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ABSTRACT 
Finite element models are frequently used to simulate traumatic brain injuries. However, current models are unable 
to capture the progressive damage caused by repeated head trauma. In this work, we propose a method for 
computing the history-dependent mechanical damage of axonal fiber bundle tracts in the brain. Through the 
introduction of multiple damage models, we provide the ability to link consecutive head impact simulations, so that 
potential injury to the brain can be tracked over time. In addition, internal damage variables are used to degrade the 
mechanical response of each axonal fiber bundle element. As a result, the stiffness of the aggregate tissue decreases 
as damage evolves. To counteract this degenerative process, we have also introduced a preliminary healing model 
that reverses the accumulated damage, based on a user-specified healing duration. Using two detailed examples, we 
demonstrate that damage produces a significant decrease in fiber stress, which ultimately propagates to the tissue 
level and produces a measurable decrease in overall stiffness. These results suggest that damage modeling has the 
potential to enhance current brain simulation techniques and lead to new insights, especially in the study of repetitive 
head injuries. 
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1 INTRODUCTION 
Traumatic brain injury (TBI) is a significant cause of death and long-term disability [1]. In the United States, there 
were 2.8 million TBI-related emergency department visits, hospitalizations, and deaths in 2013 [2]. The structure 
of the brain can be divided into the gray and white matter regions. In general, gray matter tissue forms the outer 
layer of the brain and contains the neuron cell bodies, while white matter tissue forms the central region of the brain 
and contains neuron cell extensions, known as axons. These tightly bundled axons form a dense communication 
network that transmits signals between the neuron cell bodies. While axons account for the majority of white matter 
tissue, they are surrounded by a mixture of other components, such as glial cells and the extracellular matrix (ECM). 
However, this surrounding host material is much softer than the axons [3] [4]. As a result, white matter tissue is 
commonly treated as a fiber-reinforced composite in mechanical simulations [5] [6] [7] [8]. During severe head 
impacts, brain deformations can result in the widespread stretching and shearing of axons. This kind of TBI is 
classified as diffuse axonal injury (DAI) and is typically associated with motor vehicle crashes, sports injuries, and 
military blast trauma [9] [10]. DAI is the primary injury mechanism in more than 40% of all hospitalized TBIs [11] 
and can result in both physical and cognitive impairments, which may be temporary or permanent [12]. 

In an effort to design safer products and study the underlying mechanisms of brain injury, there has been a 
significant push to develop biofidelic finite element (FE) models of the human head. In the future, this technology 
could be used to create a brain health monitoring system for humans functioning in extreme environments. Brain 
injuries, especially mild TBIs (mTBI), are difficult to diagnose with medical imaging [13] [14]. Therefore, when 
combined with wearable sensors, simulations could provide real-time diagnostics that could be used to screen for 
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biomechanical injury and allow for early medical intervention [15]. At this time, a number of FE brain studies have 
specifically focused on the prediction of DAI [16] [17] [18] [19] [20]. Using a variety of methods, these models 
predict axonal strains, which are then compared with functional and mechanical tissue thresholds [21]. While these 
studies are extremely useful, they have been restricted to simulating separate isolated events and, to our knowledge, 
all head and neck FE models have used elastic constitutive models. At this time, there is no way to account for the 
accumulated damage that is caused by multiple head impacts. In this paper, we propose a computational method 
that provides a first step towards providing this capability. 

We begin with the observation that soft biological tissues have been shown to degrade with successive loadings. 
For instance, tendons [22], intervertebral discs [23], and bioprosthetic heart valves [24] all exhibit stiffness 
degradation and finite life, when subjected to cyclic loading. In addition, brain tissue has been shown to experience 
significant stress softening [25] [26], also called the Mullins effect [27], after the initial loading cycle. This behavior 
has been successfully modeled for brain tissue [25] using the pseudo-elasticity theory [28], which we adopt in this 
paper. In this theory, the degree of softening is related to the maximum strain energy achieved throughout the 
previous loading history. Stress softening is a damage-induced inelastic phenomenon caused by structural 
rearrangement in the material. For soft biological tissues, the Mullins effect is not associated with fiber/matrix bond 
rupture and complete damage [29]. 

In the pseudo-elasticity theory, the degree of softening will only increase when the current strain energy exceeds its 
previous all-time maximum. Therefore, a cyclic load at constant strain amplitude would only cause damage on the 
first cycle. In order to address this shortcoming, we have also included a fatigue-induced stress softening model, 
which has recently been used to simulate fatigue damage in bioprosthetic heart valves [30]. At this time, the 
functional and mechanical fatigue properties of brain tissue have not yet been experimentally studied. However, 
based on the prevalence of fatigue damage in other soft biological tissues, we assume that brain tissue also 
experiences cycle-dependent degradation. 

According to quasi-static tensile tests [25], the stress response of brain tissue gradually increases to a peak value 
and then decreases until final tissue separation, which occurs at some nonzero stress value. The softening that occurs 
before failure is typical of damaging fibrous materials and is caused by the progressive rupture of the filamentary 
structure [25]. The pseudo-elasticity theory and fatigue-induced stress softening models are not capable of 
degrading the stress response during the initial load cycle. Therefore, we implemented an additional fiber rupture 
damage parameter, in order to capture the observed post-yield stress softening behavior. Lastly, we implemented 
an additional matrix damage parameter, which is based the mean total damage of the adjacent fibers. As a result, 
we are able to approximate the full experimental stress response. 

In line with our previous work [18], we use the embedded element method to incorporate the axonal fiber tracts in 
our FE model of white matter tissue. As a result, we are able to monitor the response of each fiber track segment 
and maintain a record of the associated damage parameters. When a simulation is complete, we export the final 
values of the damage parameters and then use them as the initial conditions for a future simulation. In this sense, 
we are able to bridge the gap between successive head impacts. In order to account for the healing process, we have 
provided a mechanism to partially or completely reverse the accumulated damage in each fiber. To activate this 
feature, a healing duration is specified when the future simulation is initialized. Healing has been modeled in various 
soft biological tissues, such as tendons [31], ligaments [32], and intervertebral discs [33]. However, due to the lack 
of experimental data, a constant healing rate is typically assumed. Similarly, we also assume a constant healing rate. 

