of the total variance in eBMD. 485 

In a GWAS meta-analysis of up to 1.2 million individuals, 13 fracture loci were identified, all of 486 

which were also associated with eBMD. Taking advantage of the polygenicity of eBMD, we 487 

developed STARLinG and demonstrated strong biological enrichment for fine-mapped SNPs in 488 

bone cell open chromatin. Using fine-mapped SNPs we found that Target Genes, identified 489 

through the STARLinG approach, were strongly enriched for genes that are known to play 490 

central roles in bone biology through Mendelian genetics, or as targets for clinically-validated 491 

osteoporosis therapies. High throughput skeletal phenotyping of mice with deletions of 126 492 

Target Genes revealed enrichment of outlier skeletal phenotypes compared to analysis of 526 493 

unselected knockout lines. Last, we identified DAAM2 as a protein with critical effects on bone 494 

strength, porosity and quality. These findings will enable on-going and future studies to better 495 

understand the genomic characteristics that link fine-mapped SNPs to sets of genes enriched 496 

for causal proteins. Further, this comprehensive study of the genetic variants associated with 497 

osteoporosis will provide opportunities for biomarker and drug development 498 
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 499 

The polygenicity of eBMD is striking. Few traits and diseases currently have hundreds of loci 500 

associated at genome-wide levels of significance.12,36 This has led to a large proportion of total 501 

variance in eBMD being explained by now known genetic determinants, which will facilitate 502 

future exploration of bone biology and enable drug development for osteoporosis.37, Yet, despite 503 

the large number of genetic and biological inputs into eBMD determination, pharmacological 504 

perturbation of even only one protein identified in our GWAS can have clinically relevant effects. 505 

For example, RANKL inhibition has been shown to increase bone density by up to 21% after ten 506 

years of therapy.38 Interestingly, the genetic variants near RANKL have small effects on eBMD. 507 

Thus, despite the small effect sizes for most identified variants, these do not necessarily reflect 508 

the effect sizes to be anticipated by pharmacological manipulation of the protein. This is 509 

because common genetic variants tend to have small effects on protein function, whereas 510 

pharmacotherapies tend to have large effects on protein function. Consequently, the dose-511 

response curve describing the effect of small and large genetic perturbations on eBMD is 512 

needed to decide which proteins to target for drug development.12 513 

 514 

Polygenicity has also improved our statistical power to validate STARLinG, which aims to link an 515 

associated locus with a potentially causal gene. We found that fine-mapped sets of SNPs were 516 

able to identify Target Genes that were strongly enriched for positive control genes—particularly 517 

when the STARLinG approach implemented relatively simple strategies, such as the nearest 518 

gene, or the gene nearest a fine-mapped SNP in cell-relevant open chromatin. We also 519 

observed that fine-mapped SNPs were often in 3D contact with Target Genes in human 520 

osteoblasts and osteocytes. These rich data, surveying many genomic landscape features 521 

provide guidance for investigators attempting to identify causal genes from GWAS-associated 522 

SNPs and all human genetic and murine results are available for download (see URLs). 523 

 524 

The marked reduction in bone strength in Daam2tm1a/tm1a mice, despite minimal changes in bone 525 

morphology and mineral content, indicates that Daam2tm1a/tm1a mice have abnormal bone quality, 526 

which can be explained in part by increased cortical porosity. Further, CRISPR/Cas9-mediated 527 

knockouts of DAAM2 in osteoblast cells lines resulted in a marked reduction in inducible 528 

mineralization. Few such genes have been identified and further investigations will be required 529 

to determine whether DAAM2 represents a tractable drug target in humans. Nevertheless, 530 

previous studies have suggested that DAAM2 indirectly regulates canonical Wnt signalling 531 

across several developmental processes.27,28  532 

 533 

Our GWAS for fracture risk identified 13 loci associated with this common disease. All these loci 534 

have been associated with BMD and/or eBMD, highlighting the importance of BMD as a 535 

determinant of fracture risk, at least in the age range assessed within the UK Biobank. While 536 

BMD-independent loci for fracture likely exist, these were not identified despite a well-powered 537 

study. This suggests that screening for fracture drug targets should also include understanding 538 

the effect of the protein on BMD.  539 

 540 

Our study has important limitations. First, we have measured eBMD, rather than DXA-derived 541 

BMD, which is typically measured in the clinic. Nonetheless, beyond their phenotypic 542 

correlation, these two traits also demonstrate high genetic concordance in terms of their 543 

genome-wide significant loci, suggesting that the biological properties that underpin these two 544 

traits are similar. Importantly, however, eBMD is a strong predictor of fracture risk in its own 545 

right, and contributes to risk assessment over and above DXA-derived BMD at the hip.39 While 546 

our target gene approach has identified a set of candidate genes enriched for genes with known 547 

effects on bone density, it is important to note that there is no gold-standard set of genes known 548 

to influence BMD. While our rapid throughput mouse knockout program is on-going and will 549 
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investigate many of the Target Genes implicated by our study, further efforts will be required to 550 

functionally validate (or exclude) these genes in bone biology. Our target gene approach did not 551 

include human gene expression quantitative trait loci (eQTL) data. This is because the largest 552 

available eQTL experiments for human osteoblasts involve only 95 individuals,40 and larger 553 

sample sizes with RNA-sequencing data will be required to properly investigate our method of 554 

linking fine-mapped sets of SNPs to genes. Finally, our program was limited to individuals of 555 

White-British genetic ethnicity and the effect of most of the genome-wide significant SNPs in 556 

other populations remains to be assessed. It is likely that on-going studies in non-British 557 

ancestries will address this question. 558 

 559 

In summary, we have generated an atlas of human and murine genetic influences on 560 

osteoporosis. This comprehensive study has more fully described the genetic architecture of 561 

eBMD and fracture and has identified a set of Target Genes strongly enriched for genes with 562 

known roles in bone biology. We have demonstrated the relevance of this approach by 563 

identifying DAAM2, a gene whose disruption in mice leads to an increase in cortical porosity and 564 

marked reductions in bone quality and strength, and in human osteoblasts leads to a decrease 565 

in mineralization. This set of Target Genes is expected to include new drug targets for the 566 

treatment of osteoporosis, a common disease for which novel therapeutic options are a health 567 

priority.  568 
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Online Methods 569 

Curating osteoporosis associated outcomes in the UK Biobank study 570 

During the period from 2006 - 2010, half a million British adults were recruited by the UK 571 

Biobank study (http://www.ukbiobank.ac.uk/).41 Subjects provided biological samples, consented 572 

to physical measurements and answered questionnaires relating to general health and lifestyle. 573 

Ethical approval was granted by the Northwest Multi-Centre Research Ethics Committee, and 574 

informed consent was obtained from all participants prior to participation. Heel bone quality was 575 

evaluated in 487,428 subjects by quantitative ultrasound speed of sound (SOS) and broadband 576 

ultrasound attenuation (BUA) using a Sahara Clinical Bone Sonometer (Hologic Corporation, 577 

Bedford, Massachusetts, USA). Further information regarding the assessment protocols are 578 

publicly available on the UK Biobank website. Participants were initially measured at baseline (N 579 

= 487,428) and had their left calcaneus (N = 317,815), right calcaneus (N = 4,102) or both 580 

calcanei (N = 165,511) measured. A subset of these subjects was followed up at two further 581 

time points (N = 20,104 and N = 7,988), during which both heels were measured. A detailed 582 

description of the ascertainment procedure is provided in Figure S1. Prior to quality control, 583 

ultrasound data were available for 488,683 individuals at either baseline and/or follow-up 584 

assessment. To reduce the impact of outlying measurements we first identified subjects that 585 

had both heels measured and removed those with highly discrepant (i.e. left vs. right) SOS 586 

and/or BUA measurements. To achieve this, subjects were stratified by sex and bivariate scatter 587 

plots comparing left and right heel measures of SOS and BUA were generated separately. 588 

Outliers were identified by manual inspection and removed. The same method was used to 589 

identify and remove individuals with highly discordant SOS v BUA measured for each heel. 590 

Strict quality control was thereafter applied to male and female subjects separately using the 591 

following exclusion thresholds: SOS [Male: (≤ 1,450 and ≥ 1,750 m/s), Female (≤ 1,455 and ≥ 592 

1,700 m/s)] and BUA [Male: (≤ 27 and ≥ 138 dB/MHz), Female (≤ 22 and ≥ 138 dB/MHz)]. 593 

Individuals exceeding the threshold for SOS or BUA or both were removed from the analysis. 594 

Estimated bone mineral density [eBMD, (g/cm2)] was derived as a linear combination of SOS 595 

and BUA (i.e. eBMD = 0.002592 * (BUA + SOS) − 3.687). Individuals exceeding the following 596 

thresholds for eBMD were further excluded: [Male: (≤ 0.18 and ≥ 1.06 g/cm2), Female (≤ 0.12 597 

and ≥ 1.025 g/cm2)]. A unique list of individuals with a valid measure for the left calcaneus (N = 598 

477,380) and/or right (N = 181,953) were identified separately across the three time points. 599 

Individuals with a valid right calcaneus measure were included in the final data set when no left 600 

measures were available, giving a preliminary working dataset of N=481,100, (left = 475,724 601 

and right = 5,376) unique individuals. Bivariate scatter plots of eBMD, BUA and SOS were again 602 

visually inspected and 723 additional outliers were removed, leaving a total of 480,377 valid 603 

