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ABSTRACT 

As ever-larger cohorts of human genomes are collected 
in pursuit of genotype/phenotype associations, 
sequencing informatics must scale up to yield complete 
and accurate genotypes from vast raw datasets. Joint 
variant calling, a data processing step entailing 
simultaneous analysis of all participants sequenced, 
exhibits this scaling challenge acutely. We present 
GLnexus (GL, Genotype Likelihood), a system for joint 
variant calling designed to scale up to the largest 
foreseeable human cohorts. GLnexus combines scalable 
joint calling algorithms with a persistent database that 
grows efficiently as additional participants are 
sequenced. We validate GLnexus using 50,000 exomes 
to show it produces comparable or better results than 
existing methods, at a fraction of the computational cost 
with better scaling. We provide a standalone open-
source version of GLnexus and a DNAnexus cloud-
native deployment supporting very large projects, 
which has been employed for cohorts of >240,000 
exomes and >22,000 whole-genomes. 

 

1. INTRODUCTION 
Sequencing large cohorts of human genomes to 
associate germline variation with phenotypes and 
disease risk is a mainstay of modern genome science.   
Variant calling methodologies for short-read 
sequencing readily ascertain single-nucleotide variants 
(SNVs) and small insertions/deletions (indels) relative 
to the reference genome assembly, typically recorded in 
Variant Call Format (VCF) [1]. In addition to describing 
variants for one sequenced participants, VCF can 
present genotypes for an entire cohort, in a 2-D matrix 
of variant sites and study participants, filled with the 
diploid genotypes and quality-control (QC) measures – 
referred to as a Project VCF (pVCF). The pVCF's matrix 

format facilitates downstream calculation of allele 
frequencies and association testing statistics in the 
cohort or any phenotype-defined subsets of it. 

The 1000 Genomes Project and other early cohort 
sequencing efforts developed methodologies for pVCF 
production based on pooled analysis of all available 
sequence read mappings across the cohort [2–8], 
maximizing the evidence used to resolve noisy 
genotypes, but creating formidable data processing 
challenges as cohort sizes and sequencing depths both 
increased. To ameliorate this, intermediate formats 
were introduced to compactly summarize key features 
of potential variants and genotypes from each 
participant’s read mappings separately, which can be 
reprocessed jointly into pVCF or a similar matrix format 
[9]. Among the most successful of these has been an 
adaptation of Genome VCF (gVCF) – a VCF extension 
supplementing variant sites with coverage information 
to distinguish reference-equivalent from uncertain 
regions [10] – used for pVCF production in the Genome 
Analysis Toolkit (GATK) [11,12]. 

Joint variant calling, the process of producing the pVCF 
matrix from the set of gVCFs or equivalents, has several 
challenges which increasing cohort sizes tend to 
exacerbate, pressing for continued methodological 
innovation to keep pace. (1) variant representation: large 
cohorts frequently exhibit multiple and overlapping 
alleles at a given genome locus, requiring the pVCF to 
trade off between completeness and mutual-exclusivity. 
Compounding this, VCF admits multiple ways to write 
the same variant, necessitating algorithms to unify them 
[13,14]. (2) joint genotyping: the initial gVCF genotype 
calls for each participant, whether variant or reference-
equivalent, can be refined in light of the cohort-wide 
allele frequencies and error patterns [3,15,16]. (3) 
scalable data processing: while each gVCF is relatively 
compact, pVCF production still involves reprocessing 
the entire cohort at once, with super-linear scaling in 
runtime and output size as the cohort grows and more 
rare variants are genotyped. 
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This article presents GLnexus (GL, Genotype 
Likelihood), cloud-based software for joint variant 
calling designed to scale up to any cohort size 
foreseeable under the gVCF/pVCF data model. GLnexus 
combines scalable joint calling algorithms with a 
persistent database for querying the gVCF data corpus 
that grows efficiently as additional participants are 
sequenced. We evaluate GLnexus pVCF quality in a 
cohort of 50,000 exomes and describe its application on 
>240,000 exomes and >22,000 whole genomes. 
GLnexus' algorithms are available in a standalone, open-
source tool, while a DNAnexus cloud-based framework 
facilitates deployment for large-scale data production. 