In this study, we present the details of the proposed stress softening, fatigue damage, fiber rupture damage, and 
healing models. Then, using example simulations, we demonstrate the features and mechanics of the overall 
computational framework. Finally, we conclude with a summary of behavior trends, current limitations, and future 
challenges. 
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2 METHODS 

2.1 EMBEDDED ELEMENT METHOD 
In this paper, we use our own custom explicit nonlinear FE code, which is based on the total Lagrangian formulation 
and central difference method [34]. The source code is available on GitHub (https://github.com/PSUCompBio/
compbio), along with the input files and results associated with this study. A fiber-reinforced composite can be 
divided into separate matrix and fiber components, as illustrated in Fig. 1. The mechanical properties of the 
composite will depend on the properties of the constituents, the geometry of the fibers, and the distribution of the 
fibers within the matrix [35]. In white matter tissue, the mixture of cells surrounding the axons represents the matrix 
component and is modeled using 8-node trilinear hexahedral elements. The axonal fiber track segments are modeled 
using 2-node linear truss elements, which only deform by axial stretch. In addition, the fibers are assumed to be 
incompressible, which is the standard nonlinear approach in commercial software [36].  

 

Fig. 1 Simplified model of a composite material. 

In our code, the unknowns are only calculated at the nodes of the matrix mesh. The fiber elements are incorporated 
using the embedded element method, where the core assumption is that the fiber nodes are bonded to the associated 
material points in the matrix element domain. We begin by using the standard solution algorithm [34] to calculate 
the displacements of the matrix element nodes. Next, we use these displacements, along with the matrix shape 
functions, to determine the displacements of the fiber element nodes. Then, we use these displacements to calculate 
the current stretch in each fiber element, which is then used, with the prescribed constitutive relation, to calculate 
the resulting uniaxial stress along each fiber axis. 

In the standard solution algorithm [34], the primary task is to determine the internal forces at the nodes of the mesh. 
In a typical mesh, without embedded truss elements, the internal nodal forces are calculated as follows: 

𝑓"#"$% = '
𝜕𝑁#
𝜕𝑋+

P+" 𝑑Ω
/

 (1) 

where lower case subscripts are used for components, upper case subscripts are used for nodal values, 𝑁# are the 
element shape functions, 𝑋0 are the initial positions, and P+" are the components of the first Piola-Kirchhoff (PK1) 
stress tensor 𝐏. Now, in order to include the stiffening effect of the fiber elements, we modify Eq. (1) by including 
an additional integral over each fiber element domain. Therefore, 
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where 𝑁# are the matrix element shape functions in all terms. Note that, during the preprocessing stage, all fiber 
elements are split at the matrix element boundaries. Therefore, each fiber element is only associated with a single 
host matrix element. 

2.2 MATERIAL MODELS 
The following material models are based on our previous work [18]. As a result, the matrix material is modeled 
using the modified Mooney-Rivlin hyperelastic strain energy function [36], which is written as: 

𝑊NOP = 𝐶LR2𝐼L − 33 + 𝐶RL2𝐼V − 33 +
1
𝐷L
(𝐽 − 1)V (3) 

where 𝐼L and 𝐼V  are the first and second deviatoric principal invariants of 𝐂 ∶= 𝐅
_
𝐅, where 𝐅 is the deviatoric part of 

𝐅; 𝐶LR, 𝐶RL, and 𝐷L are material parameters; and  𝐽 ∶= det	(𝐅). The deviatoric principal invariants of 𝐂 are related to 
the principal invariants of 𝐂 ∶= 𝐅_𝐅 by: 

𝐼L = 𝐽OV/e𝐼L,			𝐼V = 𝐽Og/e𝐼V,			𝐼e = 1 (4) 

In order to provide a time-dependent response, we have also implemented a three-dimensional finite strain 
viscoelasticity model [37] for the matrix material, which is based on the generalized Maxwell-element. For brain 
tissue, viscoelastic behavior is typically associated with the isochoric part of deformation [38]. Therefore, the 
volumetric part of deformation is treated as purely elastic. The deviatoric stress in the reference configuration is 
calculated using the following recurrence relation: 

DEV	𝐒$lL = DEV	𝐒R$lL +A𝐇"
$lL

I

"KL

 (5) 

where DEV	𝐒$lL is the current deviatoric component of the second Piola-Kirchhoff (PK2) stress tensor, DEV	𝐒R$lL is 
the current deviatoric component of the elastic PK2 stress tensor, 𝐇"

$lL are the current internal stress variables,	𝑛 +
1 is the current time, and 𝑁 is a finite number of generalized Maxwell-elements. In addition, 

𝐇"
$lL = exp q−

∆𝑡
𝜏"
u𝐇"

$ + 𝛾"
1 − exp w−∆𝑡𝜏"

x

∆𝑡
𝜏"

[DEV	𝐒R$lL − DEV	𝐒R$] (6) 

where Δ𝑡 = 𝑡$lL − 𝑡$ and 𝜏" and 𝛾" are scalar material parameters. The implemented viscoelasticity formulation [37] 
is very similar to the standard approach used in commercial software [36]. 