QUS measures for SOS, BUA and BMD (264,304 females and 216,073 males). The R script 604 

used to curate the raw data is available on request, together with all supporting summary data 605 

and plots. Descriptive statistics of the cohort, after quality control, are detailed in Table S1. 606 

 607 

Fracture cases were identified using two mutually non-exclusive methods: Hospital Episodes 608 

Statistics linked through NHS Digital (http://content.digital.nhs.uk/hes) with a hospital-based 609 

fracture diagnosis irrespective of mechanism within the primary (N = 392,292) or secondary (N 610 

= 320,448) diagnosis field, and questionnaire-based self-reported fracture within the past five 611 

years (N = 501,694). We defined a set of International Classification of Diseases codes, 10th 612 

revision (ICD10), to separate fracture cases from controls with the Hospital Episodes Statistics 613 

data. We excluded fractures of the skull, face, hands and feet, pathological fractures due to 614 

malignancy, atypical femoral fractures, periprosthetic and healed fracture codes. A full list of 615 

ICD10 codes used can be found in Table S22. We did not exclude any self-reported fracture 616 

cases by fracture site, since participants were only asked if they sustained a fracture at ankle, 617 

leg, hip, spine, write, arm, other or unknown. We identified 20,122 fractures using ICD10 codes 618 
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and 48,818 using questionnaire-based self-reported data. Descriptive statistics of the cohort, 619 

after quality control and ancestry selection, are detailed in Table S1.  620 

 621 

Ancestry assignment 622 

Genotype array data were imputed by the UK Biobank using the Haplotype Reference 623 

Consortium (HRC) panel42. A comprehensive description of the imputation protocol is described 624 

elsewhere43. A sample of 409,728 White-British individuals was identified centrally by the UK 625 

Biobank, using a combination of self-reported ethnicity and genetic information. However, the 626 

reliance on self-reported information was deemed too conservative and we chose to redefine a 627 

White-British sample (N = 440,414) using genetic information only. We projected the UK 628 

Biobank sample onto the first 20 principal components estimated from the 1000 Genomes 629 

Phase 3 (1000G) project data44 (where ancestry was known) using FastPCA version 2.45 630 

Projections used a curated set of 38,551 LD-pruned HapMap 3 Release 3 (HM3)46 bi-allelic 631 

SNPs that were shared between the 1000G and UK Biobank datasets (i.e. MAF > 1%, minor 632 

allele count > 5, genotyping call rate > 95%, Hardy-Weinberg P > 1x10-6, and regions of 633 

extensive LD removed). Expectation Maximization (EM) clustering (as implemented in R using 634 

EMCluster47) was used to compute probabilities of cluster membership based on a finite mixture 635 

of multivariate Gaussian distributions with unstructured dispersion. Eigenvectors 1, 2 and 5 636 

were used for clustering as they represented the smallest number of eigenvectors that were 637 

able to resolve the British 1000G sub-population (GBR) from other ethnicities (Figure S20). 638 

Twelve predefined clusters were chosen for EM clustering as sensitivity analyses suggested 639 

that this number provided a good compromise between model fit (as quantified by log likelihood, 640 

Bayesian information criterion, and Akaike information criterion) and computational burden 641 

(Figure S21). UK Biobank participants (N = 440,414) that clustered together with the 1000G 642 

GBR sub-population were termed White-British and used for downstream genetic analyses 643 

(Figure S22).  644 

 645 

Identification of unrelated samples for LD reference estimation and X chromosome 646 

analyses 647 

Genome-wide complex trait analysis (GCTA)48 was used to construct a genetic relatedness 648 

matrix (GRM) using the White-British sample and a curated set of LD non-pruned HM3 649 

autosomal genome-wide variants (N = 497,687). Unrelated individuals were defined using the 650 

genome-wide relatedness measure defined by Yang et al.48 where the pairwise relatedness 651 

between individuals j and k (Ajk) was estimated by: 652 

 653 
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where xij is the number of copies of the reference allele for the ith SNP of the jth and kth 655 

individuals and pi is the frequency of the reference allele across the N individuals.  656 

 657 

Two samples of unrelated individuals were defined from the White-British UK Biobank 658 

population: A sample used for X chromosome association analysis (pairwise relatedness < 0.1, 659 

N = 374,559) and a random sample for LD reference estimation (pairwise relatedness < 0.025, 660 

N = 50,000).  661 

 662 

Genome-wide association analysis 663 

A maximum of 426,824 White-British individuals (233,185 females and 193,639 males) with 664 

genotype and valid QUS measures were analyzed (Table S1). For fracture, a maximum of 665 

426,795 White-British individuals, comprising 53,184 fracture cases (60% female) and 373,611 666 
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controls (54% female) were analyzed. We note that the sample sizes between the two assessed 667 

traits are similar but different, due to not all fracture cases and controls having eBMD measured, 668 

and vice-versa. We tested autosomal genetic variants for association with eBMD and fracture, 669 

separately, assuming an additive allelic effect, using a linear mixed non-infinitesimal model 670 

implemented in the BOLT-LMM v2 software package49 to account for population structure and 671 

cryptic relatedness. The following covariates were included as fixed effects in all models: age, 672 

sex, genotyping array, assessment center and ancestry informative principal components 1 to 673 

20. Autosomal analysis was restricted to up to 13,977,204 high quality HRC imputed variants 674 

with a MAF > 0.05%, minor allele count > 5, info score > 0.3, genotype hard call rate > 0.95, and 675 

Hardy-Weinberg equilibrium P > 1x10-6. We also analyzed the association between eBMD and 676 

fracture and directly genotyped SNPs on the X chromosome, adjusting for the same covariates, 677 

using the Plink2 (October 2017) software package50 and a nested sample of unrelated 678 

participants (N = 362,926 for eBMD and N = 45,087 cases and 317,775 controls for fracture). As 679 

the analyses for the X chromosome data were based upon observed genotypes, we excluded 680 

SNPs with evidence of deviation from Hardy-Weinberg Equilibrium (P < 1×10-6), MAF < 0.05%, 681 

minor allele count < 5, and overall missing rate > 5%, resulting in up to 15,466 X chromosome 682 

SNPs for analysis. Heterogeneity in effect size coefficients between sexes was tested in 683 

EasyStrata51, using Cochran’s test of heterogeneity52   684 
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βi effect size estimates of stratum i 686 

SEi standard error of stratum i 687 
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i = 1..m 688 

 689 

Manhattan plots of our genome-wide association scans were generated using the same 690 

software. We have previously estimated the genome-wide significance threshold α = 6.6x10-9 for 691 

analyzing data from the UK Biobank using the above critera.4 692 

 693 

Fracture replication meta-analysis 694 

14 genome-wide significant conditionally independent lead SNPs identified from our fracture 695 

analyses were tested for replication in the 23andMe cohort. Genetic associations were tested 696 

against the fracture phenotype on a set of unrelated individuals of European ancestry. Analyses 697 

were adjusted for age, sex, principal components 1 to 5, and the genotyping platform. There 698 

were 367,900 cases and 363,919 controls. Meta-analysis of UK Biobank discovery and 699 

23andMe replication data was performed using METAL.53 In order to compare the effect 700 

estimates and standard errors of the UK Biobank discovery and 23andMe replication data, we 701 

had to transform the UK Biobank discovery effect estimates and standard errors as per the 702 

manual specifications in the BOLT-LMM49 documentation, specifically: 703 

log OR � �
� � �1 � �
 

where � = case fraction and standard errors of SNP effect estimates should also be divided by 704 

(� � �1 � �

. 705 

 706 

Approximate conditional association analysis 707 

To detect multiple independent association signals at each of the genome-wide significant 708 

eBMD and fracture loci, we applied approximate conditional and joint genome-wide association 709 

analysis using the software package GCTA v1.91.19 Variants with high collinearity (multiple 710 

regression R2 > 0.9) were ignored and those situated more than 20 Mbp away were assumed to 711 
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be independent. A reference sample of 50,000 unrelated White-British individuals randomly 712 

selected from the UK Biobank was used to model patterns of linkage disequilibrium (LD) 713 

between variants. The reference genotyping dataset consisted of the same variants assessed in 714 

our GWAS. Conditionally independent variants reaching genome-wide significance were 715 

annotated to the physically closest gene using Bedtools v2.26.054 and the hg19 gene range list 716 

(www.cog-genomics.org/plink2). 717 

 718 

Estimation of variance explained by significant variants and SNP heritability 719 

We estimated the proportion of eBMD phenotypic variance tagged by all SNPs on the 720 

genotyping array (i.e. the SNP heritability) using BOLT-REML49 and Linkage Disequilibrium 721 

Score Regression (LDSC)55. To calculate the variance explained by independent genome-wide 722 

significant SNPs, i.e. all 1,103 genome-wide significant conditionally independent lead SNPs, 723 

we summed the variance explained per SNP using the formula: 2p(1 – p)β2, where p is the 724 

effect allele frequency and β is the effect of the allele on a standardized phenotype (mean = 0, 725 

variance = 1).56–58  726 

 727 

Estimating genomic inflation with LD Score Regression (LDSC) 728 

To estimate the amount of genomic inflation present in the data that was due to residual 729 

population stratification, cryptic relatedness, and other latent sources of bias, we used stratified 730 

LDSC59 in conjunction with partitioned LD scores that were calculated for high quality HM3 731 

SNPs derived from a sample of unrelated 1000G GBR individuals.  732 

 733 

STARLinG: Fine-Mapping SNPs 734 

Fine-mapped SNPs were defined as those being conditionally independent, as identified by 735 