2. ALGORITHM & SYSTEM DESIGN 
2.1 Joint variant calling in large cohorts 
To frame GLnexus’ design, we begin with a general 
definition of gVCF-to-pVCF joint variant calling, 
independent of the specific implementation. The gVCF 
file representing a study participant decomposes the 
length of each reference chromosome (contig) into a set 
of candidate variant sites and intervening stretches 
without evident variation. Each such record 
encompasses one or more reference base positions and 
specifies a set of candidate alleles replacing the 
reference subsequence in the participant's genome, 
beginning with the reference allele itself, followed by 
zero or more alternate alleles, and lastly a catch-all entry 

symbolizing "other." These k alleles imply k(k+1)/2 
candidate diploid genotypes. Each record includes a 
vector of genotype likelihoods Pr(D | G = g), the 
probability of the observed data (alignments of 
sequence reads to the locus) assuming the specific 
genotype g, according to a probabilistic model intrinsic 
to the gVCF caller. The maximum-likelihood genotype 
call, argmaxg Pr(D | G = g), and various QC measures are 
also reported; in stretches without apparent variation, 
this is reference-homozygous with QC measures 
reflecting read coverage and quality. 

Joint calling a set of gVCFs to pVCF involves, first, 
deriving a set of "unified" variant sites representing all 
discovered alleles passing QC thresholds (Figure 1). 
Then, for each participant, the pertinent gVCF alleles, 
genotypes, likelihoods, and QC measures are 
"projected" onto the unified sites, including reference-
homozygous calls where applicable, sometimes using 
multiple gVCF records to inform one pVCF matrix entry 
and vice-versa. Lastly, the maximum likelihood 
genotype calls in each gVCF may be revised to 
maximum a posteriori calls, argmaxg Pr(G = g) Pr(D | G 
= g), where the prior might factor in (1) de novo terms 
from population genetics theory, (2) site-specific 
empirical estimates of allele frequencies and error 
patterns, and (3) participant-specific terms reflecting 

Figure 1. Allele unification in joint variant calling. (A) Example abbreviated gVCF records for four 
participants, giving genome position, reference and alternate alleles, and initial called genotypes. Gray 
records indicate sequencing coverage for regions with no apparent variation. (B) Schematic view of the 
alternate alleles seen across the four gVCF inputs; they cluster into two sites except for a spanning 
deletion allele.  (C) Example pVCF representation for these variants, with two multiallelic sites and a third 
“monoallelic” site representing the deletion allele which could not be unified into the multiallelic sites 
without introducing phase constraints artificially. The input alleles, genotype calls and (not shown) QC 
measures from the input gVCF records must be “projected” onto the pVCF site representation. 
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ethnicity, relatedness to other participants, or 
experimental batch. 

With this framework, we discuss selected features of 
GLnexus' joint-calling implementation that proved 
significant for use with very large cohorts. 

Hybrid allelic representation. To facilitate 
downstream summary statistics without double-
counting, ideal unified sites would be completely non-
overlapping, with mutually-exclusive alleles. But, this 
can be infeasible when deletion and multi-nucleotide 
variants span several other, generally unphased alleles. 
Such complications are unusual within any one genome 
but arise more frequently amongst the many rare alleles 
inevitably found in larger cohorts. 

GLnexus' allele unification algorithm considers all 
discovered alleles (meeting QC thresholds) in 
descending order of frequency. It greedily unifies these 
into non-overlapping multi-allelic variant sites, padding 
alleles with reference bases and recognizing 
synonymous representations as needed. Upon 
encountering an allele that doesn't unify into the multi-
allelic sites constructed so far, it generates a specialized 
"mono-allelic" site, conveying for each participant the 
presence (copy number) of that allele only [17]. The 
other overlapping sites convey the copy numbers of the 
reference and any other alleles, with missing or partial 
genotype calls for carriers of the separated allele. 