The fiber material is modeled using the modified Ogden hyperelastic strain energy function [36], which is written 
as: 

𝑊|}~ =A
2𝜇"
𝛼"V

I

"KL

w𝜆L
�� + 𝜆V

�� + 𝜆e
�� − 3x +A

1
𝐷"

I

"KL

(𝐽 − 1)V" (7) 

where 𝜆L, 𝜆V, and 𝜆e are the deviatoric principal stretches and 𝛼",	𝜇" , and 𝐷" are material parameters. The deviatoric 
principal stretches are related to the principal stretches by: 
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𝜆� = 𝐽OL/e𝜆�,			𝐴 = 1,2,3 (8) 

As mentioned earlier, the fibers are assumed to be incompressible. Also, as in our previous work [18], we select 
𝑁 = 1. Therefore, we now rewrite Eq. (7) as: 

𝑊|}~ =
2𝜇
𝛼V �𝜆

V + 2��1 𝜆� �
�

− 3� (9) 

where 𝜆 is the axial stretch. Finally, we use Eq. (9) to express the uniaxial Cauchy stress as: 

𝜎B8CD7 =
2𝜇
𝛼
2𝜆� − 𝜆O�/V3 (10) 

The material properties used in this study are listed in Table 1. The viscoelastic properties are identical to those used 
in our previous work [18]. The Mooney-Rivlin and Ogden properties are based on our previous work [18]. However, 
the values have been manually adjusted to approximate the experimental response [25] of brain tissue, as shown in 
Fig. 2b. To allow for rapid trial and error, we used a simplified FE model to select the material properties. The 
simplified FE model in shown in Fig. 2a and the final FE model is shown in Fig. 8c. The simplified FE model 
geometry was selected to approximately match the average fiber volume fraction of the final FE model. 

Table 1 Material properties used for FE model. 

Mooney-Rivlin (matrix) viscoelasticity (matrix) Ogden (fiber) 
𝜌 = 1040	𝑘𝑔/𝑚e  𝛾L = 1.977 𝜌 = 1040	𝑘𝑔/𝑚e  
𝐶LR = −100	𝑃𝑎  𝜏L = 0.006694	𝑠𝑒𝑐 𝛼 = 4.5  
𝐶RL = 1.2	𝑘𝑃𝑎  𝛾V = 0.0450 𝜇 = 2.5	𝑘𝑃𝑎  
𝐷L = 0.9091	𝑥	10O�	𝑃𝑎OL  𝜏V = 0.1564	𝑠𝑒𝑐 𝐷L = 0.9091	𝑥	10O�	𝑃𝑎OL  

 
Fig. 2 The (a) simplified FE model is pulled in tension with a ramped displacement in the z-direction. The model consists of 
one cubic hex element and one hundred evenly spaced truss elements. The displacement was applied slowly (𝜀̇ = 1.2	secOL), 
in order to approximate quasi-static loading. The resulting (b) stress response roughly matches the tensile test data [25]. Note 
that the nominal stress is the current force divided by the original area. 

2.3 DAMAGE AND HEALING MODELS 
2.3.1 STRESS SOFTENING 
In previous studies [25] [26], brain tissue has been observed to experience significant stress softening, also called 
the Mullins effect, after the initial loading cycle. This stress softening behavior has been successfully modeled for 
brain tissue [25] using the pseudo-elasticity theory [28], which was originally developed for modeling filled rubber 
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elastomers [27]. The softened response curves for the fiber material are shown in Fig. 3. Under a steadily increasing 
load, the elastic material response follows the primary loading curve. Now, imagine that we have loaded the material 
along abb’ and stopped at point b’. If we then unload the material from point b’, the response will follow b’Ba, not 
b’ba. In addition, if we then reload the material from point a, the response will follow aBb’, not abb’. However, 
after point b’, the response will once again follow the primary loading curve. Therefore, if we reloaded the material 
from point a to point c’, the response would follow aBb’ and then b’cc’. If we then unloaded the material from point 
c’, the response would follow c’Ca. Overall, the material softens after the initial loading cycle and the degree of 
softening depends on the previous strain history. However, the degree of softening is unaffected by the number of 
loading cycles. 

 

Fig. 3 Response curves for the axonal fiber material properties. The dashed (blue) and dash-dot (red) curves represent the 
softened responses, based on two different levels of previous maximum stretch. 

In [28], the pseudo-elasticity theory is presented for an incompressible material experiencing a general biaxial 
deformation under quasi-static conditions. The governing constitutive relation is: 

𝑊(𝜆L, 𝜆V, 𝜂) = 𝜂𝑊£ (𝜆L, 𝜆V) + 𝜙(𝜂) (11) 

where 𝑊£  is the undamaged hyperelastic strain energy function, for which the loading and unloading response curves 
are the same; 𝜂 is a scalar damage variable, which ranges from 0 to 1; and 𝜙(𝜂) is a damage function, which 
represents the non-recoverable energy associated with the damage process. For the fiber elements, we use Eq. (9) 
for 𝑊£ (𝜆L,𝜆V). Using Eq. (10) and Eq. (11), the softened uniaxial Cauchy stress is: 

𝜎B8CD7 = 𝜂 ¥
2𝜇
𝛼
2𝜆� − 𝜆O�/V3¦ (12) 

In [28], the scalar damage variable is presented as: 

𝜂 = 1 −
1
𝑟 erf

¥
1
𝑚 w𝑊ª −𝑊£ (𝜆L, 𝜆V)x¦ (13) 

where 𝑊ª = 𝑊£ (𝜆Lª, 𝜆Vª);	𝜆Lª,𝜆Vª  is the point at which unloading begins (e.g., point b’ or c’ in Fig. 3); 𝜆L, 𝜆V is the 
current deformation; erf is the error function; and 𝑚 and 𝑟 are positive material parameters. As shown in Eq. (13), 
	𝜂 is not a fixed scalar value. Instead, it is a function that is used to modulate the stress response in the damaged 
region (e.g., along path aBb’ or aCc’ in Fig. 3). 

