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Abstract 

When testing genotype-phenotype associations using linear regression, departure of the 

trait distribution from normality can impact both Type I error rate control and statistical 

power, with worse consequences for rarer variants. While it has been shown that 

applying a rank-normalization transformation to trait values before testing may improve 

these statistical properties, the factor driving them is not the trait distribution itself, but 

its residual distribution after regression on both covariates and genotype. Because 

genotype is expected to have a small effect (if any) investigators now routinely use a 

two-stage method, in which they first regress the trait on covariates, obtain residuals, 

rank-normalize them, and then secondly use the rank-normalized residuals in 

association analysis with the genotypes. Potential confounding signals are assumed to 

be removed at the first stage, so in practice no further adjustment is done in the second 

stage. Here, we show that this widely-used approach can lead to tests with undesirable 

statistical properties, due to both a combination of a mis-specified mean-variance 

relationship, and remaining covariate associations between the rank-normalized 

residuals and genotypes. We demonstrate these properties theoretically, and also in 

applications to genome-wide and whole-genome sequencing association studies. We 

further propose and evaluate an alternative fully-adjusted two-stage approach that 

adjusts for covariates both when residuals are obtained, and in the subsequent 

association test. This method can reduce excess Type I errors and improve statistical 

power. 

 

Key words: Rank-normalization; Rare variants; Whole-Genome Sequencing.   
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Introduction 

Linear regression-based tests of associations of genetic variants with a quantitative trait 

can be sensitive to departure of the trait distribution from normality, particularly when 

testing rare variants. To address this problem, an approach that is widely used in genetic 

association studies (within the regression framework) is to apply a rank-normalization 

of trait values, followed by subsequent analysis of the rank-normalized trait as the 

analysis outcome (see e.g. (ref. 1, 2) and a comprehensive review in (ref.3)). In the 

context of rare variants, it was shown by Tang and Lin (ref.4) that applying rank-

normalization on traits prior to any analysis and testing helps to control the rate of Type 

I errors and increase statistical power. However, the factor actually determining the 

statistical properties of regression-based trait-variant association tests is not the 

distribution of the trait but instead its distribution after regressing out covariates. 

Indeed, it was shown in (ref.3) that rank-normalizing traits may still result in non-

normal residuals, resulting in invalid Type I error rate control, with the problem being 

most severe when the distribution of the residuals is heavily skewed. Recent Genome-

Wide Association Studies (GWASs) have instead used a different approach, applying 

the rank-normalization to the residuals that were generated by regressing the trait on 

covariates (ref.5, 6-9) in stage 1, and then using these transformed residuals as the 

outcomes in subsequent analyses, without further adjustment for covariates (stage 2). 

For GWASs, which primarily address the analysis of common genetic variants, this 

partly-adjusted two-stage approach has been criticized (ref.10, 11) due to potential loss 

of power, and biased estimates when covariates are correlated with genotypes. 

However, some researchers (ref.12) still suggest that this approach is appropriate for 

analysis of rare variants. As rare variant analysis is the focus of most Whole Genome 
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Sequencing (WGS) studies, which are currently underway, there is now a strong 

motivation to better understand why these problems occur and how transformations and 

covariate associations interplay to affect them, and to provide a comprehensive 

framework for genetic association analyses for quantitative traits that is appropriate 

under a wide range of settings.  

 

In this investigation, we propose a fully-adjusted two-stage approach that both provides 

the protection of rank-normal transformations, and also mitigates the potential for mis-

calibrated inference. In Stage 1 we regress the trait on covariates and obtain residuals, 

which we rank-normalize. In Stage 2 we use these rank-normalized residuals in 

association analysis with the genotypes, but adjusting for the same covariates used in 

Stage 1. The covariate adjustment at Stage 2 differentiates the proposed method from 

the commonly-used partly-adjusted two-stage approach. Here, we show that using the 

partly-adjusted method can lead to (1) invalid estimates of regression coefficients’ 

standard errors, and invalid Wald and Score tests; and (2) residual confounding, because 

rank-normalization interferes with the adjustment for covariate effects. Adjustment for 

covariates in stage 2 alleviates both of these issues. Surprisingly our approach may 

increase statistical power compared to the partly-adjusted approach even if the residuals 

are perfectly Normally distributed. We investigate our approach from two perspectives. 