This hybrid representation (Figure 1C) includes in the 
pVCF all discovered alleles passing QC, usually within 
non-overlapping sites; while ensuring that, for any given 
reference base position, it indicates presence of at most 
two allele copies in each participant genome. Its trade-
offs include presenting two distinct kinds of pVCF sites 
and complicating simple alleles when lengthier ones 
overlap them. Alternatives, seen with other methods, 
are to omit difficult-to-unify alleles and/or to generate 
more overlapping sites, possibly with redundant calls. 

Empirical frequency prior. Population allele 
frequencies can improve genotype calls in the pVCF 
matrix. For example, upon encountering a locus covered 
only by a few reads all exhibiting a certain alternate 
allele, a gVCF caller would reasonably report a 
homozygous-alternate genotype (with poor QC 
measures). With further knowledge that this allele is 
very rare, joint calling can statistically "shrink" the 
called genotype to heterozygous, since a higher 
threshold of evidence is needed to justify the 
homozygous call. Borderline heterozygous calls might 
similarly revise to major-allele homozygous. With deep 
sequencing coverage, such poorly-covered regions arise 
infrequently in any one participant genome; yet they 

remain an inevitable source of noise throughout the 
pVCF genotype matrix for the whole cohort. 

Initially, we formulated a genotype prior with Hardy-
Weinberg equilibrium genotype frequencies implied by 
the empirical allele frequencies estimated from the 
gVCF cohort. Testing this on cohorts of tens of 
thousands, we noted an undesirable effect also observed 
with other joint-calling methods [18]: sensitivity to very 
rare alleles (singletons or private to a family) declined 
with increasing cohort size N, owing to their declining 
estimated allele frequencies proportional to 1/2N. We 
therefore reformulated the prior with a ramp function 
on the estimated allele frequency; intuitively, this stops 
escalating the evidence threshold to call rare genotypes 
once the cohort is large enough to confidently 
distinguish rare and common alleles (a few thousand 
participants). This modified prior ensures consistent 
sensitivity to rare alleles as the available cohort grows. 

2.2 gVCF database for incremental 
reprocessing 
To produce a pVCF, GLnexus must visit each unified site 
and process pertinent records from all cohort gVCFs — 
a challenging data access pattern, given that the records 
are variable-length and sometimes overlapping, and 
that the compressed gVCFs total many terabytes for 
modern cohorts, in one file per participant. 
Furthermore, to support sequencing projects carrying 
on over months and years, we sought to streamline 
delivery of successively larger pVCFs, minimizing 
repeated processing of the inputs. 

GLnexus imports gVCF files into a persistent database 
backed by RocksDB (http://rocksdb.org), a key/value 
storage library providing efficient scans of ordered key 
ranges, parallel bulk load, storage compression, and 
online defragmentation. During import, each gVCF 
record is assigned to a 30-kilobase reference genomic 
range "bin" according to its position. The records in 
each bin are serialized to a binary message and stored in 
RocksDB using the key <bin genomic range, 
participant> (Figure 2A). To retrieve records near a 
certain genomic range, GLnexus asks RocksDB for an 
ordered scan of keys beginning with the relevant bin(s), 
thus efficiently "slicing" the cohort gVCF corpus. A 
binary search index stored alongside each bin further 
expedites locating the gVCF records which directly 
overlap the query range. (Records overlapping multiple 
bins are repeated in each bin, and the query logic hides 
duplication while scanning multiple bins.) 

When additional participants' gVCF files subsequently 
become available, the database can incorporate the new 
bins throughout the ordered key space without 
immediately rewriting existing stored data, owing to 
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RocksDB's log-structured merge-tree scheme [19]. 
pVCF production can then proceed on the full cohort or, 
by taking advantage of the database's efficient random 
lookup, on any subset of participants or sites. 