In order to implement this stress softening model, we must maintain a record of the minimum stretch 𝜆ª"$ and 
maximum stretch 𝜆ª«¬ experienced by each fiber element, throughout the loading history. When the current stretch 
is between 𝜆ª"$ and 𝜆ª«¬, we calculate the response using Eq. (12). When the current stretch is less than 𝜆ª"$ or 
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greater than 𝜆ª«¬, we calculate the response using Eq. (10). In [25], the material constants 𝑚 and 𝑟 were determined 
for the aggregate brain tissue. However, our composite model requires separate material constants for the fiber and 
matrix components, which are currently unavailable. After exploring a range of values, as shown in Fig. 4, we chose 
𝑚 = 3,000 m³/J and 𝑟 = 1.25 as a reasonable qualitative fit. 

Finally, note that the pseudo-elasticity theory has only been implemented for the fiber component at this time. The 
fibers are the primary load carrying members. Therefore, we believe this simplification is reasonable for this 
preliminary work. In the future, we plan to extend the pseudo-elasticity model to the matrix component as well. 

 

Fig. 4 Parametric study used for the selection of material parameters (a) 𝑚 and (b) 𝑟 used in Eq. (13) for the fiber material 
defined by Eq. (7) and the material properties shown in Table 1. Note that parameter 𝑟 is held constant in (a) and parameter 
𝑚 is held constant in (b). 

2.3.2 FATIGUE SOFTENING 
In order to introduce cycle-dependent degradation and finite life, we have also implemented a fatigue-induced stress 
softening model [30]. At this time, the functional and mechanical fatigue properties of brain tissue have not yet been 
experimentally studied. However, fatigue behavior has been observed in other soft biological tissues; such as 
tendons [22], intervertebral discs [23], and bioprosthetic heart valves [24]. Based on the prevalence of fatigue 
damage in other soft biological tissues, we assume that brain tissue also experiences cycle-dependent degradation. 

The following constitutive relation has been used to simulate fatigue damage and permanent set in bioprosthetic 
heart valves [30]: 

𝑊2𝐄,𝐷B,𝐃¯°3 = (1 − 𝐷B)𝑊R(𝐄)+𝑊 °2𝐄,𝐷B,𝐃¯°3 (14) 

where 𝑊R is the unfatigued strain energy function; 𝑊 ° is the dissipated strain energy due to permanent set; 𝐷B is a 
scalar stress softening parameter associated with fatigue damage, which ranges from 0 to 1; 𝐃¯° is a permanent set 
parameter; and 𝐄 is the Green strain tensor. The associated PK2 stress tensor is: 

𝐒 = (1 − 𝐷B)
𝜕𝑊R(𝐄)
𝜕𝐄

(1 − 𝜂)𝐒¯ (15) 

where 𝐒¯ is the plastic stress tensor and 𝜂 is a scalar function used to modulate 𝐒¯. In part, 𝜂 is a function of the peak 
strain in the current load cycle. In the referenced study, the authors use a fixed strain amplitude. As a result, the 
peak strain was constant and known after the initial load cycle. On the of hand, head impacts are unique events. 
Therefore, the peak strain varies and cannot be determined until each load cycle is complete. In this case, we cannot 
determine 𝜂 for the current load cycle. Therefore, we cannot properly regulate 𝐒¯. As a result, we must ignore 
permanent set, for this study, and rewrite Eq. (14) in the following simplified form: 
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𝑊(𝐄, 𝐷B) = (1 − 𝐷B)𝑊R(𝐄) (16) 

From Eq. (16), the PK2 stress tensor can be expressed as: 

𝐒 = (1 − 𝐷B)
𝜕𝑊R(𝐄)
𝜕𝐄  (17) 

For the fiber elements, we use Eq. (9) for 𝑊R and Eq. (12) for 𝜎B8CD7. Therefore, we can rewrite Eq. (17) as: 

𝜎B8CD7 = (1 − 𝐷B) ±𝜂 �
2𝜇
𝛼
2𝜆� − 𝜆O�/V3�² (18) 

In [30], the increase in	𝐷B is based on the peak equivalent strain in each load cycle, which is defined as: 

Ξ$
´µ«J = max%¸[$,$lL]�2𝑊R2𝐄(𝑡)3 (19) 

After each load cycle, the number of cycles to failure is calculated for the value of peak equivalent strain using: 

𝑛%¹%2Ξ$
´µ«J3 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 																											∞																																									if			Ξ$

´µ«J < 𝜓ª"$

𝛽(𝑛ª«¬ − 1)
Ξ$
´µ«J − 𝜓ª"$ + 𝛽

⎣
⎢
⎢
⎢
⎡1 − exp ±𝛼 �1 − Ξ$

´µ«J

𝜓ª«¬
�²

1− exp Æ𝛼 w1 − 𝜓ª"$
𝜓ª«¬

xÇ
⎦
⎥
⎥
⎥
⎤
			if			𝜓ª"$ ≤ Ξ$

´µ«J ≤ 𝜓ª«¬

																														1																																										if			Ξ$
´µ«J > 	𝜓ª«¬

 (20) 

where 𝜓ª"$ and 𝜓ª«¬ are equivalent strain values that define the boundaries of the fatigue damage zone, 𝛼 and 𝛽 
are material properties that control the amount of damage incurred during each cycle, and 𝑛ª«¬ is the maximum 
number of cycles permitted at 𝜓ª"$. Finally, the stress softening parameter is updated using the following linear 
damage accumulation model: 

𝐷B = A
1

𝑛%¹%2Ξ$
´µ«J3

IÍÎÍÏHÐ

$KL

 (21) 

Consider the arbitrary fiber stretch history shown in Fig. 5. In our implementation, we update 𝐷B after each load 
cycle is complete, which corresponds to points c, e, and g in Fig. 5. In this case, the stress softening increments in 
Eq. (21) would be based on the equivalent strain at points b, d, and f. Due to the lack of experimental data, the 
material properties in Eq. (20) have been estimated based on various practical assumptions. For instance, we chose 
𝜓ª"$ = 1.75	√𝑁/𝑚, which is based on the assumption that stretch values below 1.02 should not cause fatigue 
damage. In addition, we assumed that it would be reasonable to sustain a significant amount of cycles at a stretch 
value of 1.02 before complete mechanical failure. Therefore, we chose 𝑛ª«¬ = 500. During experimental tension 
tests on brain tissue [25], final separation occurred at a mean stretch value of 2.66. Therefore, we chose 𝜓ª«¬ =
200	√𝑁/𝑚, which corresponds to this stretch value. After exploring a range of values, as shown in Fig. 6, we chose 
α = 5 and  𝛽 = 10	√𝑁/𝑚 as a reasonable qualitative fit. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/346700doi: bioRxiv preprint 

https://doi.org/10.1101/346700
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 

Fig. 5 Arbitrary stretch history for a single fiber element. In our implementation, cycles 1 and 2 would be considered full 
cycles; while cycle 3 would be considered a partial cycle, as it does not return to 𝜆 = 1. However, note that both full and 
partial stretch cycles result in fatigue damage. 