First, we separate the issues of covariate adjustment and rank normalization and study, 

via linear regression theory, the effects of covariate adjustment alone (or lack thereof) 

on testing associations with the residuals in the absence of rank normalization. Second, 

we perform simulations mimicking the settings used in (ref.12), comparing approaches 

for rank-normalization and covariate adjustment of traits and residuals under normality 
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and deviations from normality, and by the strength of confounding effects. Finally, we 

demonstrate the undesirable consequences of using rank-normalized residuals in genetic 

association testing without covariate adjustment in two applications:  multiple GWASs 

in the Hispanic Community Health Study/Study of Latinos, and a WGS analysis of 

blood hemoglobin levels using three studies from the Trans-Omic Precision Medicine 

(TOPMed) TOPMed phase 1: the Framingham Heart Study (FHS), Jackson Heart Study 

(JHS) and Old Order Amish Study (Amish). We show how our fully adjusted two-stage 

approach addresses these problems. 

 

Materials and Methods 

Linear regression and residuals  

For person � we assume that a linear regression model holds, in which each individual 

has quantitative trait �� , a � � 1 covariate vector ��, and a � � 1 vector of genotypes 	� 

(in single variant testing � is equal to 1). For simplicity, our derivations assume that the 

observations are independent with identically distributed (iid) error terms; however, 

they extend straightforwardly to correlated outcomes, for instance when there are 

genetically related individuals modelled via a kinship or genetic relatedness matrix.  

 

According to the linear regression model:  

  �� 
 ��
�� � 	�

� � ��, (1) 

for covariate effects � and genetic effects , and where the error terms �� , � 


1, … , � are independent and identically distributed (iid). In GWAS and WGS analyses 

the main focus is testing the null hypothesis ��:  
 �. This can be done by first 

obtaining ordinary least squares estimate � (in addition to ��� and a corresponding 
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standard error estimate ������, and then using these in a Wald test. A popular alternative 

is the Score test, which does not rely on estimating  (ref.13), but rather, is based on a 

model that only estimates � via a `null model’, in which the outcome �� is regressed on 

just the covariates ��. Residuals are obtained from this null model, and their association 

with genotype is then assessed. We denote these residuals by � 
 ���, … , ����, where  

�� 
 ��  ��
���. A commonly used Score test in genetic association studies that 

interrogate rare variants, is the Sequence Kernel Association Test (SKAT, (ref.14)), 

which tests the association of a set of rare variants with the outcome.  

 

Two-stage approaches for genetic association analysis 

In the first stage of a two-stage approach, the null model is fit, the residual vector � 

calculated, and a rank-normalizing transformation is applied to �. This means that 

entries of � are matched with quantiles of the normal distribution, so that the 

transformed values maintain the same order (or rank) as the original residuals, but 

follow the normal !�0,1� distribution (ref.4). In the second stage the transformed 

residuals, which we denote #!���, are tested for association with the genotypes. It is 

common in practice to leave this second stage unadjusted for covariates, but in our fully 

adjusted approach we do adjust for them. This means that the design matrix used when 

testing a genotype in the second stage differs between the partly- and fully-adjusted 

approaches. In the partly adjusted approach, the design matrix consists of only an 

intercept (in addition to the tested genotype), while in the fully adjusted approach, the 

design matrix is the same as in the first null model. This is crucial, because, as we show 

in the Supplementary Material, computation of projection matrices used for calculating 

standard errors rely on this design matrix. The two different design matrices encapsulate 
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different assumptions made on the distributions of the residuals. In the Supplementary 

Material, we show that in the absence of rank-normalization, a two-stage procedure in 

which (raw) residuals are used without covariate adjustment can lead to a loss of power. 

This is true when using rank-normalized residuals as well: to see this, assume that the 

residuals from the first stage regression are in fact normally distributed. Then rank-

normalization has no effect, and our mathematical derivation demonstrates this. 