2.3 Parallel joint calling workflow 
GLnexus employs a three-stage computational 
workflow to generate pVCF starting from gVCF files. (1) 
Loading the files into the database. During this process, 
the system records the candidate alleles seen along with 
their QC measures. (2) The discovered alleles are QC-
filtered and unified into variant sites. (3) The unified 
sites are genotyped across the cohort by revisiting the 
gVCF data previously stored in the database, generating 

pVCF. Internally, GLnexus parallelizes each stage — 
loading by file, unification by chromosome, and 
genotyping by site — utilizing up to dozens of threads 
on one compute node efficiently. 

Furthermore, the operations can be distributed across 
many compute nodes by "sharding" the cohort (Figure 
2B). In this more complex deployment, each node loads 
a subset of the gVCF files, transmits the discovered 
alleles for centralized unification, receives back the sites 
for genotyping, and finally generates pVCF. The 
resulting pVCF shards — each presenting the exact 
same sites and alleles for a subset of the cohort — are 
suitable for use as a distributed dataset in a parallel 
analysis environment such as Apache Hadoop or Spark, 
which can also be used to materialize a monolithic 
pVCF file by column-binding the shards, if so desired. 

Our cohort-sharding strategy has three notable 
advantages over approaches that divide up the genome 
for separate processing. (1) It more naturally 
accommodates incremental growth of the gVCF cohort 
as additional participants are sequenced. (2) It is less 
necessary to cut the genome into ever-smaller ranges, 
which can cause complications with variants near the 
cut points. (3) It is less prone to outlier running times 
among the several compute jobs owing to genome 
regions with unusually dense multiallelic variation, 
which tends to worsen with cohort size. 

Figure 2. GLnexus database and workflow. (A) To 
expedite access by genome position, GLnexus 
loads the gVCF corpus into an ordered key-value 
database supporting efficient scans of contiguous 
key ranges. Records from each gVCF file are 
assigned to a 30-kilobase genome position bin. 
Bins from each participant are keyed so that all 
records overlapping a given genome position can 
be retrieved with a database key range scan. The 
database values include gVCF records in htslib’s 
binary format, including genotype likelihoods, 
and a position search index. (B) Distributed joint-
calling cloud workflow, illustrated with two 
“shards” of the cohort. gVCF files are loaded into 
a database using separate compute nodes for 
each shard. Alleles are simultaneously recorded 
and sent to a central process for unification into 
pVCF sites. These sites are genotyped across the 
cohort shards by revisiting records stored in the 
gVCF database, producing pVCF shards with 
corresponding rows, suitable for loading into a 
parallel analytics environment such as Apache 
Hadoop or Spark. 
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3. VALIDATION STUDY WITH 50,000 
EXOMES 
To benchmark GLnexus, we reanalyzed N=50K deep 
whole-exome sequences from the DiscovEHR cohort, 
population genetics of which have been published 
previously [20]. We generated gVCFs for these exomes 
using GATK HaplotypeCaller 3.8 and joint-called the 
exome capture targets on chromosome 2 (2.6 Mbp 
covered) using both GATK (CombineGVCFs in batches 
of N=500, followed by GenotypeGVCFs) and GLnexus. 
Low-complexity regions were then excluded from 
comparisons. With default settings, the two methods 
produced generally similar pVCFs, as expected given 
identical gVCF inputs from deep sequencing, with 
roughly 280,000 distinct alternate alleles, ~42% 
singleton (Table 1). At corresponding sites, the pVCF 
matrices showed discordant genotype calls (variation 
indicated in one but not the other) in only 0.00073% of  

 12.8 billion cells and 0.12% of 80 million cells with any 
variation in either pVCF. 

Beneath this overall concordance, GLnexus included 
more alleles in the pVCF sites — especially rare indels, 
of which GLnexus carried over 33% more (Figure 3A). 
Of 3,228 biallelic indel sites in GLnexus' pVCF with no 
overlap in GATK's pVCF, nearly all (98.7%) had ten or 
fewer copies called in the cohort; 45.2% were singletons, 
with median Genotype Quality (GQ) score of 74 (Phred 
scale), and the remainder were called in multiple 
participants with median quality 57.  