 

Fig. 6 Parametric study used for the selection of the material parameters (a) α and (b) 𝛽 used in Eq. (20) for the fiber material 
defined by Eq. (7) and the material properties shown in Table 1. Note that parameter 𝛽 is held constant in (a) and parameter α 
is held constant in (b). 

2.3.3 FIBER RUPTURE DAMAGE 
Consider the experimental stress response [25] shown in Fig. 2b and observe the softening that takes place after 
peak stress. Note that a tensile test is a single partial loading cycle, according to Fig. 5. Both the pseudo-elasticity 
theory and fatigue-induced stress softening models gather information from the initial loading cycle and then alter 
the response of the second loading cycle accordingly. However, there is no second loading cycle in a tensile test. 
Therefore, these damage models are not capable of producing the post-yield softening behavior seen in Fig. 2b. In 
order to address this shortcoming, we have included an additional damage parameter, which also ranges from 0 to 
1. The softening that occurs before failure is typical of damaging fibrous materials and is caused by the progressive 
rupture of the filamentary structure [25]. Therefore, the additional damage parameter is referred to as fiber rupture 
damage, 𝐷7. Based multiple quasi-static tensile tests [25], fiber damage initiates at a mean stretch of 1.91 and final 
separation occurs at a mean stretch of 2.66. As a preliminary attempt, we have assumed a linear evolution of fiber 
rupture damage, based on the fiber stretch history:  

𝐷7 =
𝜆B8CD7 − 1.91
2.66 − 1.91 			if			1.91 ≤ 𝜆B8CD7 ≤ 2.66 (22) 

The total fiber damage, 𝐷6Ò6, which ranges from 0 to 1, is then calculated for each fiber as the sum of the fatigue 
and fiber rupture damage parameters: 
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𝐷6Ò6 = 𝐷B + 𝐷7 (23) 

Finally, using Eq. (23), we can rewrite Eq. (18) as: 

𝜎B8CD7 = (1 − 𝐷6Ò6) ±𝜂 �
2𝜇
𝛼
2𝜆� − 𝜆O�/V3�² (24) 

2.3.4 MATRIX DAMAGE 
So far, we have only considered fiber damage. In order to incorporate matrix damage, we first calculate the average 
fiber damage for the fibers associated with each matrix element as follows: 

𝐷5ÓÔ =
∑ (𝐷6Ò6)B8CD7�
IF>GH=Ð
"KL

𝑛B8CD7
 (25) 

Then, using Eq. (17), we can calculate the damaged matrix stress as follows: 

𝐒456789 = 21 − 𝐷5ÓÔ3𝐒456789R  (26) 

where 𝐒456789R  is the undamaged matrix PK2 stress tensor. 

2.3.5 HEALING 
At the end of each simulation, we export 𝜆48Ö, 𝜆459, 𝐷B, and 𝐷7 for each fiber element. We then import these scalar 
damage parameters as the initial conditions for the next impact simulation. In addition, we have provided a 
mechanism to account for the healing process between two successive impacts. When the next simulation is 
initialized, a healing duration can be specified, which then partially or completely reverses the accumulated damage 
in each fiber element. Healing models have been implemented in various simulations of soft biological tissues, such 
as tendons [31], ligaments [32], and intervertebral discs [33]. However, due to the lack of experimental data, a 
constant healing rate is typically assumed. Similarly, we also assume a constant healing rate. In addition, we have 
assumed exponential recovery functions, which are defined as follows: 

𝜆48Ö = 1 − 21 − 𝜆48Ö×3(1 − 𝑟)
%ØH;Ï (27) 

𝜆459 = 1 + 2𝜆459× − 13(1 − 𝑟)
%ØH;Ï (28) 

𝐷B = 𝐷B×(1 − 𝑟)
%ØH;Ï (29) 

𝐷7 = 𝐷7×(1 − 𝑟)
%ØH;Ï  (30) 

where 𝜆48Ö×, 𝜆459×, 𝐷B×, 𝐷7× are the initial values of the damage parameters exported from the previous simulation; 
𝑟 is the constant healing rate, where we have assumed 𝑟 = 0.025; and 𝑡ÙD5Ú is the healing duration in number of days. 
For reference, Eq. (29) has been plotted in Fig. 7 for various values of 𝑟. The plots for Eq. (27) – Eq. (30) are similar. 
However, note that 𝐷B and 𝐷7 recover to zero, while 𝜆48Ö and 𝜆459 recover to 1. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/346700doi: bioRxiv preprint 

https://doi.org/10.1101/346700
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 

Fig. 7 Plot of Eq. (29) using an arbitrary value of initial fatigue damage, 𝐷B× = 1. The dashed (blue) and dash-dot (red) 
curves illustrate how alternative values of 𝑟 affect the recovery of the damage parameter. 