GCTA-COJO or exceeding our threshold for posterior probability of causality, as defined by 736 

FINEMAP. Here we describe the generation of this set of fine-mapped SNPs. 737 

 738 

First, SNPs were defined as being conditionally independent using GCTA-COJO.19,20 We next 739 

calculated the posterior probability of causality. To do so, we defined each conditionally-740 

independent lead SNP as a signal around which, we would undertake posterior probability 741 

testing. We used all imputed SNPs within 500 kbp of a conditionally independent lead SNP and 742 

treated each signal independently. We used FINEMAP20, which approximates, per input region, 743 

genotype-phenotype data with correlation matrices and summary statistics, and then 744 

implements a shotgun stochastic search algorithm to test causal configurations of SNPs rapidly 745 

and identify the most likely number of causal SNPs per signal in a Bayesian framework. We 746 

generated correlation matrices for each fine-mapped region from a subset of randomly selected 747 

50,000 White-British UK Biobank participants with the LDSTORE software60. FINEMAP was run 748 

with default parameters except for the number of maximum causal configurations tested, which 749 

we set to 10.20 For the causal configuration with the highest posterior probability, each SNP was 750 

assigned a log10 Bayes factor as a measure of its posterior probability for being in the causal 751 

configuration. For example, if a tested region had a causal configuration of six SNPs with the 752 

highest posterior probability, all tested SNPs were assigned a Bayes factor for their marginal 753 

posterior probabilities of being in that causal configuration. Based on this information we 754 

constructed our sets of fine-mapped SNPs, including only the SNPs with the highest posterior 755 

probabilities. After testing each signal at a locus, the set of fine-mapped SNPs were collapsed 756 

into the same locus, due to the high amount of redundancy between credible sets for each 757 

signal, given that the approximation of genotype-phenotype data with correlation matrices and 758 

summary statistics implemented by FINEMAP is identical to GCTA-COJO.19,20 We used a log10 759 

Bayes factor > 3 threshold to only consider SNPs with the strongest posterior probabilities for 760 

causality, and those SNPs that were identified as genome-wide significant conditionally 761 

independent lead SNPs, as being fine-mapped SNPs. 762 
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 763 

RNA sequencing for mouse osteocytes 764 

We performed an analysis of whole transcriptome sequencing data of three distinct bone types 765 

from the mouse skeleton to measure osteocyte expression4. The three sites were the tibia, 766 

femur and humerus, and in each, the bone marrow was removed (N = 8 per site). The 767 

distribution of normalized gene expression for each sample was used to calculate a threshold of 768 

gene expression61, with genes above this threshold for 8 out of 8 replicates in any bone type 769 

deemed to be expressed. Osteocyte enriched genes were determined by comparing the 770 

transcriptomes of matched bone sample controls, one with the marrow removed and the other 771 

with the marrow left intact (N = 5 per site). Genes significantly enriched in osteocytes and 772 

expressed in all bone types were defined as osteocyte transcriptome signature genes. 773 

 774 

Assay for mapping accessible chromatin sites 775 

ATAC-seq libraries were generated by the McGill University and Genome Quebec Innovation 776 

Centre on 100,000 SaOS-2, U2OS, MG63 and HOS cells each, using a modified protocol to that 777 

previously described62. The modifications included: reducing the transposase reaction volume 778 

from 50 µl to 25 µl, increasing the transposase concentration from 1x to 40x, and using 12 779 

cycles of PCR to enrich each library. Libraries were quantified by Q-PCR, Picogreen and 780 

LabChip, then were sequenced on the Illumina HiSeq 2500 to 125 bp in pair-ended mode, using 781 

the Nextera sequencing primers. DNase-seq data from primary osteoblast samples21 were 782 

obtained from http://encodeproject.org under accessions ENCLB776DWN and ENCLB906BCL. 783 

Illumina adapters were clipped off using Trimmomatic v. 0.3663 and reads were aligned to the 784 

hg38 human reference using BWA v.0.7.1564. peaks were called hotspot2 785 

(https://github.com/Altius/hotspot2) using a cutoff of 1% FDR and converted to hg19 reference 786 

coordinates using UCSC liftOver. 787 

 788 

RNA sequencing for human osteoblast cell lines 789 

RNA library preparations were carried out on 500�ng of RNA from SaOS-2, U2OS, MG63 and 790 

HOS cells with RNA integrity number (RIN) > 7 using the Illumina TruSeq Stranded Total RNA 791 

Sample preparation kit, according to manufacturer's protocol. Final libraries were analyzed on a 792 

Bioanalyzer and sequenced on the Illumina HiSeq4000 (pair-ended 100�bp sequences). Raw 793 

reads were trimmed for quality (phred33 ≥ 30) and length (n ≥ 32), and Illumina adapters were 794 

clipped off using Trimmomatic v. 0.3563. Filtered reads were aligned to the GRCh37 human 795 

reference using STAR v. 2.5.1b65. Raw read counts of genes were obtained using HTseq-count 796 

v.0.6.166. 797 

 798 

RNA sequencing for murine calvarial osteoblasts 799 

We used whole transcriptome sequencing on mouse osteoblasts post-differentiation to obtain 800 

expression profiles of the maturing osteoblast4. We obtained pre-osteoblast-like cells from the 801 

neonatal calvaria of C57BL/6J mice carrying a Cyan Fluorescent Protein (CFP) transgene under 802 

the control of the Col 3.6 kbp promoter67. Specifically, we removed cells not expressing CFP by 803 

FACS sorting after culturing for four days in growth media. The remaining cell set was 804 

considered enriched for pre-osteoblast cells and was re-plated and subjected to an osteoblast 805 

differential cocktail, with RNA being collected every two days from days two to 18 post-806 

differentiation. We used whole transcriptome sequencing with three technical replicates per 807 

sample and calculated a normalized expression level per gene. 808 

 809 

High-throughput chromosome conformation capture 810 

High-throughput chromosome conformation capture (Hi-C) was performed on primary human 811 

osteoblasts and osteocytes from human bone biopsies of non-fracture subjects. Hi-C libraries 812 

were prepared as described previously.68 Instead of using HindIII restriction enzyme, we used 813 
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DpnII69 which increased coverage and insensitivity of CpG lamentation70. The Hi-C libraries 814 

were sequenced on Illumina HiSeq4000 instruments to 2 billion pair-end reads. Biological 815 

replicates were independently generated and sequenced. HiC-Pro was used to process the 816 

HiC-Pro pipeline71 beginning with aligning each read end to hg38 reference genomes. The 817 

Chimeric read ends were filtered to keep only 5′ alignments with MAPQ > 10, and then read-818 

ends were paired and de-duplicated. Contact matrices were constructed, and significant 819 

interactions were estimated with Homer,72 GOTHiC73 and Juicer.74 We defined significant 820 

interactions as P < 10-15 (comparing observed interactions to estimated expected interactions 821 

and taking into account DNA fragment size, GC content, and other genomic features). Only 822 

interaction pairs that were significant (P < 10-15) from all three tools were considered significant. 823 

The resolution of Hi-C interactions was from 1.5 to 2 kbp with average 1.8 kbp.  824 

 825 

STARLinG: Target Gene identification 826 

We identified Target Genes for the autosomal fine-mapped sets by annotating fine-mapped sets 827 

of SNPs to the closest protein-coding gene, making additional note if the SNP mapped directly 828 

to the gene’s introns or exons, or was coding. We identified Target Genes on the X 829 

chromosome by the closest gene to a conditionally independent lead SNP, as we did not 830 

calculate log10 Bayes factors for SNPs on the X chromosome. Additionally, we annotated Target 831 

Genes that may be functional in bone cells by marking which fine-mapped SNPs mapped to 832 

open chromatin in human bone cells, identified by SaOS-2 ATAC-seq peaks, and we mapped 833 

chromosomal positions of fine-mapped SNPs to significant Hi-C interactions of primary 834 

osteoblast and osteocytes. When the interaction chromatin mapped to multiple isoforms of 835 

protein coding genes, we selected the one with the most significant interaction (usually with 836 

highest interaction counts). When the interaction chromatin mapped to multiple bins, we 837 

selected the one(s) with looping domains. We further annotated Target Genes using the 838 

osteocyte signature gene set where genes within this set are enriched for osteocyte activity.4  839 

 840 

STARLinG: Target Gene enrichment analyses 841 

We performed a series of enrichment analyses by calculating the odds of Target Genes being 842 

either positive control genes or osteocyte signature genes. We identified a set of 57 proteins 843 

whose perturbation through pharmacotherapy,2 or Mendelian disease leads to changes in bone 844 

density, monogenic disorders presenting with abnormal skeletal mineralization or low bone 845 

mass, osteolysis and/or skeletal fragility and osteogenesis imperfecta and abnormal skeletal 846 

mineralization (Table S12).22 For all protein-coding genes in the genome, which were identified 847 

using refGene (N = 19,455), we annotated whether they were found to be Target Genes and/or 848 

positive control genes. These annotations allowed us to construct contingency tables and 849 

calculate an odds ratio for enrichment of Target Genes amongst positive control genes. We 850 

used multiple genomic features to test which methods of identifying Target Genes enriched for 851 

positive control genes. To do so, we tested if positive control genes were enriched amongst 852 

targeted genes identified by four different methods: 1) Genes that were most proximal to the 853 

fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs overlapping their gene 854 

bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 4) Genes identified to 855 

be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through Hi-C 856 

experiments; 5) The closest gene to fine-mapped SNPs, which also mapped to ATAC-seq 857 

peaks in human osteoblast SaOS-2 cell lines; and 6) Those genes within 100 kbp of fine-858 

mapped SNPs (Figures 2 and 4). We then repeated this analysis using the osteocyte signature 859 

gene set (N = 1,240) instead of the positive control set, to calculate the odds of Target Genes 860 

being active in the osteocyte. 861 

 862 

Target Gene pathway analysis 863 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/338863doi: bioRxiv preprint 

https://doi.org/10.1101/338863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