 

GWASs in the Hispanic Community Health Study/Study of Latinos 

To study the effect of using residuals with and without adjusting for covariates, and 

with and without applying rank-normalization on the residuals, we performed multiple 

GWASs for each of 19 traits using up to 12,595 individuals from the Hispanic 

Community Health Study/Study of Latinos (HCHS/SOL). All participants provided 

informed consent and the study was approved by IRBs in each of the participating 

institutions. All models were adjusted to age, sex, field center, background group, log-

transformed sampling weights, and the five first principle components representing 

distant genetic ancestry, and some traits were adjusted to additional covariates, such as 

age2, and BMI. We used linear mixed models with correlation matrices corresponding 

to community, household, and kinship (estimated from the genetic data). Information 

about the HCHS/SOL, genotyping, imputation, and genetic analysis in the HCHS/SOL, 

are provided in the Supplementary Material. Genotype and imputed data of the 

HCHS/SOL can be requested via dbGaP study accession phs000880. Phenotype data 

can be requested via dbGaP study accession phs000810. 

  

TOPMed hemoglobin WGS association study 
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We used data from TOPMed Freeze 4, which included 7,486 individuals from the Old 

Order Amish Study (N=1,102), Jackson Heart Study (JHS, N=3,251 African 

Americans), and Framingham Heart Study (FHS, N=3,133 European Americans from 

the offspring and generation 3 studies). All participants provided informed consent and 

the study was approved by IRBs in each of the participating institutions. Additional 

information about these studies is provided in the Supplementary Material. For 

TOPMed WGS data acquisition and QC report see ncbi.nlm.nih.gov/projects/gap/cgi-

bin/GetPdf.cgi?id=phd006969.1. 

 

We compared the performance of the SKAT Score statistic for testing the 

association of hemoglobin (HGB) values with sets of rare variants, under different 

approaches for rank-normalization and use of residuals, as described below. All 

analyses used linear mixed models, accounting for genetic relatedness using a genetic 

relationship matrix (GRM) computed using the GCTA method, (ref.15) where GRM 

was computed using all variants with MAF$ 0.001. Covariates were age, sex, and 

study. Additionally, to account for heteroscedasticity, we used a study-specific variance 

model, where we estimated a separate residual variance for each study (Amish, JHS, 

FHS Offspring, and FHS generation 3).  The SKAT test was applied on sets of 

genotypes formed by taking all genetic variants with alternate allele frequency in the 

range (0,0.01), and dividing them into non-overlapping sets, defined by running 

windows across the genome, of length 5, 10, and 50 kilo bases (kb). For comparison, we 

also report results from analysis of a single permutation phenotype. Specifically, we 

randomly permuted HGB across participants once, and performed the same association 

testing as for the unpermuted trait.  
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GWAS and WGS association studies – model comparisons 

For genetic analyses in both the HCHS/SOL and TOPMed, we consider the approaches 

described in Table 1 and Figure S1 in the Supplementary Material. Table 1 describes the 

steps taken in each of the two stages (or in a single stage, for one of the approaches). 

For a given dataset, the covariates (when used) were always the same, as well as the 

GRM and variance component structure.  

 

Table 1: analysis approaches compared in simulations and applied data analysis. For 
each of the compared analysis approaches (left column) the table provides the 
regression models from the two (or single) stages. Stage 1 is the same for all two-stage 
approaches. The association tests are general, and could be a single variant Wald, or a 
variant-set SKAT test, depending on the application.  