Since both methods have configurable thresholds, we 
sought to verify that GLnexus didn't merely sacrifice 

quality for sensitivity relative to GATK. Focusing on the 
877 child, mother, and father trios within the 50K 
cohort, we counted apparent Mendelian inheritance 
violations in their called genotypes; i.e. sites where the 
two allele copies called in the child lacked copies called 
in each parent. We used these as a proxy for genotype 
errors, since far more violations were indicated than a 
plausible number of de novo mutations per child. (Joint 
calling can mitigate only a fraction of such errors, which 
have numerous sources throughout the sequencing and 

Table 1. Chromosome 2 pVCF characteristics for 
N=50,000 DiscovEHR exomes 
 

GLnexus GATK3.8 

pVCF sites (chromosome 2) 268 580 259 819 

    Unique (no overlap in other) 10 851 92 

    With >1 alternate alleles 15 849 11 618 

    Overlapping 4 017 7 381 

   

Alternate alleles 287 363 272 081 

    SNV 265 262 255 407 

    indel 22 101 16 674 

Alternate alleles, ≥0.1% freq 9 857 9 877 

    SNV 9 498 9 518 

    indel 359 359 

Alternate alleles, singleton 121 885 117 883 

    SNV 111 510 109 824 

    Indel 10 375 8 009 

Figure 3. Sensitivity and error 
rate in GLnexus and GATK 
pVCFs for 50,000  chromosome 
2 exomes. (A) Number of 
distinct alternate alleles in 
pVCF sites, decomposed by 
copy number in called 
genotypes. (B) Violations of 
Mendelian inheritance 
indicated within genotype 
calls for 877 trios in the cohort. 
Left, distribution of violation 
count per trio on chromosome 
2. Right, rate of violations per 
trio & site exhibiting SNV or 
indel variation. The GLnexus 
pVCF exhibits both higher 
sensitivity and lower 
Mendelian violation rate, 
especially with indels. 
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bioinformatics.) The GLnexus pVCF tended to indicate 
fewer Mendelian violations, and fewer violations per 
site with variation (Figure 3B). This difference was most 
pronounced for indels: the GATK pVCF indicated a 
Mendelian violation in 8.2% of 44,107 genotype triplets 
with indel variation, reflecting the challenges indels still 
present for short-read sequencing, while GLnexus' 
corresponding rate was 6.8%. 

We also compared unity of variant representation. The 
GLnexus pVCF included a higher proportion of sites 
with multiple alternate alleles (5.9% vs. 4.5%), and a 
smaller proportion of sites overlapping one or more 
others (1.5% vs. 2.8%); these differences were mostly due 
to GLnexus' inclusion of deletions at multiallelic sites, 
when possible. Monoallelic sites, generated when 
multiallelic unification was not possible, comprised 
0.35% of sites in the GLnexus pVCF, overlapping 1.1% of 
the primary sites. 

Joint calling scaling from N=1K to N=50K. Next, we 
joint-called random subsets of the 50K cohort 
numbering 1K, 5K, 10K, and 25K participants, each 
nested within the larger sets, to simulate how pVCF 
properties would evolve as a sequenced cohort grows. 
As expected, the number of sites, proportion of sites 
with multiple alternate alleles, and proportion of 
overlapping sites each grew steadily with N (Table 2). 
The proportion of sites with only rare alleles (total 
alternate frequency <0.1%) climbed from 68% up to 
96%, while at the same time the proportion of singleton 
biallelic sites declined from 58% down to 41%, as the 
larger cohorts tended to capture more carriers of each 
rare allele. The corresponding GATK pVCFs showed 
proportionate trends. 

To illustrate our modified population frequency prior, 
we checked how many of the sites in the N=5K pVCF 
had no overlapping site in the superset 10K, 25K, and 
50K pVCFs. Using GATK, this number climbed from 309 
of the 77,138 5K sites (0.40%) absent in the 10K pVCF, to 
465 (0.60%) absent with 25K and 492 (0.64%) absent 
with 50K. In contrast, GLnexus lost sensitivity only to a 
residual number (fewer than 10) of the sites in its 5K 
pVCF with larger cohorts, which were artifacts of 
filtering low-complexity regions. 