We used the Functional Mapping and Annotation of GWAS tool (FUMA)23 to annotate our lists 864 

of Target Genes for their most enriched biological pathways with data from the WikiPathways24 865 

database. WikiPathways is an openly curated database for biological pathways and provides 866 

information on the roles of specific genes or proteins in their respective pathways. FUMA uses 867 

WikiPathways data to compare a list of given genes against a background gene set (e.g. all 868 

protein coding genes) with hypergeometric testing. The output is then a list of enriched 869 

biological pathways based on the input gene lists. We have presented these data graphically in 870 

the Figure S7. 871 

 872 

CRISPR/Cas9 Methods 873 

SaOS-2 cells were obtained from ATCC (#ATCC HTB-85) and cultured in McCoy5A medium 874 

(ATCC) supplemented with 15% of FBS (Wisent inc) and 1% of penicillin and streptomycin 875 

(Wisent Inc.) according to the manufacturer. Three different guide RNAs (gRNA) targeting the 876 

second exon of DAAM2 were cloned in the PX458 plasmid (pSpCas9(BB)-2A-GFP; Addgene 877 

#48138). The gRNA sequences were: gRNA 1-CAGAGGGTGGTTGTCCCGG; gRNA 2-878 

CAGCCCCATCCCGAACGCAG; and gRNA 3-TGTCCCGGAGGTTGATTTCG. We observed 879 

the cutting frequency determination (CFD) scores75 for each gRNA was < 0.1, therefore we did 880 

not consider off-target effects to merit testing76. The construct plasmids were purified using the 881 

QIAGEN filter midi prep kit (QIAGEN #12243) according to manufacturer instructions. SaOS-2 882 

cells were cultured to 80% confluence in a 100-mm2 petri dish. Cells were then transfected with 883 

one of the three different plasmids generated, or with the intact plasmid as a control, using 884 

TransIT LT1 transfection reagent (Mirus #MIR2304) with a reagent-to-DNA ratio of 3:1. 48 hours 885 

post-transfection, GFP positive cells were sorted by FACS in a single cell model. The remaining 886 

colonies were expanded and then assessed for the presence of DAAM2 protein using 887 

immunofluorescence technique (Anti-DAAM2 antibody, Sigma-Aldrich #HPA051300). PCR 888 

primers were designed against regions of DAAM2 flanking the three gRNA target sequences 889 

(forward: 5′-tcctcttgtccagATCACAATG-3′ and reverse: 5′-ccaagaggagttttgagagatgga-3′) to 890 

generate an amplicon of 355 bp. PCR products of the identified clones were sequenced using 891 

MiSeq (Genome Quebec). 892 

 893 

To generate DAAM2 Western blots (Figure S23), total protein was extracted from SaOS-2 cells 894 

using a RIPA buffer. Denatured proteins (20 µg) were separated by 10% sodium dodecylsulfate 895 

(SDS) polyacrylamide gel electrophoresis followed by transfer to nitrocellulose membranes. The 896 

membranes were blocked in 5% skim milk for one hour at room temperature followed by 897 

incubation with an anti-DAAM2 antibody (Abcam #ab169527) at 1/1,000 overnight at 4°C and 898 

the secondary antibody goat anti-rabbit IgG at 1/10,000 for one hour at room temperature 899 

(Abcam #ab205718). The band densities were quantified by densitometry using Image Lab 5.1 900 

software (Bio-Rad). Protein levels were expressed as a ratio of protein-specific band density 901 

and that of total protein stained using MemCode Staining Solution (Thermofisher #24580). 902 

Figure S23 shows that DAAM2 protein expression was reduced to 17.5% and 33.5% in the 903 

gRNA1 and gRNA2 edited clones, respectively.  904 

 905 

To induce mineralization (Figure 5), cells were then cultured to 90% confluence in a 6-well plate 906 

and then treated, or left untreated for a control, with osteogenic factors (Ascorbic acid 50 µg/ml 907 

and ß-Gycerophosphate 10 mM). Fresh media containing osteogenic factors was added every 908 

2-3 days over 13 days. At day 14, mineralization was quantified using the osteogenesis assay 909 

kit according to manufacturer instructions (Millipore #ECM815). The Alizarin red concentration 910 

(µM) was normalized with the protein content assessed in the media in each culture (Pierce 911 

BCA Protein assay kit; Thermo Fisher #23227). 912 

 913 

Rapid throughput murine knockout program 914 
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The Origins of Bone and Cartilage Disease (OBCD) program (www.boneandcartilage.com) is 915 

undertaking rapid-throughput structural and functional skeletal phenotype analyses of all 916 

unselected knockout mice generated at the Wellcome Trust Sanger Institute as part of the 917 

International Knockout Mouse and International Mouse Phenotyping Consortia (IKMC and 918 

IMPC). Anonymized samples from 16-week-old female wild-type and mutant mice (N = 2 to 6 919 

per mutant genotype) were stored in 70% ethanol and assigned to batches for rapid throughput 920 

analysis. Mice were fed either a Breeder’s Chow (Mouse Breeder Diet 5021, 21% kcal as fat, 921 

Labdiet, London, UK) or a Western diet (Western RD, 829100, 42% kcal as fat, Special Diet 922 

Services, Witham, UK) from 4 weeks of age. The relative bone mineral content and length of the 923 

femur and caudal vertebrae are determined by digital X-ray microradiography (Faxitron MX20, 924 

10μm pixel resolution)77–79. Micro-CT (Scanco uCT50, 70kV, 200μA, 0.5mm aluminium filter) is 925 

used to determine trabecular parameters (bone volume BV/TV, trabecular number Tb.N, 926 

thickness Tb.Th, spacing Tb.Sp) at a 5μm voxel resolution in a 1mm region beginning 100μm 927 

proximal to the distal femoral growth plate and cortical bone parameters (thickness Ct.Th, BMD, 928 

medullary diameter) at a 10μm voxel resolution in a 1.5mm region centered in the mid-shaft 929 

region 56% along the length of the femur distal to the femoral head.77,80,81 Biomechanical 930 

variables of bone strength and toughness (yield load, maximum load, fracture load, % energy 931 

dissipated prior to fracture) are derived from destructive 3-point bend testing of the femur and 932 

compression testing of caudal vertebra 6 and 7 (Instron 5543 load frame, 100N and 500N load 933 

cells).77,79 Overall, 19 skeletal parameters were reported for each individual mouse studied and 934 

compared to reference data obtained from 320 16-week-old wild-type C57BL/6 female mice. 935 

Outlier phenotypes were defined by parameters > 2 standard deviations away from the 936 

reference mean determined from the 320 age, sex and genetically identical C57BL/6N wild-type 937 

controls. Enrichment of outlier skeletal parameters in mice with deletion of eBMD Target Genes 938 

was determined by comparison with the frequency of outlier parameters in 526 unselected 939 

knockout lines using Fisher's Exact Test (Table S18, Prism, GraphPad Software, La Jolla, 940 

USA). The 526 unselected knockout lines were generated by the WTSI and phenotyped by the 941 

OBCD program; these lines included 56 Target Genes. Five Target Genes had previously been 942 

phenotyped in an OBCD pilot study77 and knockout lines for an additional 65 Target Genes, that 943 

had already been generated by WTSI, were prioritized for rapid-throughput skeletal 944 

phenotyping. In total, our analyses included 596 knockout lines. 945 

 946 

Additional skeletal samples from 16-week-old WT (n=5 female, n=5 male), Daam2+/tm1a (n=7 947 

female, n=5 male) and Daam2tm1a/tm1a (n=7 female, n=5 male) mice were analyzed as described 948 

above. Supplementary cortical bone parameters (total cross-sectional area Tt.Ar, cortical bone 949 

area Ct.Ar, medullary area M.Ar, periosteal perimeter Ps.Pm, endocortical perimeter Ec.Pm, 950 

cortical porosity Ct.Po, polar moment of inertia (J) and maximum and minimum moments of 951 

inertia (Imax and Imin)) were determined by micro-CT (at 10μm voxel resolution, except for 952 

Ct.Po which was determined at 1μm voxel resolution using the Scanco uCT50 at 70kV, 57µA, 953 

0.5mm aluminium filter).  Correlation between bone mineral content and biomechanical 954 

parameters was determined by linear regression analysis using 320 16-week-old WT femur and 955 

vertebra samples from C57BL/6 female mice.  Bone quality was investigated in Daam2tm1a/tm1a 
956 

mice by comparing observed biomechanical parameters with values predicted by linear 957 

regression analysis of femoral and vertebral BMC and biomechanical parameters obtained from 958 

320 WT age and sex matched controls. 959 

 960 

Daam2 knockout mice 961 

Mouse studies undertaken at the Garvan Institute of Medical Research (Darlinghurst, NSW, 962 

Australia) were approved by the Garvan Institute / St Vincent’s Hospital Animal Ethics 963 

Committee in accordance with New South Wales (Australia) State Government legislation. 964 