Approach  Stage 1 Stage 2 

Resid-Adj 

Regress �~�, giving 

� � � � ���  

Test G association based on 

the regression �~� 	 
 

Resid-Unadj Test G association based on 

the regression �~
 

RN-Resid-Adj Test G association based on 

the regression ����~� 	


 

RN-Resid-Unadj Test G association based on 

the regression ����~
 

RN-Trait Test G association based on 

the regression ����~� 	


 

-- 

 

 

All null models and subsequent association tests were computed in R using the 

GENESIS package (ref.16). For the HCHS/SOL, we focused on a single-variant Wald 
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test, calculating the p-values of test statistics based on the !�0,1� distribution using 

model-based standard errors, and for TOPMed, we focused on a variant-set SKAT test 

(ref. 17). To quantify inflation, we used the inflation factor %�� (ref.18) computed as the 

ratio between the quantile of the &	�

�  distribution corresponding to the median observed 

p-value  ���, computed as '�� 
 (': Pr�&	�

� + '� 
  ���, and the median value of 

the &	�

�  distribution, computed as '�.� 
 (': Pr�&	�


� + '� 
  0.5,, i.e. %�� 
 '��/'�.�.  

 

Simulation studies 

We performed a simulation study mimicking the settings in (ref.12), with modification 

to examine the effect of covariate confounding by a genetic principal component. We 

generated outcomes according to the model �� 
 /�0� � 1�0� � �� , � 
 1, … �, where 

the residual ��  was sampled from three different distribution settings: ‘normal’ �� 2

!�0,1�; ‘outlier’ �� 2 3!�0,1� � �1  3�!�0,3�, with 3 
 1 with probability 0.99, and 

0 otherwise; or ‘non-normal’ �� 2 &	�

� . There was a single covariate /� 2 !�0,1�, 

mimicking a single continuous measure of ancestry, with effect fixed at 0� 
 1. 

Genotype values were simulated under varying minor allele frequencies, and with and 

without association to the covariate, as follows. A genotype value for each person was 

sampled in Hardy-Weinberg Equilibrium, i.e. from a binomial distribution, with 

1� 2 5��67���, 2�, and probability computed as �� 
 �/��9� � /�9��/�1 � �/��9� �

 /�9��, with 9� : ( 2,  3,  4,  5,  6,  7, controlling how rare the minor allele is. At 

the average value of ancestry, i.e. /� 
 0, the lowest value 9� 
  7 gives MAF=0.0009, 

and the highest value 9� 
  2 gives MAF =0.12. Lastly, 9�  determines the strength of 

confounding induced by the ancestry covariate, with 9� : (0,1,2,, where 9� 
 0 
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corresponds to no confounding. While this model is consistent with confounding due to 

ancestry, other mechanisms in which the genotype is associated with the covariate (e.g. 

BMI, age in a cohort of old individuals) are also possible and have the same 

downstream effect on association analyses. We performed 107 simulations from each 

combination of parameter settings and 0 
 0 (under the null), enabling a good 

estimation of type 1 error rate at the 10-4 significance level. Type I error was computed 

as the proportion of simulations in which the null hypothesis was rejected (p-value <10-

4). For power, we ran 104 simulations for each combination of the aforementioned 

parameters and with 0 : (0.1, 0.15, 0.2,. Power was generally calculated as the 

proportion of simulations in which the null hypothesis was rejected. In instances in 

which the Type I error was not control, we calculated the significance level yielding the 

desired Type I error rate, and used this threshold when determining whether the null 

hypothesis is rejected. 

 

Results 

Simulation studies 

Comprehensive simulation results are provided in the Supplementary Material. We here 

provide a summary of the results, together with selected figures that demonstrate the 

main results for Type I error rate control and power.  

In the ‘normal’ simulation settings (normally distributed errors), all tests always 

controlled Type I errors appropriately (Supplementary Material, Figures S5a and S6a). 

Figure 1 provides power estimates for these settings, for varying degrees of 

confounding and for common (MAF ranged between 0.11 to 0.22) and rare (MAF 

ranged between 0.002 to 0.02) variants.  The power of the unadjusted methods (RN-
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Resid-Unadj, Resid-Unadj) decreases, compared to the adjusted methods (RN-Resid-

Adj, Resid-Adj, RN-Trait-Adj) as the confounding effect increases. All adjusted 

methods are roughly similar for common variants, however, RN-Trait-Adj loses power 

compared to Resid-Adj and RN-Resid-Adj when variants become rare. Complete power 

figures for this setting are provided in the Supplementary Material, Figures S5b and 

S6b.   

