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 602	

Supplementary Figure 2. Microscopic analysis of cell viability. Cell viability was 603	

estimated for BL21 cells expressing GFP_012 (non-toxic variant) and GFP_170 (toxic 604	

variant). Brightfield images give an estimate of cell morphology and densities. GFP and RFP 605	

channels were used to determine the number of cells expressing GFP and the number of dead 606	

cells stained by Propidium Iodide (PI) respectively. At 0 min (just before IPTG induction) 607	
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GFP_012 and GFP_170 cultures have similar cell densities and morphology. For cells 608	

expressing GFP_012, we see a steady increase in cell number after induction and GFP 609	

expression appears after 30 mins of induction. There is no significant cell death (PI stained 610	

cells) at any given time point. For cells expressing GFP_170 cell densities do not increase 611	

rapidly and most cells lose their morphology. We see a rapid increase in number of dead cells 612	

and the severity of the phenotype can be estimated at 240 min time point when PI staining 613	

shows only dead cells or debris from the dead cells. GFP expression is not seen for GFP_170 614	

due to a strong mRNA secondary structure at its 5’ end, impeding its translation. The scale 615	

bar is 5 µm. 616	

  617	
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 618	

 619	

Supplementary Figure 3. Measurement of GFP expression by Western blotting (A) 620	

Expression of four toxic variants of GFP in the presence and absence of RBS. UI, uninduced 621	

control; M, marker. GFP expression was analysed by probing with anti-GFP polyclonal 622	

antibody (abcam 290). Ponceau stained blot shows equal loading. (B) GFP_170 toxic 623	

fragment (nt 514-645) expression fused to FLAG tag in all three reading frames (S1, S2, and 624	

S3) was analysed by probing with monoclonal Anti-FLAG (F3165 sigma). UI, uninduced 625	

control; M, marker; C, control sample expressing two Flag-tagged proteins of size 116 and 90 626	

kDa. No FLAG expression was detected from S1, S2 or S3 constructs. 627	

  628	
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 629	

Supplementary Figure 4. The toxic element resides near the 3’end of GFP_170 and 630	

toxicity is independent of translation. (A) Growth curve for BL21 cells expressing 631	

constructs GFP_012, GFP_170 and their shuffled variants JB_015 and JB_016. JB_015 632	

consists of GFP_170 (nts 1-497) and GFP_012 (498-720); JB_016 consists of GFP_012 (1-633	

449) and GFP_170 (450-720). (B) Fluorescence of the shuffled constructs. JB_015 is non-634	

toxic and shows a low level of fluorescence; JB_016 and GFP_170 are toxic and almost non-635	
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fluorescent. (C) Growth rate of cells expressing GFP_170 constructs with internal stop 636	

codons before and after the toxic fragment (nt 514-645) in all three reading frames. TAA stop 637	

codons were inserted at nucleotide positions 469 (stop2_frame1), 470 (stop2_frame2) and 638	

471 (stop2_frame3) upstream of the toxic fragment and 643 (stop3_frame1), 644 639	

(stop3_frame2) and 645 (stop3_frame3) downstream of toxic fragment. (D) Growth curves of 640	

constructs having toxic fragment from GFP_170 fused to FLAG tag at the 3’ end in all three 641	

reading frames. All three constructs retain toxicity. (E) Growth curves of mKate2 and toxic 642	

GFP_170 fragment fused to mKate2 at the 5’ end. Fusion construct retains toxicity (F) 643	

Expression of mKate2. No fluorescence is detected when mKate2 is fused with the toxic 644	

fragment from GFP_170.  645	

 646	
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 648	

 649	

Supplementary Figure 5. Growth analysis of GFP constructs generated by shuffling and 650	

multiple synonymous mutations.  (A) 36 constructs were generated by DNA shuffling of 651	
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GFP_012 (blue) and GFP_170 (orange). All constructs encode full length GFP. Constructs 652	

are colour coded according to the sequence identity with GFP_012 and GFP_170. The 653	

constructs from top to bottom are arranged in ascending order of their growth (OD 595nm). 654	

The highlighted region shows that most constructs having sequence identical to GFP_170 655	

(orange) in 520-620 nt region are toxic. (B) An inset of the highlighted area from Panel A 656	

summarizes the results of multiple synonymous mutations that were generated in the toxic 657	

region. Each row represents a particular mutated variant and each column represents the 658	

nucleotide position. Columns highlighted orange and black represent nucleotides identical to 659	

GFP_170 and synonymous substitutions respectively. Each construct has 2-9 substitutions. 660	

Synonymous mutations in the region 534-624 nt reduce or abolish the toxicity of GFP_170 661	

but any number of synonymous mutations in 627-642 nt region had no effect on toxicity. All 662	

data are averages of 9 replicates, +/- SEM. 663	

  664	
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 665	

 666	

Supplementary Figure 6. No correlation between GC3 content and growth rate of GFP 667	

variants. (A-B) The correlation between GC3 content and growth (OD 595nm) of GFP 668	

variants in BL21 cells is driven by two toxic RNA fragments shared between a number of 669	

variants: GFP_155 nt 490-720, and GFP_170 nt 514-645, marked in orange. After removal of 670	

these variants (panel B), we no longer see any relationship between GC3 content and growth. 671	

(C-D) There is no relationship between GC3 content and growth in an independent set of 22 672	

GFP constructs, either in DH5α (C) or BL21 (D) strains. All data are averages of 9 replicates, 673	

+/- SEM. 674	
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 676	

 677	

Supplementary Figure 7. Spot assay for semi-quantitative estimation of cell viability of 678	

BL21 cells expressing OGCP variants. OGCP-WT (wild type OGCP), OGCP_noRBS 679	

(OGCP lacking functional RBS) and OGCP_CO (codon-optimized OGCP) variants were 680	

cloned in pGK8 plasmid and transformed in BL21 and C43 strains. In the absence of IPTG 681	

there are no difference in the viabilities between strains or constructs; in the presence of 682	

IPTG, the three constructs are toxic in BL21 cells but not in C43 cells. 683	
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 685	

 686	

Supplementary Table 1. Analysis of suppressor genotypes. 15/18 green suppressors 687	

showed a complete replacement of PlacUV5 promoter with PlacWT, 3/18 showed replacement of 688	

PlacUV5 with PlacWeak. 3/4 white suppressors had no changes in the promoter of T7 RNA 689	

polymerase, while for 1/4 we could not definitively assign the promoter type. 690	

  691	
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