Many researchers have studied the recovery process that follows TBI [39] [40] [41] [42] [43]. However, a definitive 
relationship between recovery time and impact severity, location, and frequency has not yet been established. Most 
studies provide trends associated with a specific injury type and setting. Therefore, it is difficult to combine these 
separate findings into a single comprehensive formula. For example, in the case of minor sports injuries, symptoms 
tend to subside in seven to ten days [44]. However, for more severe injuries, many TBI patients go on to develop 
post-concussive syndrome (PCS), which is associated with long term cognitive deficits and white matter changes 
[45] [46] [43]. Due to the lack of a generalized recovery criteria, we have assumed a simple exponential healing 
model that provides a full recovery after six months (i.e., 𝑟 = 0.025), which is based on a three to six month recovery 
time for the typical civilian mTBI [45]. 

Finally, it is important to recognize that healing is an extremely complex remodeling process that involves many 
interacting biochemical and biomechanical processes [32]. In addition, the repair process can often lead to the 
formation of new structures, such as glial scars, which results in altered mechanical properties [4]. In addition, it is 
important to note that damage modeling is concerned with mechanical behavior and structural integrity, while most 
recovery studies are concerned with patient symptoms and functional restoration. Therefore, in order to accurately 
model damage recovery, future research is needed to understand how mechanical damage recovers over time. 

2.4 FE MODEL PREPARATION 
The FE model is based on diffusion tensor imaging (DTI) scans of a male rugby player, which were obtained from 
the Pennsylvania State University Center for Sports Concussion Research and Service. The scans were performed 
in a Siemens Trio Tim 3.0T MRI machine. We used Diffusion Toolkit [47] to generate the fiber track data and 
TrackVis [47] to visualize the fiber tracks, as shown in Fig. 8a. In addition, we used a custom MATLAB script to 
convert the binary TrackVis track file to an ASCII mesh file, which consists of nodal coordinates and element 
connectivity. We then used another custom MATLAB script to extract a cubic sample from the full tractography, 
as shown in the boxed region of Fig. 8b. We purposely selected a region of complex fiber geometry, which includes 
fiber crossings and branching, in order to demonstrate the robustness of the embedded element method. The final 
FE model, as shown in Fig. 8c, contains 2,994 individual fiber elements, with a mean length of 3.4 mm. Note that 
a single fiber track consists of multiple fiber elements. For example, in Fig. 8a, the mean fiber track length is 22.5 
mm. 
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Fig. 8 Tractography for (a) the full brain and (b) a coronal cross-section of the full brain. The (c) current FE model is based 
on the boxed region in (b). 

In order to study the evolution of damage in the fiber elements and the resulting effect on the global tissue response, 
we prepared multiple example simulations using various simple loading configurations. For instance, consider Fig. 
9a, where we have loaded a single face in the z-direction. In this case, we provide minimal restraints by fixing the 
nodal degrees of freedom shown in Fig. 9b. The resulting model behavior is illustrated in Fig. 10. Note that if we 
load a single face in the x-direction, as shown in Fig. 9c, the restraints will be similar to those shown in Fig. 9b, but 
not identical. 

 

Fig. 9 Applied load in the (a) z-direction and the associated (b) nodal restraints. The arrows in (b) indicate the nodal 
displacement components which are fixed, for the z-direction loading. An applied load in the (c) x-direction will require 
similar restraints, but not identical to those shown in (b). 
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Fig. 10 Behavior of the FE model when subjected to the applied load shown in Fig. 9a and the nodal restraints shown in Fig. 
9b. Note that the rollers remain in contact with the wall at all times. Also, note that the middle region of the FE model is 
unrestrained and free to move in any direction. This allows us to visualize the irregular distortions caused by the nonuniform 
distribution of the fiber elements. 

To select an appropriate matrix element size, we completed a mesh convergence study. Specifically, we applied a 
ramped 16 mm displacement in the z-direction and studied the effects of matrix element size on the stress 
response of a single fiber element. Note that the 16 mm displacement magnitude is arbitrary and was selected only 
to produce a significant amount of model deformation. The ramped load profile is shown in Fig. 11 and the three 
test models are shown in Fig. 13b. For this study, we selected the arbitrary fiber element (i.e., truss element 1082) 
shown in Fig. 12, due to its close alignment with the direction of loading. As seen in Fig. 13a, the fiber stress is 
not very sensitive to matrix element size. The final stress in the 3x3x3 configuration is only 1.6% smaller than the 
final stress in the 5x5x5 configuration. However, the 5x5x5 configuration simulation time was 2.1 times longer. 
Therefore, we choose the 3x3x3 configuration for our example simulations, which provided a reasonable balance 
of accuracy and simulation time. The 3x3x3 configuration consists of twenty-seven 8 mm cubic hex elements. 

 

Fig. 11 Ramped load profile. 
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Fig. 12 An arbitrary fiber element selected for close examination. 

 

 

Fig. 13 The (a) results of the mesh convergence study and the (b) associated mesh options. In all three cases, a ramped 16 
mm displacement was applied in the z-direction. The fiber stress in (a) is associated with the fiber element highlighted in Fig. 
12. Note that all damage features were disabled for this mesh convergence study. 

Finally, we needed to specify a cross-sectional area for each truss element. A fiber-reinforced composite contains a 
mixture of fiber and matrix components. Depending on the shape and packing of the fibers, there are limits on the 
fiber volume fraction, which is defined as: 

𝑉B8CD7 =
volume	of	fibers

volume	of	composite (31) 

For the ideal case of round parallel fibers, the maximum fiber volume fraction is 0.785 for square packing and 0.907 
for hexagonal packing [35]. Axonal fiber tracts are not typically arranged in an ideal parallel arrangement. 
Therefore, we chose 0.785 as reasonable maximum for the fiber volume fraction in a single matrix element. By 
trial-and-error, we discovered that a fiber element diameter of 0.5 mm (area = 1.9635e-7 m²) produced the maximum 
allowable fiber volume fraction in the 5x5x5 hex configuration, shown in Fig. 13b. For reference, the maximum 
and average fiber volume fractions for all three mesh configurations are provided in Fig. 13b, for a fiber element 
diameter of 0.5 mm. 