Selected results from the `non-normal’ simulation settings (chi-squared 

distributed errors) are presented in Figure 1 (power) and Figure 2 (type 1 error rates). 

Type I errors are well controlled when variants are common and there is no 

confounding. However, alarmingly, Type I error rates are very high for common 

variants when there is confounding effect, for RN-Resid-Unadj and RN-Trait-Adj. As 

variants become rare, all methods do not control Type I error under some conditions. 

Moreover, for rare variants, methods that do not rank-normalize (Resid-Adj and Resid-

Unadj), did not control the Type I error rate even under no confounding. While RN-

Resid-Adj did not control Type I error rate in the rare variant and strong confounding 

settings, overall it was the “least bad” approach of those investigated, with lowest 

observed levels of inflation overall. Figure 1 provides (calibrated) power for the ‘non-

normal’ settings. Here, in the common variant and no confounding scenario, where all 

methods controlled the Type I error rate, only RN-Resid-Adj and RN-Resid-Unadj had 

high power. The pattern was similar across settings (see Figures S7 and S8 in the 

Supplementary Material for complete results).  

Finally, the results from the ‘outlier’ simulation settings (errors from a mixture 

of two normal distributions with different variances) had intermediate results compared 

to the two more extreme cases of ‘normal’ and ‘non-normal’ simulations. Results from 
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these settings are provided only in the Supplementary Material. The Type I error rate 

was inflated under some conditions, with, for a given analysis approach, inflation 

generally higher as a variant becomes rarer and for smaller sample sizes 

(Supplementary Material Figures S9a and S10a), and with inflation being better 

controlled with rank-normalization, and power being higher for fully adjusted methods 

under confounding effect (Supplementary Materials Figures S9b and S10b). 

 

GWASs in the HCHS/SOL 

We report results from HCHS/SOL GWASs of 19 traits in the Supplementary Material, 

and here highlight analyses of 4 traits: height, systolic blood pressure (SBP), ferritin, 

and number of teeth (N-teeth), in Figure 3. For all traits, Figures S11-S30 in the 

Supplementary Material demonstrate that Resid-Adj is always had smaller p-values than 

Resid-Unadj, in agreement with the derivation in the Supplementary Material.  Similar 

patterns are observed when comparing RN-Resid-Adj to RN-Resid-Unadj when the trait 

residuals are relatively normally distributed. For example, the top left panel in Figure 3 

compares the p-values from the GWASs of height in using RN-Resid-Adj and RN-

Resid-Unadj, and the patterns is essentially the same as that seen in the analyses without 

rank-normalization, Resid-Adj and Resid-Unadj  (see Figure S13 in the Supplementary 

Material for distribution of height residuals). When traits are further from normalilty 

(SBP, ferritin, N-teeth), this pattern changes, and we see some genetic variants with 

lower p-value in RN-Resid-Unadj compared to RN-Resid-Adj (Figure 3). The most 

extreme example is N-teeth, for which %��  was 1.02 and 1.77 with and without second-

stage adjustment for covariates, respectively, i.e. RN-Resid-Unadj was highly inflated. 

These results are in line with the simulations provided in Figure 2, where in the ‘non-
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normal’ setting, even a relatively small degree of confounding caused a large inflation 

of RN-Resid-Unadj. 

 

Hemoglobin WGS study in TOPMed 

Figure 4 compares the inflation factors across scenarios and sliding window sizes, under 

true and randomly permuted HGB concentrations. Using Resid-Unadj and RN-Resid-

Unadj produced deflated results, compared to Resid-Adj and RN-Resid-Adj, across all 

settings, as expected. In both real and permuted HGB, the difference in inflation factors 

between covariates adjusted and unadjusted settings is larger when the residuals were 

not rank-normalized; and the %�� values are about the same in RN-Trait and RN-Resid-

Adj settings. In terms of distribution, as seen in Figure S1 in the Supplementary 

Material, HGB residuals have a few negative outlying values, but otherwise their 

distribution is relatively normal. This is likely why we primarily see less significant p-

values in the unadjusted analyses.  