The sites absent in the larger GATK pVCFs tended to 
represent very rare alleles with below-average call 
quality (median GQ 71 among the 492 sites absent in the 
50K pVCF), often heterozygous with multiple, but far 
below 50%, supporting reads for the alternate allele – 
perhaps reflecting segmental duplications or other 
difficult-to-map regions. The genotype quality at 
incrementally lost sites tended to increase with each 
larger cohort, consistent with our observations 
designing GLnexus’ frequency prior. 

The pVCF output from joint-calling would typically 
undergo further QC filtering suited to specific 
downstream analyses, such as identifying candidate de 
novo mutations. Our observations show that GLnexus 
produces a similar but more comprehensive, accurate, 
and unified pVCF substrate for downstream analysis.  

Runtime comparison. Lastly, we tallied the 
computational core-hours consumed to joint-call the 
1K, 5K, 10K, 25K, and 50K nested cohorts (Figure 4). 
GLnexus incurred a fraction of the compute time 
compared to GATK in each case, and the relative 
difference magnified as the cohort grew, from 3.8-fold 
fewer core-hours for 1K up to 6.6-fold fewer for 50K. We 
made these runtime comparisons conservatively, by 
starting each GLnexus run from the original gVCF files, 
and including a final Spark-based stage to generate a 
single pVCF file. We'd therefore expect GLnexus’ 
relative costs to be lower in routine operations, growing 
the cohort incrementally and delivering sharded pVCF 
to the downstream environment. 

Contributing factors to GLnexus' relative efficiency 
include its gVCF-optimized database, performant 
C/C++ coding, and different empirical prior estimators. 
On the other hand, GLnexus is designed for diploid 
genotyping, in contrast to GATK's model supporting 
higher ploidies, and does not compute all the same QC 
measures. 

GATK version 4.0 recently introduced new tools to scale 
up joint calling. Our initial attempts have not yet 
observed them to operate more efficiently overall than 
GATK 3.8 with these cohorts. We plan to update these 
observations with continued efforts.  

Table 2. GLnexus chromosome 2 pVCF sites with nested subsets of the 50,000 DiscovEHR exomes 
 

    N=1K     N=5K     N=10K     N=25K     N=50K 

pVCF sites (chromosome 2)  29 179    76 928  114 922  188 336   268 580 

    With >1 alternate alleles 276   (.95%) 1 539 (2.0%) 3 073 (2.7%) 7 842 (4.2%) 15 849 (5.9%) 

    Overlapping 69   (.24%) 349 (.45%)   627 (.55%) 1 784 (.95%) 4 017 (1.5%) 

    With <0.1% alternate freq 19 845    (68%) 67 224  (87%) 105 113  (91%) 178 487  (95%) 258 722  (96%) 

    With 1 singleton alternate 16 811    (58%) 43 534  (57%) 61 088  (53%) 86 934  (46%) 109 015  (41%) 
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4. AVAILABILITY 
We provide a standalone, open-source version of 
GLnexus at https://github.com/dnanexus-rnd/GLnexus 
. It includes the joint calling algorithms in a command-
line tool that processes gVCF input files to a pVCF 
output file. This multithreaded tool can utilize a 
powerful server with dozens of threads, while the 
external database lets it operate on datasets larger than 
the available random-access memory. The DNAnexus 
cloud-native version of GLnexus supports extremely 
large cohorts by scaling out on many compute nodes, 
incremental gVCF database growth and reprocessing, 
and pVCF delivery as a distributed dataset rather than a 
monolithic file. The two versions produce identical 
scientific results, differing in these scalability and 
production-oriented features. 