2.5 SIMULATION OVERVIEW 
In order to demonstrate the features and mechanics of the proposed computational framework, we present two 
example simulations. In the first example, we highlight a gap in the current technology and show how damage 
modeling offers a potential solution. In the second example, we step through the complete workflow of a practical 
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repetitive impact problem. Along the way, we review the evolution of damage and its effect on the aggregate tissue 
behavior. In both examples, we use unrealistically large displacements, in order to produce a significant amount of 
damage in a small number of cycles. Through trial and error, we discovered that a 16 mm displacement magnitude 
was sufficient to clearly illustrate the damage behavior. Otherwise, the 16 mm value is arbitrary and has no 
physiological significance. For reference, a 16 mm displacement is equivalent to a nominal stretch of 1.67, for the 
current 24 mm cubic FE model. 

3 RESULTS 

3.1 EXAMPLE 1 – RAMPED LOAD 
In this first example, we begin with a demonstration of the current technology and its limitations. Therefore, the 
damage features are initially disabled in the code. We start off with the FE model shown in Fig. 8c. Then, we apply 
a ramped 16 mm displacement, per Fig. 11, in the z-direction, as shown in Fig. 9a. The resulting fiber strains are 
presented in Fig. 14a. Next, we complete a separate simulation with a ramped 16 mm displacement in the x-
direction, as shown in Fig. 9c. The resulting fiber strains are presented in Fig. 14b. Simulations of this type are 
useful because they allow us to compare the resulting fiber strains with established tissue thresholds, such as those 
presented in [21]. However, each simulation represents a separate isolated loading event. Currently, there is no way 
combine the results of successive head impact simulations. Therefore, it is impossible to monitor the long-term 
structural health of brain tissue. In addition, the tissue does not degrade. Therefore, the material behavior remains 
constant throughout all simulations. These are significant limitations with the current technology. However, damage 
modeling can be used to address these issues. 

 

Fig. 14 Fiber strain results for a single ramped 16 mm displacement applied separately in the (a) z-direction and the (b) x-
direction. Note that these are two completely independent simulations and all damage features have been disabled.  

We now reconsider the previous two simulations. This time, we enable all damage features in the code. First, we 
simulate the applied displacement in the z-direction. Now, we plot the resulting fiber damage 𝐷6Ò6 in Fig. 15a. Note 
that we are below the stretch threshold for fiber rupture damage to occur. Next, we import the damage parameters 
𝜆48Ö, 𝜆459, 𝐷°, and 𝐷7 into the second simulation and apply the displacement in the x-direction. The resulting fiber 
damage plot is shown in Fig. 15b. By introducing damage, we are now able to view the consequences of successive 
impacts. In Fig. 15b, we see that many fibers have suffered a significant level of damage. However, the fibers in-
line with and perpendicular to the x and z axes have suffered the most damage, while the diagonal fibers have 
suffered the least damage. This result can be explained using the following simple example. Consider an arbitrary 
incompressible (i.e., constant area) unit square, as shown in Fig. 16a. Now, imagine that we apply an arbitrary 
stretch of 2.00 in the x-direction, as shown in Fig. 16b. The resulting lateral stretch (i.e., y-direction) would be 0.50 
and the resulting diagonal stretch would be 1.46. Using Eq. (20) and Eq. (21), we can calculate the fatigue damage 
associated with each of these three stretch values. For the stretch values of 2.00, 0.50, and 1.46, the resulting fatigue 
damage values are 0.269, 0.053, and 0.026, respectively. Based on this example, the results in Fig. 15 are now 
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somewhat intuitive. However, if we were to use a more complicated sequence of applied loads, the combined fiber 
damage results would not be as obvious. 

 

Fig. 15 Fiber damage results for a single ramped 16 mm displacement applied consecutively in the (a) z-direction and then 
the (b) x-direction. The fiber damage results from (a) were imported as the initial conditions for (b). Fibers in-line with and 
perpendicular to the loading directions suffer the most damage, while diagonal fibers suffer the least damage. 

 

Fig. 16 An incompressible (i.e., constant area) unit square shown (a) before deformation and (b) after deformation. The 
resulting stretch and fatigue damage values are indicated. 

3.2 EXAMPLE 2 – CYCLIC LOAD 
In this second example, we study a slightly more complex scenario and explore the damage response in greater 
detail. Again, we start with the FE model shown in Fig. 8c. However, we now apply a cyclic displacement, per 
Fig.17, in the z-direction. Injurious head impacts are typically associated with interaction times of 15 msec or less 
[48]. However, in this example, we applied the load over 100 msec duration ramps, in order to minimize the solution 
noise caused by rapid changes in load profile. One should note that such solution noise is normal and also observed 
when using commercial software. 

In Fig. 18, we plot the stress response for the fiber element shown in Fig. 12. During the first load cycle, the effects 
of damage are minor. However, we see the response change shape on the unloading portion of the cycle, due to 
stress softening (i.e., the Mullins effect), per Eq. (12). This change in shape is then present in each of the following 
load cycles. At the end of each cycle, the additional fatigue damage is calculated using Eq. (21). As a result, we see 
the stress amplitude drop after each load cycle, according to Eq. (18). As previously mentioned, the nominal stretch 
is 1.67 in these examples. Therefore, fiber rupture damage does not occur, according to Eq. (22). At the peak of the 
fifth load cycle (1325 msec), the fiber stress has decreased by 17.5%. The final total fiber damage is 0.22.  
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Fig.17 Cyclic load profile. 

 

 

Fig. 18 The stress response of fiber element 1082 during the initial five loading cycles on day 1. The total fiber damage for 
fiber element 1082 is also shown. Note that the word “damage” has been abbreviated as “dmg.” 