Daam2tm1a(KOMP)Wtsi mice (designated Daam2tm1a/tm1a) were obtained from the Wellcome 965 
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Trust/Sanger Institute (Cambridge, UK) where the mice were generated as part of the 966 

International Mouse Phenotyping Consortium (http://www.sanger.ac.uk/mouseportal), using ES 967 

cells produced by the Knockout Mouse Project 968 

(https://www.komp.org/geneinfo.php?Symbol=Daam2). The Daam2 gene in these mice was 969 

disrupted by a cassette containing an insertion with an additional splice acceptor site between 970 

exons 5 and 6 971 

(http://www.mousephenotype.org/data/alleles/MGI:1923691/tm1a%28KOMP%29Wtsi?). The 972 

success of this strategy was confirmed with an 80% knockdown of Daam2 in Daam2tm1a/tm1a and 973 

50% knockdown in Daam2+/tm1a. Age and sex matched 16-week old mice were used for detailed 974 

skeletal phenotyping, as described above. 975 

 976 

In vitro assays of osteoclast formation 977 

Osteoclasts were generated from primary BMCs flushed from mouse long bones of 8-10 week 978 

old WT, Daam2+/tm1a and Daam2tm1a/tm1a mice, resuspended in MEM/FBS then added (105 979 

cells/well) to 6mm diameter culture wells.  These were stimulated with 10, 20, 50 and 100 ng/ml 980 

RANKL, plus 50 ng/mL M-CSF. Medium and cytokines were replaced at day 3, and on day 6 981 

cultures were fixed with 4% paraformaldehyde and histochemically stained for TRAP using as 982 

previously described.82 TRAP positive multinucleated cells (MNCs) containing 3 or more nuclei 983 

were counted as osteoclasts and quantified under inverted light microscopy. 984 

 985 

In vitro osteoblast mineralization 986 

Plastic-adherent bone marrow stromal cells (BMSCs) were isolated from 8-10 week old WT, 987 

Daam2+/tm1a and Daam2tm1a/tm1a  mice as described previously. 83 Briefly, marrow cells were 988 

flushed from mouse long bones and plated in MEM containing 20% FBS in 25cm2 tissue culture 989 

flask. Non-adherent cells were removed by medium changes 3 and 5 days later. After 7 days in 990 

culture, cells were trypsinized, scraped and re-plated at 3 x 104 cells/cm2 in 24-well plates in 991 

MEM with 10% FBS containing osteoblast differentiating factors (50 μg/ml ascorbic acid, 2.5nM 992 

dexamethasone and 10 mM β-glycerolphosphate; Sigma-Aldrich), which was added and 993 

changed every 3 days for 21 days. Cells were washed with PBS and fixed with 4% 994 

paraformaldehyde for 15 mins then ethanol (80%) for 30 mins, rinsed and stained with 0.5% 995 

Alizarin Red (Sigma Aldrich) in water for 30 mins, washed, dried and images of the plates taken 996 

with a flat-bed scanner (model v800, Epson, North Ryde, NSW Australia). Alizarin red was then 997 

eluted with 10% cetyl pyridinium chloride (CTP; Sigma-Aldrich) in PBS overnight and quantified 998 

by measuring 562 nm absorbance (Clariostar plate reader, BMG Labtech, Offenburg, Germany) 999 

relative to standard alizarin red solutions.  1000 

 1001 

Detection of serum markers of bone resorption and formation 1002 

Serum levels of bone resorption marker tartrate-resistant acid phosphatase (TRAP) and bone 1003 

formation marker procollagen type 1 N-terminal propeptide (P1NP) were measured using a 1004 

Rat/Mouse TRAP enzyme immunoassay kit and a Rat/Mouse P1NP enzyme immunoassay kit 1005 

(Immunodiagnostic Systems, Gaithersburg, MD, USA) respectively. 1006 

 1007 

Fourier-Transform Infrared Spectroscopy 1008 

The humeri from Daam2 WT, Daam2+/tm1a and Daam2tm1a/tm1a male and female mice were 1009 

collected at 16 weeks of age. 21 male samples (11 WT, 4 Daam2+/tm1a and 6 Daam2tm1a/tm1a) and 1010 

19 female samples (8 WT, 5 Daam2+/tm1a and 6 Daam2tm1a/tm1a) were examined. The bones were 1011 

frozen immediately and were kept at a stable temperature until analysis. All bones were 1012 

processed at the same time and all analyzed on the same day to reduce batch effects. The 1013 

humeri were thawed, stripped of soft tissue with epiphyses removed and the marrow cavity was 1014 

flushed. Specimens were then refrozen in liquid nitrogen and pulverized at -80°C using a SPEX 1015 

Sample Prep 6870 Freezer/Mill. Each sample was subjected to three rounds of pulverization at 1016 
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15 cycles per second for one minute with a two-minute cool-down between each round.  The 1017 

samples were lyophilized under vacuum at -51°C overnight to ensure they were completely 1018 

dehydrated. Anhydrous potassium bromide (KBr) was then added until the final concentration of 1019 

bone in the samples was between 2.50-2.56% by mass. KBr pellets were formed by 1020 

compressing 20 mg of mixed KBr and bone samples in a 7 mm die under 4 tons of force.  The 1021 

formed pellets were loaded into a Nicolet iS50 FT-IR spectrophotometer (Thermo Fisher 1022 

Scientific). The collection chamber was continuously purged with dry nitrogen gas to minimize 1023 

noise from moisture and carbon dioxide. Background noise was collected on KBr-only pellets 1024 

and subtracted at the beginning of each cohort or after 30min of continuous measurements 1025 

(whichever occurred first). For each sample, 128 scans between 400-2200 cm-1 (wave numbers) 1026 

were collected at a resolution of 4.0cm-1 using Happ-Genzel apodization. The wave number 1027 

data was curve fit to absorbance, with baselining and spectral analyses performed using custom 1028 

algorithms and scripts written in the R programming language (R version 3.4.2). The scripts 1029 

were built on top of the ChemoSpec (version 4.2.8) and MESS (version 0.3-2) packages. Local 1030 

minima were used as limits of integration to calculate areas under the curve for the carbonate, 1031 

phosphate and amide I peaks; the mineral to matrix ratio, carbonate to phosphate ratio were 1032 

then calculated using these areas in the appropriate ratios. Collagen maturity and crystallinity 1033 

were calculated from the spectral data using absorbance values at literature-reported and 1034 

validated wavenumbers.84 Between two and four technical replicates were run for each sample, 1035 

based on the amount of material available. Two samples (both from WT males) were removed 1036 

from all subsequent statistical analyses as the signal to noise ratio was excessive for the 1037 

spectral data for all technical replicates, thus precluding obtaining meaningful information from 1038 

those samples. Values for technical replicates where averaged for each specimen. Differences 1039 

between genotypes were determined by ANOVA, followed by a Tukey’s post hoc test. Data from 1040 

male and female mice were analyzed separately. 1041 

 1042 

URLs 1043 

URLs to download the genome-wide association summary statistics for eBMD and fracture, as 1044 

well as RNA-seq and ATAC-seq data generated for the SaOS-2, U2OS, MG63 and HOS human 1045 

osteoblast cell lines, will be made available after peer-reviewed publication.  1046 
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Figure Legends 1047 

Figure 1. Manhattan plot of genome-wide association results for eBMD in the UK 1048 

Biobank. The dashed red line denotes the threshold for declaring genome-wide significance 1049 

(6.6x10-9). 1,103 conditionally independent SNPs at 515 loci passed the criteria for genome-1050 

wide significance. 301 novel loci (defined as > 1 Mbp from previously reported genome-wide 1051 

significant BMD variants) reaching genome-wide significance are displayed in blue. Previously 1052 

reported loci that reached genome-wide significance are displayed in red, and previously 1053 

reported loci failing to reach genome-wide significance in our study are shown in black.  1054 

 1055 

Figure 2. Fine-mapping SNPs and target gene selection diagram. A) For each 500 Mbp 1056 

region around a conditionally independent lead SNP, we applied statistical fine-mapping to 1057 

calculate log10 Bayes factors for each SNP as a measure of their posterior probability for 1058 

causality. SNPs that were conditionally independent lead SNPs or that had log10 Bayes factors > 1059 

3 were considered our fine-mapped SNPs that we then used for target gene identification. B) 1060 

Target Genes were identified if: 1) It was the gene closest to a fine-mapped SNP. 2) A fine-1061 

mapped SNP was in its gene body. 3) A fine-mapped SNP was coding. 4) The gene mapped 1062 

closest to a fine-mapped SNP which resided in an SaOS-2 ATAC-seq peak. 5) A fine-mapped 1063 

SNP was present in a Hi-C osteoblast or osteocyte promoter interaction peak, therefore being 1064 

closer to a target gene in three-dimensions than linearly on the genome. 1065 

 1066 

Figure 3. SNPs at genome-wide significant loci are enriched for osteoblast 1067 

open chromatin sites. A) Odds ratio for missense, osteoblast DHSs and SaOS-2 ATAC-seq 1068 

peaks for SNPs that are conditionally independent or achieving a log10 Bayes factor > 3. Note 1069 

the log10 Bayes factor > 3 set contains nearly twice the number of SNPs. B) Ranking SNPs by 1070 

log10 Bayes factor (x-axis) shows increasing enrichment of missense SNPs and of SNPs at 1071 

accessible chromatin sites. 1072 

 1073 

Figure 4. STARLinG Workflow. 1074 

 1075 

Figure 5. Reduction in DAAM2 protein resulted in decreased mineralization in SaOS-2 1076 

cells. Mineralization quantification in control cells and DAAM2 exon 2 double-stranded break 1077 