GLnexus has a declarative configuration scheme 
enabling it to interpret gVCF inputs from several 
upstream variant calling tools and accommodate others 
in the future. In addition to GATK HaplotypeCaller used 
above, suitable configurations are included for Platypus 
[7], xAtlas [21], DeepVariant [22], Sentieon DNAseq [23], 
and Edico DRAGEN, though not all have been calibrated 
to the same degree. Additionally, GLnexus can be 
operated in a simplified mode to merge input gVCFs but 
skip QC filtering and genotype recalculation. 

5. APPLICATIONS 
The Regeneron Genetics Center deploys GLnexus for 
joint calling on several exome sequencing cohorts and 
cohort unions. The largest to date encompassed 243,953 

participants, processing 33 Terabytes (TB) of 
compressed gVCF inputs to 6.8TB of compressed pVCF, 
with 2.7 trillion genotype matrix entries in the 39Mbp 
exome capture targets. The distributed GLnexus 
workflow delivered this in approximately 36 hours wall 
time using 1,600 threads, roughly 14 thread-minutes per 
exome.  

The Human Genome Sequencing Center at Baylor 
College of Medicine used the distributed GLnexus 
workflow to merge xAtlas gVCFs [21] generated from 
22,609 whole genomes (36.6x median coverage). The 
combined CRAM-to-pVCF workflow generated a 6.7 
trillion genotype matrix from 481 TB of CRAM files in 
approximately 35 hours wall time and less than 7 core-
hours per WGS sample. To minimize batch effects 
within this cohort sequenced across several NIH-
sponsored genome centers, the CRAM files were all 
generated using the “functional equivalence” protocol 
for WGS raw data processing [24]. The standalone 
version of GLnexus has also been used to merge xAtlas 
gVCFs for 16,521 exomes in 30 wall hours on a 32-thread 
compute node. 

6. DISCUSSION 
Joint-calling with the cohort sharded across compute 
nodes will enable GLnexus to scale up to any N 
foreseeable with the gVCF/pVCF data model for short-
read sequencing. Eventually, long- or linked-read 
sequencing of large cohorts may motivate a new 
paradigm focusing on lengthy haplotypes over isolated 
variant sites, demanding new algorithms and tools; but 
GLnexus’ architecture is well-suited to serve current and 
approaching needs. 

The pVCF’s dense genotype matrix is notably space-
inefficient for large cohorts: with N=50K, 96% of sites 
had total alternate allele frequency <0.1% (Table 2), 
implying that the vast majority of the matrix consists of 
reference-homozygous or non-called entries (and their 
QC metrics, typically more space-consuming than the 
discrete genotypes). Numerous novel formats and 
advanced data structures have been proposed recently 
to exploit this sparsity for impressive efficiency gains. In 
view of VCF’s wide adoption for interoperable data 
exchange, however, there may also be a role for an 
incrementally evolved “sparse VCF,” standardized 
through a community forum such as the Global Alliance 
for Genomics and Health. 

Genome-wide association studies of multiple separate 
cohorts can be aggregated through meta-analysis of 
summary statistics, with much less risk to the 
participants’ genetic privacy compared to sharing full 
genotypes [25,26]. This increases discovery power 
through larger N than otherwise feasible owing to cost, 

Figure 4. Runtime scaling for joint calling 
chromosome 2 exomes using GATK and GLnexus. 
Nested sets of N=1K, 5K, 10K, 25K, and 50K 
participants were tested, starting from original gVCF 
files in each case. GLnexus uses a fraction of the 
compute time and shows more favorable scaling as 
the cohort grows. 
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recruitment challenges, and data-sharing policy 
restrictions. These meta-analysis techniques, which rely 
on genotype data summaries such as site covariance to 
control potential confounders, may be challenging to 
fully extend from microarray- to sequencing-based 
studies, which inherently ascertain different sites in 
different cohorts, among other distinctive batch effects. 
GLnexus’ sharding scheme harmonizes the 
representation of all discovered variants through 
exchange of similar summary information between 
cohort subsets on different compute nodes. Although 
presently implemented to scale within one datacenter, 
we plan to extend this to harmonize sequenced cohorts 
held in separate repositories, without centralizing 
individual-level genotypes, to facilitate federated 
association meta-analysis.  
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