 In the Supplementary Material, Figures S2-S4, we provide p-values comparisons 

for the SKAT tests results obtained using the Resid-Adj, Resid-Unadj, RN-Resid-Adj 

and RN-resid-Undj. Using residuals without rank-normalization produced very low p-

values for some of the tested variant sets. For these sets, there was no difference 

between Resid-Adj and Resid-Unadj, matching the pattern in Figure 2 (non-normal 

outcome) under the rarest variant and no confounding, where rank-normalization helped 

control inflation.  

 

Discussion 

The validity of linear regression-based tests of the genetic association with a trait can be 

sensitive to the trait’s distribution. Some analysis approaches that have been used to 
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counteract this problem include rank-normalization of both trait values and of residuals, 

which are then used in a partly-adjusted two-stage procedure. Both approaches are 

known to suffer from drawbacks, albeit some investigators have argued that they are 

appropriate in the context of rare variants analysis (ref.4).  Here we have proposed a 

fully-adjusted two-stage approach, which uses the rank-normalized residuals as the 

outcome in the genetic association testing stage – a stage in which we again adjust for 

the same covariates used in the first stage. This approach ameliorates the problems of 

previous methods, for analysis of both common and rare variants. However, as we show 

in simulations, under non-normality of the trait and confounding by covariates, all the 

tests of low-count variants we considered may be biased. We separated the roles of 

adjustment for covariates and rank-normalization and showed theoretically (in the 

Supplementary Material) that, without rank-normalization, an unadjusted two-stage 

procedure may result in loss of power, when using either Wald or Score tests. We 

demonstrated the shortcomings of the partly-adjusted two-stage procedure in both a 

GWAS, interrogating common variants, and in a WGS study, testing rare variants.  

For common variants, previous criticism of the partly-adjusted two-stage 

approach showed that it results in biased effect size estimates when covariates confound 

the genotype-trait associations, (ref.10) and that it loses power (ref.10, 11) compared to 

a one-stage approach testing the trait directly. The fully-adjusted two-stage approach 

alleviates both of these concerns: including covariates in the second stage alleviates the 

confounding problem, because these confounders are accounted for. This is 

demonstrated in the data analysis example from the GWASs in the HCHS/SOL. We 

first saw, for all GWASs, that a two-stage procedure of the form Resid-Unadj loses 

power compared to Resid-Adj, which recovers the same results from the untransformed 
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trait-based analysis. When we applied rank-normalization to the residuals (RN-Resid), 

we saw that under non-normality, the confounding effects reported by (ref.10) in action, 

so that some of the unadjusted two-stage procedure RN-Resid-Unadj GWASs had many 

highly significant findings, which are likely false positives, compared to the fully 

adjusted procedure RN-Resid-Adj, with N-teeth GWASs being the most extreme 

example.  

For rare variants, previous work by Tang and Lin (ref.4) showed in the context 

of meta-analysis that rank-normalizing the trait in one-stage analysis is useful. 

However, when pooling multiple heterogeneous studies together in a joint analysis, as 

in TOPMed, there are strong confounders (e.g., study), so the problems raised by 

Beasley et al. (ref.3), pointing at biases when residuals are non-normal and there is 

covariate confounding, are expected, and are demonstrated in our simulation study, in 

which RN-Trait-Adj analysis did not control Type I error rates. We note that our 

simulations show that when the trait is highly non-normal and covariate confounding of 

the genotype-trait association exists, all analysis methods may be inflated, including 

RN-Trait-Adj.  However, RN-Resid-Adj had generally a lower degree of inflation 

compared to other methods.  