(DSB) induced cells in either the presence of osteogenic factors (treated) or absence 1078 

(untreated). Bars in (a) represent the mean of six independent experiments ± SEM from Alizarin 1079 

red staining in (b) to quantify mineralization. *** P < 0.001 compared to untreated control cells 1080 

and &&& P < 0.001 compared to treated control cells determined by one-way Anova and a 1081 

Bonferroni post-hoc test.  1082 

 1083 

Figure 6. Biomechanical Analyses of mice with Daam2 knockdown. A) Femur 1084 

biomechanical analysis. Destructive 3-point bend testing (Instron 5543 load frame) of femurs 1085 

from WT (NFemale = 3, NMale = 4), Daam2+/tm1a (NFemale = 6, NMale = 4), Daam2tm1a/tm1a (NFemale = 5, 1086 

NMale = 9) mice. Graphs showing yield load, maximum load, fracture load, stiffness (gradient of 1087 

the linear elastic phase) and toughness (energy dissipated prior to fracture). Data are shown as 1088 

mean ± SEM; ANOVA and Tukey’s post hoc test; (i) Daam2+/tm1a vs WT and Daam2tm1a/tm1a vs 1089 

WT, **P<0.01; ***P<0.001 and (ii) Daam2+/tm1a vs Daam2tm1a/tm1a, #P<0.05; ##P<0.01; ###P<0.001. 1090 

B) Vertebra biomechanical analyses. Destructive compression testing (Instron 5543 load 1091 

frame) of caudal vertebrae from WT (NFemale = 3, NMale = 4), Daam2+/tm1a (NFemale = 6, NMale = 4), 1092 

Daam2tm1a/tm1a (NFemale = 5, NMale = 9) mice.  Graphs showing yield load, maximum load, and 1093 

stiffness. Data are shown as mean ± SEM; ANOVA and Tukey’s post hoc test; (i) Daam2tm1a/tm1a 1094 

vs WT, *P<0.05 and **P<0.01 and (ii) Daam2+/tm1a vs Daam2tm1a/tm1a, #P<0.05. Females are on 1095 

left and males on right. C) Bone quality analysis from rapid throughput screening murine 1096 

knockouts. The graph demonstrates the physiological relationship between bone mineral 1097 
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content and stiffness in caudal vertebrae from P112 female WT mice (N = 320).  The blue line 1098 

shows the linear regression (P = 0.0001) and the grey box indicates ± 2SD.  The mean value for 1099 

female Daam2tm1a/tm1a (N = 2 from initial OBCD screen) mice is shown in orange (-2.14 SD). 1100 

 1101 

Figure S1. Flow diagram illustrating calcaneal quantitative ultrasound (QUS) data 1102 

collection by the UK Biobank. QUS data were collected at three time points: Baseline (2007 - 1103 

2010), Follow-up 1 (2012 - 2013) and Follow-up 2 (2014 - 2016). At baseline, QUS was 1104 

performed using two protocols (denoted protocol 1 and 2). Protocol 1 was implemented from 1105 

2007 to mid-2009 and involved measuring the left calcaneus. Only in cases where the left was 1106 

missing or deemed unsuitable was the right calcaneus measured. Protocol 2 was introduced 1107 

from mid-2009, (replacing protocol 1) and differed only in that it involved measuring both the left 1108 

and right calcanei. Protocol 2 was further used for both follow up assessments. For all three 1109 

time points, calcaneal QUS was performed with the Sahara Clinical Bone Sonometer [Hologic 1110 

Corporation (Bedford, Massachusetts, USA)]. Vox software was used to automatically collect 1111 

data from the sonometer (denoted direct input). In cases where direct input failed, QUS 1112 

outcomes were manually keyed into Vox by the attending healthcare technician or nurse (i.e. 1113 

manual input). The number of individuals with non-missing measures for speed of sound (SOS) 1114 

and broadband ultrasound attenuation (BUA) recorded at each assessment period are indicated 1115 

in light grey. Further details on these methods are publicly available on the UK Biobank website 1116 

(UK Biobank document #100248 1117 

https://biobank.ctsu.ox.ac.uk/crystal/docs/Ultrasoundbonedensitometry.pdf). To reduce the 1118 

impact of outlying measurements, Individuals with highly discordant left vs. right calcaneal 1119 

measures were excluded from the analysis. Furthermore, quality control was applied to male 1120 

and female subjects separately using the following exclusion thresholds: SOS [Male: (≤ 1,450 1121 

and ≥ 1,750 m/s), Female (≤ 1,455 and ≥ 1,700 m/s)] and BUA [Male: (≤ 27 and ≥ 138 dB/MHz), 1122 

Female (≤ 22 and ≥ 138 dB/MHz)]. Individuals exceeding the threshold for SOS or BUA or both 1123 

were removed from the analysis. Estimated bone mineral density [eBMD, (g/cm2)] was derived 1124 

as a linear combination of SOS and BUA (i.e. eBMD = 0.002592 * (BUA + SOS) − 3.687). 1125 

Individuals exceeding the following thresholds for eBMD were further excluded: [Male: (≤ 0.18 1126 

and ≥ 1.06 g/cm2), Female (≤ 0.12 and ≥ 1.025 g/cm2)]. The number of individuals with non-1127 

missing measures for SOS, BUA and eBMD after QC are indicated in black. A unique list of 1128 

individuals with a valid measure for the left calcaneus (N=477,380) and/or right (N=181,953) 1129 

were identified separately across all three time points. Individuals with a valid right calcaneus 1130 

measure were included in the final data set when no left measures were available, giving a 1131 

preliminary working dataset of N=481,100, (left=475,724 and right=5,376) unique individuals. 1132 

Bivariate scatter plots of eBMD, BUA and SOS were visually inspected and 723 additional 1133 

outliers were removed, leaving a total of 480,377 valid QUS measures for SOS, BUA and BMD 1134 

(264,304 females and 216,073 males). 1135 

 1136 

Figure S2. QQ plot of GWAS for eBMD.  Results are from the entire genome and not 1137 

conditionally independent SNPs. 1138 

 1139 

Figure S3. Relationship between absolute effect size (y-axis) and minor allele frequency 1140 

(x-axis) for 1,103 conditionally independent SNPs. Red dots represent SNPs at previously 1141 

reported BMD loci. Blue dots represent SNPs at novel loci. The named gene is that closest to 1142 

the SNP that has the smallest P-value of all conditionally independent SNPs present in the 1143 

same locus. We emphasize that proximity is not necessarily indicative of causality. 1144 

 1145 

Figure S4. Effect size in standard deviations for eBMD (y-axis) from the current UK 1146 

Biobank Study plotted against effect size in standard deviations from the previous 1147 

GEFOS studies for BMD at the (A) femoral neck, (B) lumbar spine, (C) forearm, (D) total-1148 
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body, (E) heel and (F) fracture as per the full UK Biobank cohort (x-axis). Only conditionally 1149 

independent variants that reach genome-wide significance (P < 6.6 x10-9) for eBMD in the UK 1150 

Biobank are plotted. Minus log10 P-value for the fracture analysis in UK Biobank is represented 1151 

by the shading of the data points (black for robust evidence of association with fracture and 1152 

white for poor evidence of association). The blue dashed trend line shows a moderate to strong 1153 

correlation between estimated effect sizes at the heel and femoral neck [r=0.53 95%-CI 1154 

(0.49,0.57)], lumbar spine [0.59 (0.55,0.63)], forearm [0.46 (0.41, 0.50)], total-body [0.70 1155 

(0.67,0.73)], interim heel [0.93 (0.92,0.94)] and fracture [−0.77 (−0.79, −0.74)]. SNPs that reach 1156 

genome-wide significance for fracture look-up (P < 6.6 x10-9) are labelled in black. 1157 

 1158 

Figure S5. Manhattan plot of genome-wide association results for fracture in the UK 1159 

Biobank. Manhattan plot showing genome-wide association results for fracture in the UK 1160 

Biobank. The dashed red line denotes the threshold for declaring genome-wide significance 1161 

(6.6x10-9). In total, 14 conditionally independent SNPs at 13 loci passed the criteria for genome-1162 

wide significance. Blue dots represent a locus identified from the eBMD GWAS that was novel 1163 

in this analysis. Red dots represent a locus associated with eBMD which was known from 1164 

previous studies. Previously reported BMD loci failing to reach genome-wide significance in our 1165 

study are shown in black. 1166 

 1167 

Figure S6. Analysis of sex heterogeneity for eBMD. The top-most figure is a Miami plot of 1168 

genome-wide association results for females (top panel) and males (bottom panel). The bottom 1169 

graph is a Manhattan plot for the test for sex heterogeneity in eBMD regression coefficients 1170 

between males and females. Previously reported loci that reached genome-wide significance (P 1171 

< 6.6 x10-9) are displayed in red, and previously reported loci failing to reach genome-wide 1172 

significance in our study are shown in black. Loci containing ABO, FKBP4, LOC105370177 and 1173 

FAM9B had stronger effects on eBMD in males, whereas MCM8 had a larger effect in females. 1174 

Loci demonstrating significant heterogeneity (P < 6.6 x10-9) but were not robustly associated at 1175 

genome-wide significance with eBMD in the males and/or females are in green (i.e. MCCD1 and 1176 