Now, imagine that some time has passed. For the sake of this example, assume that it is three months (i.e., 91 days) 
later. We now repeat the previous five displacement cycles. However, in this case we will consider two options. In 
the first option, we allow damage to progress as before. This is equivalent to ten successive load cycles. In other 
words, the three-month rest period has no effect on the results. In the second option, we use Eq. (27) – Eq. (30) to 
partially restore the damage parameters before the initial load cycle begins. 

In Fig. 19, we plot the fiber stress response for both options (i.e., healing vs. no healing), for the fiber element 
shown in Fig. 12. At the peak of the first load cycle (125 msec), the unhealed fiber stress is 21.9% less than the 
undamaged response, whereas the healed fiber stress is 25.4% greater than the unhealed fiber stress. At the peak of 
the fifth load cycle (1325 msec), the unhealed fiber stress is 39.4% less than the undamaged fiber stress, whereas 
the healed fiber stress is 32.8% greater than the unhealed fiber stress. For the unhealed option, the total fiber damage 
was initialized at 0.22 and finished at 0.43. For the healed option, the total fiber damage was initialized at 0.02 and 
finished at 0.24. 
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Fig. 19 The stress response of fiber element 1082 during the second five loading cycles on day 91. The total fiber damage for 
element 1082 is also shown. Note that the word “damage” has been abbreviated as “dmg.” 

4 DISCUSSION 
Current FE models are unable to capture the progressive damage caused by repeated head trauma. In this study, we 
present a method for computing the history-dependent mechanical damage of axonal fiber tracts in the brain. The 
proposed fiber damage model consists of three main components. First, we use the pseudo-elasticity theory to 
account for stress softening (i.e., the Mullins effect). Next, we use a fatigue-induced stress softening model to 
provide cycle-dependent degradation and finite life. Lastly, we use a fiber rupture damage model to generate post-
yield softening behavior. In addition, we use an exponential healing model to partially or completely reverse the 
accumulated damage in each fiber element. Using two examples, we have demonstrated the ability of the proposed 
model to successfully track cumulative axonal damage and degrade the mechanical response of the aggregate brain 
tissue. 

At this time, the greatest barrier to further development is the lack of experimental data. Stress softening has been 
observed in human brain tissue [25]. However, the fatigue properties of brain tissue have not yet been studied. 
Therefore, we relied on parametric studies and our best judgment to select reasonable values for the required model 
parameters. Due to the soft and fragile nature of brain tissue, it is challenging to perform mechanical tests [26]. 
However, it is even more difficult to study the effects of healing on the mechanical properties of living brain tissue. 
As a result, such data does not currently exist. Many studies have looked at the recovery of TBI symptoms over 
time. However, it is not clear how the recovery of mechanical properties and the recovery of TBI symptoms are 
related. Therefore, as with damage, the lack of experimental data is the greatest limitation for modeling the recovery 
process. 

The embedded element method is advantageous because it preserves the complete fiber track resolution provided 
by the tracking software. This makes it relatively simple to identify potentially damaged fiber tracts, based on the 
simulation results. However, the embedded element method requires separate material properties for the matrix and 
fiber components, which exacerbates the problem of limited experimental data. In the end, we may need separate 
elastic, damage, and recovery properties for the matrix and fiber components. Also, experimental data is typically 
supplied at the composite tissue level. Therefore, it is necessary to decompose the results into component level 
properties.  

In this study, we have focused on mechanical damage. However, we are also interested in predicting functional 
impairment. There is likely some connection between mechanical damage and functional injury. However, it is 
unlikely that there is a one-to-one relationship. Tension tests [25] have shown that brain tissue supports mechanical 
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load up until fracture, at a mean stretch value of 2.66. On the other hand, electrophysiological impairment been 
shown [21] to occur much earlier, at a stretch value of 1.17. Therefore, as more experimental data becomes 
available, it may become necessary to introduce a separate set of functional damage parameters that will be tracked 
in parallel with the proposed mechanical damage parameters. 

In its current form, the proposed computational framework should be regarded as a first step in a necessary direction. 
To be useful in practice, the proposed models must be refined and validated. Nonetheless, the current model has 
immediate value in that it provides a new metric (i.e., inelastic damage) that captures both the magnitude and 
frequency of successive fiber tract strains; a capability which otherwise does not exist. In addition, the proposed 
model also accounts for the changes in the material behavior that result from fiber damage. This new feature has 
important consequences. For instance, consider an applied cyclic load with a constant force magnitude. As damage 
accumulates with each additional cycle, the resulting tissue deformation will steady increase. As a result, damaged 
tissue will be more susceptible to strain-related functional impairment. 

Overall, there is a need for long-term brain health monitoring technology. After an initial TBI, the brain enters a 
temporary period of increased susceptibility to further TBI and long-term deficits. This vulnerable cerebral state is 
known as the “window of vulnerability” [46]. As a result, it is crucial to identify and treat TBI early on, in order to 
avoid more severe and permanent injuries from developing [45]. Microstructural white matter damage is thought to 
be associated with multiple forms of brain injury; such as PCS [46] [49] and chronic traumatic encephalopathy 
(CTE) [50]. Therefore, we believe that it is especially useful to quantify the potential cumulative damage of axonal 
fiber tracts in the brain, which result from repeated TBI. 

5 CONCLUSION 
In this paper, we proposed a method for computing the history-dependent mechanical damage of axonal fiber tracts 
in the brain. Using two detailed examples, we demonstrated the ability of the proposed model to track cumulative 
damage and degrade the mechanical response of the material. As an additional benefit, fiber damage provides a new 
metric that captures both the magnitude and frequency of successive fiber tract strains; a capability which otherwise 
does not exist. 

In the future, we plan to extend the current study to the full brain. In addition, we plan to research more sophisticated 
methods of calculating fiber rupture damage and matrix damage. We would also like to further explore the available 
options for incorporating permanent deformation, which has been observed in brain tissue [25]. Most importantly, 
we hope to calibrate and refine the proposed model, when new experimental data becomes available. Based on this 
initial study, damage modeling has the potential enhance current brain modeling techniques. 
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