Recently, Auer et al. (ref.12) argued that an unadjusted two-stage procedure is 

appropriate for rare variants, because the confounding problem pointed out in (ref.10) is 

negligible. In our simulations, we see that RN-Resid-Unadj controlled type 1 error in 

the normal and outlier outcome settings, where it lost some power compared to RN-

Resid-Adj in the presence of confounding. In the analysis of TOPMed hemoglobin data 

set, we tested sets of rare variants using SKAT. Rank-normalizing either trait or 

residuals reduced overall inflation. Not adjusting for covariates in a non-adjusted two-
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stage procedure clearly caused a strong deflation, as measured by inflation factors, i.e. 

in the median of the distribution. For very low p-values, they remain qualitatively quite 

similar in the partly- and fully-adjusted two-stage procedures (Figures S3-S6 in the 

Supplementary Material). Still, the overall distribution of results is important and serves 

as a primary tool in evaluating model fit in genetic association studies. Therefore, one 

should be cautious about using a partly-adjusted approach. 

In meta-analysis of GWASs, investigators often apply genomic control (ref.18) 

on each individual study contributing to the meta-analysis. This differs from our 

approach, in that genomic control assumes that there is global dispersion in the study, 

which affects all tested variants in a similar way, and can be globally corrected by a 

single constant. Instead our method is primarily concerned with the effect of non-

normality on association analysis. Non-normality affects different genetic variants in 

different ways. Similarly, confounding effects, as our GWAS results demonstrate, differ 

between genetic variants. Therefore, a single global correction cannot account for, or 

fix, the challenges that we highlighted.  

In summary, in this investigation we provide a thorough assessment of the 

controversial uses of the rank-normalizing transformation which is often used in 

practice despite several published manuscripts criticizing their use. We demonstrate a 

proper and beneficial use of such transformations when coupled with a fully adjusted 

two-stage procedure. In addition to the main investigation, in the Supplementary 

Material (Figures S12-S30) we provide comparisons of the approaches investigated in 

this manuscript for GWASs of 19 anthropometric, blood pressure, blood markers, and 

electrocardiogram traits in the HCHS/SOL, alongside the distribution of their residuals 

from the ‘null model’. These comparisons suggest that future large consortia meta-
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analyses may reduce Type I errors and gain power from using the fully-adjusted two-

stage approach, compared to the partly-adjusted approach often used.  

Supplementary information is available at European Journal of Human Genetics’ 
website. 
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Figure 1:  Estimated power in selected simulation studies. Each of the panels provides 

the power calculated over 104 replicates of simulations, for each of the compared 

analysis approaches. Here we consider the ‘normal’ and ‘non-normal’ distribution 

settings, focusing on rare and common variants (Common: 9� 
  2; Rare: 9� 
   5) 

and by varying degrees of covariate confounding (None: 9� 
 0; Some: 9� 
 1; High: 

9� 
 2�. In the displayed results, sample size was n=10,000, p-value threshold for 

determining significance was set at 10-4.  
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Figure 2: Type 1 error rates in the ‘non-normal’ simulation settings. Each of the panels 

provides the (scaled) estimated type 1 error rate over 107 replicates of simulations, 

respectively, for levels of variant frequency (Common: 9� 
  2; Medium: 9� 
  5; 

Rarest: 9� 
   6�, and degree of confounding (None: 9� 
 0; Some: 9� 
 1; High: 

9� 
 2�. Type 1 errors are scaled by the expected type 1 error rate (ideal value is 1, 

higher values indicate high rate of false positives, or inflation, lower values indicate 

deflation, or conservatism). In the displayed results, sample size was n=10,000, p-value 

threshold for determining significance was set at 10-4. 
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Figure 3: Computed p-values from the analyses of height, SBP, ferritin, and N-teeth in 

participants of the HCHS/SOL. Each of the panels corresponds to a different trait, and 

compares the (–log) p-values obtained from analyses that tests the association between 

rank-normalized transformed residuals and common genotypes (MAF$ 0.05), with and 

without adjustment to the covariates that were used in the model that obtained the 

residuals.  
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Figure 4: Observed inflation factors in SKAT analyses of the TOPMed Hemoglobin 

dataset. The figure provides the observed inflation factors lambda = %�� in testing 

variants with alternate allele frequencies between 0 to 0.01 in non-overlapping window 

of sizes 5,10, and 50 Kbp. The left panel corresponds to the true hemoglobin trait, and 

the right panel correspond to the same analyses applied on permuted values of the 

observed hemoglobin.  
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