ZNF398).  1177 

 1178 

Figure S7. WikiPathways pathway analysis results from FUMA for (A) genes closest to a fine-1179 

mapped SNP, (B) genes with fine-mapped SNPs mapping to its gene body, (C) genes with 1180 

coding fine-mapped SNPs, (D) genes mapped closest to a fine-mapped SNP which resided in 1181 

an SaOS-2 ATAC-seq peak, and genes identified by fine-mapped SNP was present in a (E) Hi-1182 

C osteoblast or (F) osteocyte promoter interaction peak. Well known pathways for bone biology 1183 

were highlighted by FUMA, such as Wnt signalling, endochondral ossification, osteoclast and 1184 

osteoblast signalling. 1185 

 1186 

Figure S8. Expression of DAAM2 in osteoblast cell lines from RNA Sequencing 1187 

experiments and open chromatin profiles from ATAC-seq experiments. Blue shows 1188 

forward strand expression, while red shows reverse strand expression. Dark purple shows 1189 

ATAC-seq open chromatin peaks. RNA of DAAM2 is present in all cell lines, but particularly, 1190 

SaOS-2, HOS and U-2_OS cell lines.  1191 

 1192 

Figure S9: No unspecific labeling of the secondary antibody in the SaOS-2 osteoblast cell 1193 

line. Representative immunofluorescence of SaOS-2 cell lines stained with goat anti-rabbit IgG 1194 

Alexa Fluor 488 secondary antibody (Abcam, ab150077; 1/1000), counterstained with DAPI 1195 

(blue) and observed by confocal microscopy. 1196 

 1197 

Figure S10. DAAM2 is localized to the nucleus of SaOS-2 osteoblast cell lines. 1198 

Representative immunofluorescence of SaOS-2 cell lines stained with anti-DAAM2 antibody 1199 
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(Sigma Aldrich, HPA051300; 1/200) followed by goat anti-rabbit IgG Alexa Fluor 488 secondary 1200 

antibody (Abcam, ab150077; 1/1000), counterstained with DAPI (blue) and observed by 1201 

confocal microscopy. 1202 

 1203 

Figure S11. Additional skeletal phenotyping of Daam2 knockdown at postnatal day 112. 1204 

A) Bone mineral content and length. X-ray microradiography images (Faxitron MX20) 1205 

showing femur and caudal vertebrae from female (left) and male (right) wild-type (WT; female 1206 

n=5, male=5), heterozygous (Daam2+/tm1a female n=7, male n=5) and homozygous 1207 

(Daam2tm1a/tm1a; female n=7, male n= 9) knockout mice. Gray scale images of femur and caudal 1208 

vertebrae are pseudocoloured according to a 16-colour palette in which low mineral content is 1209 

green and high mineral content is pink.  Relative frequency plots showing bone mineral content 1210 

in femur and caudal vertebrae from WT, Daam2+/tm1a and Daam2tm1a/tm1a mice; Kolmogorov–1211 

Smirnov test, *P<0.05.  Graphs demonstrate femur and caudal vertebra length in WT, 1212 

Daam2+/tm1a and Daam2tm1a/tm1a mice. Data are shown as mean ± SEM; ANOVA and Tukey’s 1213 

post hoc test; *P<0.05; **P<0.01. B) Trabecular bone parameters. Micro-CT images (Scanco 1214 

MicroCT-50) showing proximal femur trabecular bone from WT, Daam2+/tm1a, Daam2tm1a/tm1a 1215 

mice.  Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular number 1216 

(Tb.N), trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp). Data are shown as mean ± 1217 

SEM. C) Cortical bone parameters. Micro-CT images of mid-diaphysis cortical bone from WT, 1218 

Daam2+/tm1a, Daam2tm1a/tm1a mice. Graphs showing total cross-sectional area inside the 1219 

periosteal envelope (Tt.Ar), cortical bone area (Ct.Ar), cortical area fraction (Ct.Ar/Tt.Ar), 1220 

medullary (marrow cavity) area (M.Ar), periosteal perimeter (Ps.Pm), endocortical perimeter 1221 

(Ec.Pm), cortical thickness (Ct.Th), cortical bone mineral density (BMD), cortical porosity 1222 

(Ct.Po), polar moment of inertia (J), maximum moment of inertia (Imax) and minimum moment 1223 

of inertia (Imin). Data are shown as mean ± SEM. 1224 

 1225 

Figure S12: Bone resorption and formation are not affected by Daam2 knockdown. A) No 1226 

difference in the number of bone marrow-derived TRAP+ multinucleated cells was observed 1227 

between WT and Daam2tm1a/tm1a male mice (Scale bar = 100 μM; n = 4; mean ± SEM). B) No 1228 

difference was observed in the mineralization of bone marrow stromal cells between WT and 1229 

Daam2tm1a/tm1a mice. No difference in bone resorption marker TRAP (C) and bone formation 1230 

marker P1NP (D) was detected in the sera of WT and Daam2tm1a/tm1a mice. Data in (C) and (D) 1231 

are shown as mean ± SEM; Females are on left and males on right. 1232 

 1233 

Figure S13. Bone composition of Daam2 knockdown and wildtype mice. Bone composition 1234 

was measured in humeri from 16 week old male and female mice by Fourier Transformed 1235 

Infrared Spectroscopy (FTIR). A) Mineral to matrix ratio was determined as the ratio of the 1236 

integrated areas of the phosphate peak/amide I peak. B) Carbonate substitution was defined as 1237 

the ratio of the integrated areas of the carbonate/phosphate peaks. C) Collagen maturity or 1238 

collagen crosslinking was calculated as the ratio of the peak spectral intensities at 1660 and 1239 

1690 cm-1 respectively. D) Crystallinity or crystal maturity was calculated as the ratio of the peak 1240 

spectral intensities at 1030 and 1020 cm-1 respectively. 1241 

 1242 

Figure S14. Increased bone mass, stiffness and strength in adult Chromobox 1 heterozygous 1243 

deficient mice (Cbx1+/-) (a) X-ray microradiography images of femur and caudal vertebrae from 1244 

female wild-type (WT) and Cbx1+/- mice at postnatal day 112 (P112). Graphs show reference 1245 

ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 1246 

Parameters from individual Cbx1+/- mice are shown as red dots and mean values as a black line 1247 

(n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-diaphysis 1248 

cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular 1249 

number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical thickness 1250 
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(Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs showing 1251 

yield load, maximum load, fracture load, stiffness and energy dissipated prior to fracture derived 1252 

from 3-point bend testing of femurs. (d) Graphs showing yield load, maximum load and stiffness 1253 

derived from compression testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 1254 

 1255 

Figure S15. Increased bone mass and strength in adult WW Domain Containing Adaptor with 1256 

Coiled-Coil heterozygous deficient mice (Wac+/-) (a) X-ray microradiography images of femur 1257 

and caudal vertebrae from female wild-type (WT) and Wac+/- mice at postnatal day 112 (P112). 1258 

Graphs show reference ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted 1259 

lines) and 2.0SD (grey box). Parameters from individual Wac+/- mice are shown as red dots and 1260 

mean values as a black line (n=2 animals).  (b) Micro-CT images of proximal femur trabecular 1261 

bone (left) and mid-diaphysis cortical bone (right). Graphs showing trabecular bone 1262 

volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), 1263 

trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and cortical 1264 

bone mineral density (BMD). (c) Graphs showing yield load, maximum load, fracture load, 1265 

stiffness and energy dissipated prior to fracture derived from 3-point bend testing of femurs. (d)  1266 

Graphs showing yield load, maximum load and stiffness derived from compression testing of 1267 

vertebra. Scale bars: a, 1mm and b, 0.5mm. 1268 

 1269 

Figure S16. Increased bone mineral content and strength in adult DNA Replication and Sister 1270 

Chromatid Cohesion 1 heterozygous deficient mice (Dscc1+/-) (a) X-ray microradiography 1271 

images of femur and caudal vertebrae from female wild-type (WT) and Dscc1+/- mice at 1272 

postnatal day 112 (P112). Graphs show reference ranges derived from 320 WT mice, mean 1273 

(solid line), 1.0SD (dotted lines) and 2.0SD (grey box). Parameters from individual Dscc1+/- mice 1274 

are shown as red dots and mean values as a black line (n=2 animals).  (b) Micro-CT images of 1275 

proximal femur trabecular bone (left) and mid-diaphysis cortical bone (right). Graphs showing 1276 

trabecular bone volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness 1277 

(Tb.Th), trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and 1278 

cortical bone mineral density (BMD). (c) Graphs showing yield load, maximum load, fracture 1279 

load, stiffness and energy dissipated prior to fracture derived from 3-point bend testing of 1280 

femurs. (d)  Graphs showing yield load, maximum load and stiffness derived from compression 1281 

testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 1282 

 1283 

Figure S17. Increased bone mineral content and strength in adult DNA Regulator of Cell Cycle 1284 

knockout mice (Rgcc-/-) (a) X-ray microradiography images of femur and caudal vertebrae from 1285 

female wild-type (WT) and Rgcc-/- mice at postnatal day 112 (P112). Graphs show reference 1286 

ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 1287 

Parameters from individual Rgcc-/- mice are shown as red dots and mean values as a black line 1288 

(n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-diaphysis 1289 

cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular 1290 

number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical thickness 1291 

(Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs showing 1292 

yield load, maximum load, fracture load, stiffness and energy dissipated prior to fracture derived 1293 

from 3-point bend testing of femurs. (d)  Graphs showing yield load, maximum load and stiffness 1294 

derived from compression testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 1295 

 1296 

Figure S18. Increased bone mass and brittle bones in adult Tyrosine 3-1297 

Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Epsilon knockout mice 1298 

(Ywhae-/-) (a) X-ray microradiography images of femur and caudal vertebrae from female wild-1299 

type (WT) and Ywhae-/- mice at postnatal day 112 (P112). Graphs show reference ranges 1300 

derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 1301 
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Parameters from individual Ywhae-/- mice are shown as red dots and mean values as a black 1302 

line (n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-1303 

diaphysis cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), 1304 

trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical 1305 

thickness (Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs 1306 

showing yield load, maximum load, fracture load, stiffness and energy dissipated prior to 1307 

fracture derived from 3-point bend testing of femurs. (d)  Graphs showing yield load, maximum 1308 

load and stiffness derived from compression testing of vertebra. Scale bars: a, 1mm and b, 1309 

0.5mm. 1310 

 1311 

Figure S19. Bone quality analysis from rapid throughput screening murine knockouts. (a) The 1312 

graphs demonstrate the relationship between bone mineral content and yield load, maximum 1313 

load, fracture load and stiffness in femurs from P112 female WT mice (N = 320).  For yield load, 1314 

maximum load, and stiffness the blue line shows the linear regression (P = 0.005, P < 0.00001, 1315 

P = 0.003 respectively) and the grey box indicates ± 2SD.  For fracture load the blue line shows 1316 

the linear regression (P = 0.00003) and the grey box indicates ± 95% confidence intervals. The 1317 

mean values for Cbx1+/-, Dscc1+/-, Rgcc-/-, Wac+/- and Ywhae-/- (N = 2 from OBCD screen) mice 1318 

are shown in orange.  The Wac+/- femur yield load was 2.8 SD above the wild type reference 1319 

range and Dscc1+/- fracture load was on the 1.7th centile. (b) The graph demonstrates the 1320 

relationship between bone mineral content and yield load, maximum load and stiffness in 1321 

vertebrae from P112 female WT mice (N = 320). For yield and maximum loads the blue line 1322 

shows the linear regression (P = <0.00001) and the grey box indicates ± 95% confidence 1323 

intervals. For stiffness the blue line shows the linear regression (P = 0.0001) and the grey box 1324 

indicates ± 2SD.  The mean values for Cbx1+/-, Dscc1+/-, Rgcc-/-, Wac+/- and Ywhae-/- (N = 2 from 1325 

OBCD screen) mice are shown in orange.  1326 

 1327 

Figure S20. Bivariate scatterplots describing pairwise comparisons of each of the first 20 1328 

ancestry informative principal components derived from unrelated subjects of the 1000 1329 

Genomes study. Data points represent subjects that are coloured according to their predefined 1330 

1000 genomes study population*.  Pairwise combinations involving eigenvectors 1,2 and 5 1331 

represented the smallest number of eigenvectors that were able to adequately resolve the 1332 

British sub-population (GBR) from other ethnicities and were subsequently used to for clustering 1333 

and ancestry assignment of the UK Biobank sample. *CHB=Han Chinese in Beijing, China, 1334 

JPT=Japanese in Tokyo, Japan, CHS=Southern Han Chinese, CDX=Chinese Dai in 1335 

Xishuangbanna, China, KHV=Kinh in Ho Chi Minh City, Vietnam, CEU=Utah Residents (CEPH) 1336 

with Northern and Western European Ancestry,TSI=Toscani in Italia, FIN=Finnish in Finland, 1337 

GBR=British in England and Scotland, IBS=Iberian Population in Spain, YRI=Yoruba in Ibadan, 1338 

Nigeria, LWK=Luhya in Webuye, Kenya, GWD=Gambian in Western Divisions in the Gambia, 1339 

MSL=Mende in Sierra Leone, ESN=Esan in Nigeria, ASW=Americans of African Ancestry in SW 1340 

USA, ACB=African Caribbeans in Barbados, MXL=Mexican Ancestry from Los Angeles USA, 1341 

PUR=Puerto Ricans from Puerto Rico, CLM=Colombians from Medellin, Colombia, 1342 

PEL=Peruvians from Lima, Peru, GIH=Gujarati Indian from Houston, Texas, PJL=Punjabi from 1343 

Lahore, Pakistan, BEB=Bengali from Bangladesh, STU=Sri Lankan Tamil from the UK, 1344 

ITU=Indian Telugu from the UK  1345 

 1346 

Figure S21. Evaluating expectation maximization clustering model fit. The number of 1347 

predefined clusters is described on the x-axis and model fit on the y-axis [Inferred by three 1348 

model selection criteria:  i.e. log-likelihood (LogL), Akaike information criteria (AIC), and 1349 

Bayesian information criterion (BIC)]. Twelve predefined clusters were chosen for clustering as 1350 

sensitivity analyses suggested that this number provided a good compromise between model fit 1351 

and computational burden (i.e. more clusters requires more computation). 1352 
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 1353 

Figure S22. Bivariate scatterplots describing pairwise comparisons of ancestry 1354 

informative principal components 1,2 and 5 derived from unrelated subjects of the 1000 1355 

genomes study and all subjects from the UK Biobank sample. Data points represent 1356 

subjects that are coloured according to their allocated cluster, as estimated by Expectation 1357 

Maximization (EM) clustering. Samples from the UK-Biobank sample are annotated using 1358 

“UKB”. Other 1000 genomes poulations are annotated using the following: CHB=Han Chinese 1359 

in Beijing, China, JPT=Japanese in Tokyo, Japan, CHS=Southern Han Chinese, CDX=Chinese 1360 

Dai in Xishuangbanna, China, KHV=Kinh in Ho Chi Minh City, Vietnam, CEU=Utah Residents 1361 

(CEPH) with Northern and Western European Ancestry,TSI=Toscani in Italia, FIN=Finnish in 1362 

Finland, GBR=British in England and Scotland, IBS=Iberian Population in Spain, YRI=Yoruba in 1363 

Ibadan, Nigeria, LWK=Luhya in Webuye, Kenya, GWD=Gambian in Western Divisions in the 1364 

Gambia, MSL=Mende in Sierra Leone, ESN=Esan in Nigeria, ASW=Americans of African 1365 

Ancestry in SW USA, ACB=African Caribbeans in Barbados, MXL=Mexican Ancestry from Los 1366 

Angeles USA, PUR=Puerto Ricans from Puerto Rico, CLM=Colombians from Medellin, 1367 

Colombia, PEL=Peruvians from Lima, Peru, GIH=Gujarati Indian from Houston, Texas, 1368 

PJL=Punjabi from Lahore, Pakistan, BEB=Bengali from Bangladesh, STU=Sri Lankan Tamil 1369 

from the UK, ITU=Indian Telugu from the UK. 1370 

 1371 

Figure S23. Targeting DAAM2 exon 2 with CRISPR/Cas9 induced double stranded breaks 1372 

reduced DAAM2 protein level in SaOS-2 cells. A) DAAM2 protein level quantification in 1373 

control cells and edited DAAM2 cells (gRNA1 and gRNA2). Bars represent the mean of six 1374 

independent experiments ± SEM. *** represent P < 0.001 compared to control cells determined 1375 

by one-way Anova and Bonferroni post-hoc tests. B) Bands from representative Western Blots 1376 

of DAAM2 (upper panel) and total protein (lower panel) of at least six independent experiments 1377 

from different cell line passages. Ct: controls; gRNA1: DAAM2 edited cells with gRNA1; gRNA2: 1378 

DAAM2 edited cells with gRNA2.  1379 
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Tables 1380 

Table 1. Target gene identification methods enrichment for 57 positive control genes. No 1381 

positive control genes were identified by osteocyte Hi-C interactions therefore we did not 1382 

calculate its enrichment. Distance to gene was determined using 3’ and 5’ ends, instead 1383 

of the transcription start site. 1384 

 1385 

Target Gene Set OR (95% CI) P 
SaOS-2 ATAC-seq Peak Gene 58.5 (26.4 – 129.3) 1.3x10-75 

Coding SNP Gene 41.8 (14.3 – 121.6) 1.0x10-30 

Osteoblast Hi-C Interaction Gene 21.1 (6.4 – 69.6) 7.8x10-13 

Closest Gene 12.9 (7.1 – 23.4) 1.8x10-27 

Overlapping Gene Body 11.2 (5.2 – 23.8) 3.4x10-15 

All Genes Within 100 kbp 6.8 (3.9 – 11.7) 2.1x10-15 

Osteocyte Hi-C Interaction Gene NA NA 

 1386 

Table 2. Target gene identification methods enrichment for 1,240 osteocyte signature genes. 1387 

Distance to gene was determined using 3’ and 5’ ends, instead of the transcription start 1388 

site. 1389 

 1390 

Target Gene Set OR (95% CI) P 
Coding SNP Gene 7.4 (3.8 - 14.5) 5.2x10-12 

SaOS-2 ATAC-seq Peak Gene 6.1 (3.5 - 10.6) 2.6x10-13 

Overlapping Gene Body 5.1 (3.8 - 6.7) 1.1x10-37 

Closest Gene 4.6 (3.7 - 5.6) 4.1x10-53 

Osteoblast Hi-C Interaction Gene 3.8 (1.9 – 7.4) 2.5x10-5 

Osteocyte Hi-C Interaction Gene 2.9 (1.0 – 8.6) 4.0.x10-2 

All Genes Within 100 kbp 2.1 (1.7 - 2.5) 1.8x10-17 

  1391 
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